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We formulate and prove a local stable manifold theorem for stochastic
differential equations (SDEs) that are driven by spatial Kunita-type semi-
martingales with stationary ergodic increments. Both Stratonovich and Itô-
type equations are treated. Starting with the existence of a stochastic flow
for a SDE, we introduce the notion of a hyperbolic stationary trajectory. We
prove the existence of invariant random stable and unstable manifolds in
the neighborhood of the hyperbolic stationary solution. For Stratonovich
SDEs, the stable and unstable manifolds are dynamically characterized
using forward and backward solutions of the anticipating SDE. The proof
of the stable manifold theorem is based on Ruelle–Oseledec multiplicative
ergodic theory.

1. Introduction. Consider the following Stratonovich and Itô stochastic
differential equations (SDEs) on Rd:

�S� dφ�t� =
◦
F� ◦dt�φ�t��� t > s�

φ�s� = x�

�I�
dφ�t� = F�dt�φ�t��� t > s�

φ�s� = x�
defined on a filtered probability space �	�� � �� t

s �s≤t�P�. Equation (S) is

driven by a continuous forward–backward spatial semimartingale
◦
F� R ×

Rd × 	 → Rd, and equation (I) is driven by a continuous forward spatial
semimartingale F� R × Rd × 	 → Rd [10]. Both

◦
F and F have stationary

ergodic increments.
It is known that, under suitable regularity conditions on the driving spatial

semimartingale
◦
F, the SDE (S) admits a continuous (forward) stochastic flow

φs� t� Rd × 	 → Rd� −∞ < s ≤ t < ∞ [10]. The inverse flow is denoted by
φt� s �= φ−1

s� t� Rd × 	 → Rd� −∞ < s ≤ t < ∞. This flow is generated by

Received October 1997; revised November 1998.
1Supported in part by NSF Grants DMS-95-03702, DMS-97-03852 and by MSRI, Berkeley,

California.
2Supported in part by MSRI, Berkeley, California.
AMS 1991 subject classifications. Primary 60H10, 60H20; secondary 60H25, 60H05.
Key words and phrases. Stochastic flow, spatial semimartingale, local characteristics, stochas-

tic differential equation (SDE), (perfect) cocycle, Lyapunov exponents, hyperbolic stationary tra-
jectory, local stable/unstable manifolds, asymptotic invariance.

615



616 S.-E. A. MOHAMMED AND M. K. R. SCHEUTZOW

Kunita’s backward Stratonovich SDE,

�S−� dφ�s� = −
◦
F� ◦ d̂s�φ�s��� s < t�

φ�t� = x

Similarly, the inverse flow φt� s �= φ−1

s� t� Rd × 	 → Rd, −∞ < s ≤ t < ∞ of
the Itô equation (I) solves a backward Itô SDE with a suitable correction term
([10], page 117).

The main objective of the present article is to establish a local stable-
manifold theorem for the SDEs (S) and (I) when the driving semimartingales◦
F and F have stationary ergodic increments. Our main result is Theorem 3.1.
It gives a random flow-invariant local splitting of Rd into stable and unstable
differentiable submanifolds in the neighborhood of each hyperbolic (possibly
anticipating) stationary solution. The method we use to establish these re-
sults is based on a nonlinear discrete-time multiplicative ergodic theorem due
to Ruelle [24] (cf. [25]). Although the article is largely self-contained, famil-
iarity with the arguments in [24] will sometimes be needed. Key ingredients
of this approach are Ruelle–Oseledec integrability conditions which we prove
in Lemma 3.1 under a very mild integrability hypothesis on the stationary
solution. The proof of this lemma is in turn based on spatial estimates on the
flow and its derivatives [10], [17]. These estimates are stated in Theorem 2.1
for easy reference.

Several authors have contributed to the development of the stable-manifold
theorem for nonlinear SDEs. The first successful attempt was carried out by
Carverhill [6] for SDEs on compact manifolds. In [6], a stable manifold theo-
rem is obtained in the globally asymptotically stable case where the Lyapunov
exponents of the linearized flow are all negative. The general hyperbolic case
with positive Lyapunov exponents is not treated in [6]. The work by Boxler [5]
focuses on the existence of a (global) center manifold under small (white) noise.
Wanner [27] deals with the existence of global and local invariant manifolds
for continuous and discrete-time smooth cocycles. For an account of Wanner’s
results the reader may look at [27] and [1], Chapter 7. The results in [27] and
[1] are obtained under stringent conditions on the spatial growth of the cocy-
cle, namely, almost sure global boundedness of its spatial derivatives. These
conditions clearly cover the case of compact state space (cf. [6]), the case of
discrete-time cocycles and the case of random differential equations driven
by real-noise ([1], Theorems 7.3.1, 7.3.10, 7.3.14, 7.3.17, 7.5.5). However, they
do not apply in our present context of smooth cocycles generated by SDEs
in Euclidean space. Typically such cocycles may have almost surely globally
unbounded spatial derivatives even if the driving vector fields are smooth
with all derivatives globally bounded. See [17] and the examples therein and
also [8].

In this paper, we prove the existence of local stable and unstable manifolds
for smooth cocycles in Euclidean space that are generated by a large class of
SDEs of the form (S) or (I). The regularity conditions imposed on the local
characteristics of the driving noise in (S) or (I) are such that the SDE admits
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a global flow for all time. The local stable and unstable manifolds are dy-
namically characterized in two ways: first, using the cocycle and then through
anticipating versions of the underlying forward and backward SDEs. This is
done using an approach based on classical work by Ruelle [24] and antici-
pating stochastic calculus [18–20]. In addition, using a standard imbedding
argument, the method of construction of the stable and unstable manifolds
also works if the state space Rd is replaced by a (possibly non-compact) finite-
dimensional Riemannian manifold; compare [6].

The multiplicative ergodic theory of linear finite-dimensional systems was
initiated by Oseledec in his fundamental work [21]. An infinite-dimensional
stable-manifold theorem for linear stochastic delay equations was developed
by Mohammed [15] in the white noise case, and by Mohammed and Scheutzow
for general semimartingales with stationary ergodic increments [16].

2. Basic setting and preliminary results. Let �	�� �P� be a probabil-
ity space. Let θ� R ×	→ 	 be a P-preserving flow on 	, namely:

1. θ is jointly measurable;
2. θ�t+ s� ·� = θ�t� ·� ◦ θ�s� ·�, s� t ∈ R;
3. θ�0� ·� = I	, the identity map on 	;
4. P ◦ θ�t� ·�−1 = P, t ∈ R.

Denote by �̄ the P-completion of � . Let �� t
s � ∞ < s ≤ t <∞� be a family

of sub-σ-algebras of �̄ satisfying the following conditions:

1. θ�−r� ·��� t
s � = � t+r

s+r for all r ∈ R, −∞ < s ≤ t <∞.
2. For each s ∈ R, both �	� �̄ � �� s+u

s �u≥0�P� and �	� �̄ � �� s
s−u�u≥0�P� are

filtered probability spaces satisfying the usual conditions [23].

A random field F� R×Rd×	→ Rd is called a (continuous forward) spatial
semimartingale helix if it satisfies the following:

1. For every s ∈ R, there exists a sure event 	s ∈ � such that

F�t+ s� x�ω� = F�t� x� θ�s�ω�� +F�s� x�ω�
for all t ∈ R, all ω ∈ 	s and all x ∈ Rd.

2. For almost all ω ∈ 	, the mapping R × Rd � �t� x� �→ F�t� x�ω� ∈ Rd is
continuous.

3. For any fixed s ∈ R and x ∈ Rd, the process F�s + t� x�ω� − F�s� x�ω�,
t ≥ 0� is an �� s+t

s �t≥0-semimartingale.

Similarly, a random field F� R × Rd ×	→ Rd is called a continuous back-
ward spatial semimartingale helix if it satisfies (1) and (2) and has the prop-
erty that for fixed s ∈ R and x ∈ Rd, the process F�s − t� x�ω� − F�s� x�ω�,
t ≥ 0, is an �� s

s−t�t≥0-semimartingale.
In (3) above, it is enough to require that the semimartingale property holds

for some fixed s (e.g., s = 0); then it will hold automatically for every s ∈ R
([3], Theorem 14).
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Note that a semimartingale helix F always satisfies F�0� x�ω� = 0 for a.a.
ω ∈ 	 and all x ∈ Rd. It is also possible to select a suitable perfect version of
F such that the helix property (1) holds for every ω ∈ 	. See [3] for further
details, and [22] for other general properties of semimartingale helices.

Suppose that the continuous forward semimartingale helixF� R×Rd×	→
Rd is decomposed as

F�t� x� = V�t� x� +M�t� x�� t ∈ R+� x ∈ Rd�

where V�·� x� �= �V1�·� x�� 
 
 
 �Vd�·� x�� is a continuous bounded variation
process, M�·� x� �= �M1�·� x�� 
 
 
 �Md�·� x�� is a continuous local martingale
with respect to �� t

0 �t≥0, and V�0� x� = M�0� x� = 0 for each x ∈ Rd. Let
�Mi�·� x��Mj�·� y�� be the joint quadratic variation of Mi�·� x��Mj�·� y�, for
x�y ∈ Rd, 1 ≤ i� j ≤ d.

Throughout this paper, assume that F��0�∞� has forward local character-
istics �a�t� x� y�� b�t� x�� that satisfy the relations

�Mi�·� x��Mj�·� y���t� =
∫ t

0
ai� j�u�x�y�du� Vi�t� x� =

∫ t
0
bi�u�x�du

for all 1 ≤ i, j ≤ d, 0 ≤ t ≤ T, and where a�t� x� y� �= �ai�j�t� x� y��i� j=1�


�d,
b�t� x� �= �b1�t� x�� 
 
 
 � bd�t� x��. Further measurability properties of the local
characteristics are given in [10], pages 79–85. Note that the local characteris-
tics are uniquely determined by F up to null sets.

In what follows, let � denote the diagonal � �= ��x� x�� x ∈ Rd� in Rd ×
Rd, and let �c be its complement. The space Rd carries the usual Euclidean
norm � · �.

We shall use the notation

α �= �α1� α2� 
 
 
 � αd�� Dαx �= ∂�α�

�∂x1�α1 · · · �∂xd�αd
� �α� �=

d∑
i=1

αi�

for αi nonnegative integers, i = 1� 
 
 
 � d.
Following [10], we shall say that the spatial forward semimartingale F

has forward local characteristics of class �Bm�δub �B
k� δ
ub � for nonnegative integers

m�k and δ ∈ �0�1�, if for all T > 0, its characteristics satisfy

ess sup
ω∈	

sup
0≤t≤T

[�a�t��̃m+δ + �b�t��k+δ
]
<∞�

where

�a�t��̃m+δ �= sup
x�y∈Rd

�a�t� x� y��
�1 + �x���1 + �y�� + ∑

1≤�α�≤m
sup
x�y∈Rd

�DαxDαya�t� x� y��

+ ∑
�α�=m

�DαxDαya�t� ·� ·��̂δ�
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�b�t��k+δ �= sup
x∈Rd

�b�t� x��
�1 + �x�� + ∑

1≤�α�≤k
sup
x∈Rd

�Dαxb�t� x��

+ ∑
�α�=k

sup
�x�y�∈�c

�Dαxb�t� x� −Dαyb�t� y��
�x− y�δ �

and

�f�̂δ �= sup
{ �f�x�y� − f�x′� y� − f�x�y′� + f�x′� y′��

�x− x′�δ�y− y′�δ � �x� x′�� �y�y′� ∈ �c
}

for any δ-Hölder continuous function f� Rd×Rd → Rd. Similar definitions hold
for the backward local characteristics of a backward spatial semimartingale.
The local characteristics of F are said to be of class �Bm�δloc �B

k� δ
loc � if for any

compact set K ⊂ Rd, and any finite positive T, one has

ess sup
ω∈	

sup
0≤t≤T

[�a�t��̃m+δ�K + �b�t��k+δ�K
]
<∞�

where � · �̃m+δ�K, �b�t��k+δ�K are defined by similar expressions to the above
with the suprema taken over the compact set K.

Now consider the Stratonovich and Itô stochastic differential equations

�S� dφ�t� =
◦
F� ◦dt�φ�t��� t > s�

φ�s� = x�

�I�
dφ�t� = F�dt�φ�t��� t > s�

φ�s� = x

The SDE (S) is driven by a continuous forward(–backward) spatial helix semi-
martingale

◦
F�t� x� �= �

◦
F1�t� x�� 
 
 
 �

◦
Fd�t� x��, x∈Rd. In the SDE (I),F denotes

a spatial continuous forward helix semimartingale. It is known that, under
suitable regularity hypotheses on the local characteristics of

◦
F (or F), the

SDEs (S) and (I) generate the same stochastic flow. Throughout this article,
these flows will be denoted by the same symbol �φs� t� s� t ∈ R�. More precisely,
we will need the following hypotheses.

Hypothesis [ST�k� δ�].
◦
F is a continuous spatial helix forward semi-

martingale with forward local characteristics of class �Bk+1� δ
ub �B

k� δ
ub �. The

function

�0�∞�× Rd � �t� x� �→
d∑
j=1

∂a·� j�t� x� y�
∂xj

∣∣∣∣
y=x

∈ Rd

belongs to Bk�δub .



620 S.-E. A. MOHAMMED AND M. K. R. SCHEUTZOW

Hypothesis [ST−�k� δ�].
◦
F is a continuous helix backward semimartin-

gale with backward local characteristics of class �Bk+1� δ
ub �B

k� δ
ub �


Hypothesis [IT�k� δ�]. F� R × Rd × 	 → Rd is a continuous spatial
helix forward semimartingale with forward local characteristics of class
�Bk�δub �Bk� δub �.

The following proposition establishes a relationship between the SDEs (S)
and (I).

Proposition 2.1. Suppose the helix semimartingale
◦
F satisfies Hypothesis

[ST(k� δ)] for some positive integer k and δ ∈ �0�1�. Let the following relation
hold:

F�t� x�ω� �=
◦
F�t� x�ω� + 1

2

∫ t
0

d∑
j=1

∂a·� j�u�x�y�
∂xj

∣∣∣∣
y=x

du� t ∈ R� x ∈ Rd


Then F is a helix semimartingale which satisfies Hypothesis [IT(k� δ)]. In this
case, the SDEs (S) and (I) generate the same stochastic flow φs� t� s� t∈R, on Rd.

Proof. The assertion of the proposition follows from Theorem 3.4.7 in
[10], except for the helix property. The helix property of F follows from

that of
◦
F and the fact that the Rd×d-valued process �

◦
F�·� x��

◦
F�·� y���t� =

�F�·� x��F�·� y���t�, t ∈ R� is a helix for any x�y ∈ Rd [22]. ✷

Proposition 2.1 shows that for given k� δ, Hypothesis [ST(k� δ)] is stronger
than [IT(k� δ)]. Although our results will cover both the Stratonovich and Itô
cases, the reader may note that the Stratonovich SDE (S) allows for a complete
and more aesthetically pleasing dynamic characterization of the stochastic
flow φs�t and its inverse. Indeed, under [ST(k� δ)] and [ST−�k� δ)], φ−1

s� t solves

the backward Stratonovich SDE based on
◦
F and hence provides a natural dy-

namical representation of the local unstable manifold in terms of trajectories
of the backward Stratonovich SDE. Such a dynamical characterization is not
available for the Itô SDE (I). See Section 3.

From now on, we will implicitly assume that the spatial semimartingales◦
F and F are related by the formula in Proposition 2.1. In this context, all our
results will be derived under both sets of hypotheses [ST(k� δ)] and [IT(k� δ)],
although the conclusions pertain invariably to the generated flow φs� t.

The following proposition is elementary. Its proof is an easy induction ar-
gument using the chain rule.

Proposition 2.2. Let f �= �f1� f2� 
 
 
 � fd�� Rd → Rd be a Ck diffeomor-
phism for some integer k ≥ 1. Then, for each α with 1 ≤ �α� ≤ k,

�2
1� Dαx�f�−1
i �x� = pα�i�f−1�x��

�det�Df�f−1�x����nα � i = 1� 
 
 
 � d�
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for all x ∈ Rd, and some integer nα ≥ 1. In the above identity, pα� i�y� is
a polynomial in the partial derivatives of f of order up to �α� evaluated at
y ∈ Rd.

Proof. We use induction on α. For �α� = 1, the chain rule gives Df−1�x� =
�Df�f−1�x���−1. By Cramer’s rule, this implies (2.1) with nα = 1.

Assume by induction that for some integer 1 ≤ n < k, (2.1) holds for all
α such that �α� ≤ n and all i = 1� 
 
 
 � d. Take α such that �α� = n and fix
i� j ∈ �1�2� 
 
 
 � d�. Taking partial derivatives with respect to xj in both sides
of (2.1) shows that the right-hand side of the resulting equation is again of
the same form with α replaced by α̃ �= �α̃1� α̃2� 
 
 
 � α̃d�, where α̃i �= αi + δi� j.
This completes the proof of the proposition. ✷

The next proposition allows the selection of sure θ�t� ·�-invariant events in
� from corresponding ones in �̄ .

Proposition 2.3. Let 	1 ∈ �̄ be a sure event such that θ�t� ·��	1� ⊆ 	1
for all t ≥ 0. Then there is a sure event 	2 ∈ � such that 	2 ⊆ 	1 and
θ�t� ·��	2� = 	2 for all t ∈ R.

Proof. Define 	̂1 �= ⋂∞
k=0 θ�k� ·��	1�. Then 	̂1 is a sure event, 	̂1 ⊆ 	1

and θ�t� ·��	̂1� = 	̂1 for all t ∈ R. Since �̄ is the completion of � , we may
pick a sure event 	0 ⊆ 	̂1 such that 	0 ∈ � . Define

	2 �= {
ω� ω ∈ 	�θ�t�ω� ∈ 	0 for Lebesgue-a.e. t ∈ R

}



Using Fubini’s theorem and the P-preserving property of θ, it is easy to check
that 	2 satisfies all the conclusions of the proposition. ✷

Theorem 2.1. Let
◦
F satisfy Hypothesis [ST�k� δ�] (resp., F satisfies

[IT�k� δ�]) for some k ≥ 1 and δ ∈ �0�1�. Then there exists a jointly measurable
modification of the trajectory random field of (S) [resp., (I)] also denoted by
�φs� t�x�� −∞ < s� t <∞, x ∈ Rd�, with the following properties.

If φ� R × Rd ×	→ Rd is defined by

φ�t� x�ω� �= φ0�t�x�ω�� x ∈ Rd� ω ∈ 	� t ∈ R�

then the following is true for all ω ∈ 	:

(i) For each x ∈ Rd and s� t ∈ R, φs� t�x�ω� = φ�t− s� x� θ�s�ω��.
(ii) �φ� θ� is a perfect cocycle:

φ�t+ s� ·�ω� = φ�t� ·� θ�s�ω�� ◦φ�s� ·�ω�
for all s� t ∈ R.

(iii) For each t ∈ R, φ�t� ·�ω�� Rd → Rd is a Ck diffeomorphism.

(iv) The mapping R2 � �s� t� �→ φs� t�·�ω� ∈ Diff k�Rd� is continuous, where

Diff k�Rd� denotes the group of all Ck diffeomorphisms of Rd, given the Ck-
topology.
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(v) For every ε ∈ �0� δ�� γ� ρ�T > 0, and 1 ≤ �α� ≤ k, the quantities

sup
0≤s� t≤T�
x∈Rd

�φs� t�x�ω��
�1 + �x��log+ �x��γ� � sup

0≤s� t≤T�
x∈Rd

�Dαxφs� t�x�ω��
�1 + �x�γ� �

sup
x∈Rd

sup
0≤s� t≤T�

0<�x′−x�≤ρ

�Dαxφs� t�x�ω� −Dαxφs� t�x′�ω��
�x− x′�ε�1 + �x��γ

are finite. Furthermore, the random variables defined by the above expressions
have pth moments for all p ≥ 1.

Proof. The cocycle property stated in (ii) is proved in [9] for the white
noise case using an approximation argument (cf. [14], [15]). Assertions (iii)
and (iv) are well known to hold for a.a. ω ∈ 	 ([10], Theorem 4.6.5). A perfect
version of φs� t satisfying (i)–(iv) for all ω ∈ 	 is established in [3]. The argu-
ments in [3] use perfection techniques and Theorem 4.6.5 of [10] (cf. also [16]).

Assume that for every ε ∈ �0� δ�, γ, T, ρ > 0 the random variables in (v)
have finite moments of all orders. Let 	T�γ� ρ� ε be the set of all ω ∈ 	 for which
all random variables in (v) are finite. Define the set 	0 by

	0 �= ⋂
k� l�T�n∈N

⋂
s∈R

θ�s� ·��	T�1/n�1/l�1/k�


Then θ�s� ·��	0� = 	0 for all s ∈ R. Furthermore, it is not hard to see that⋂
k� l�T�n∈N

⋂
m∈Z

θ�mT� ·��	2T�1/n�1/l�1/k� ⊆ 	0


Therefore 	0 is a sure event in �̄ . By Proposition 2.3, 	0 contains a sure
invariant event 	′

0 ∈ � . Hence we can redefine φs� t�·�ω� and φ�t� ·�ω� to
be the identity map Rd → Rd for all ω ∈ 	\	′

0. This can be done without
violating properties (i)–(iv).

By Proposition 2.2, Theorem 1 in [17] and the remark following its proof, it
follows that the two random variables,

X1 �= sup
0≤s≤t≤T�
x∈Rd

�φs� t�x� ·��
�1 + �x��log+ �x��γ� �

X2 �= sup
0≤s≤t≤T�
x∈Rd

�x�
�1 + �φs� t�x� ·���log+ �x��γ�

have pth moments for all p ≥ 1. To complete the proof of the first assertion
in (v), it is sufficient to show that the random variable

X̂1 �= sup
0≤s≤t≤T�
x∈Rd

�φt� s�x� ·��
�1 + �x��log+ �x��γ�
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has pth moments for all p ≥ 1. To do this, assume (without loss of generality)
that γ ∈ �0�1�. From the definition of X2, we have

�y� ≤X2�1 + �φs� t�y� ·���log+ �y��γ�
for all 0 ≤ s ≤ t ≤ T� y ∈ Rd. Use the substitution,

y = φt� s�x�ω� = φ−1
s� t�x�ω��

φs� t�y�ω� = x� 0 ≤ s ≤ t ≤ T� ω ∈ 	� x ∈ Rd�

to rewrite the above inequality in the form

�y� ≤X2�1 + �x��log+ �y��γ�

By an elementary computation, the above inequality may be solved for log+ �y�.
This gives a positive nonrandom constant K1 (possibly dependent on ε and
T) such that

�y� ≤K1X2�1 + �x��1 + �log+ �X2��γ + �log+ �x��γ��

Since X2 has moments of all orders, the above inequality implies that X̂1 also
has pth moments for all p ≥ 1.

We now prove the second assertion in (v). First, note that the following two
random variables,

X3 �= sup
0≤s≤t≤T�
x∈Rd

�Dαxφs� t�x� ·��
�1 + �x�γ� � �α� ≤ k� X4 �= sup

0≤s≤t≤T�
x∈Rd

��Dφs� t�x� ·��−1�
�1 + �x�γ�

have pth moments for all p ≥ 1 ([10], Exercise 4.6.9, page 176; [17], Remark
(i) following Theorem 2). We must show that the random variables,

X̂3 �= sup
0≤s≤t≤T�
x∈Rd

�Dαxφ−1
s� t�x� ·��

�1 + �x�γ� � 1 ≤ �α� ≤ k�

have pth moments for all p ≥ 1. Note that there is a positive constant C such
that for any nonsingular matrix A, one has

��detA�−1� = �det�A−1�� ≤ C�A−1�d

Using this fact and applying Proposition 2.2 with f �= φs� t, 1 ≤ s ≤ t ≤ T,
shows that for every δ′ > 0, any i ∈ �1�2� 
 
 
 � d� and any 1 ≤ �α� ≤ k, there
exists a random variable Kδ′ ∈

⋂
p≥1L

p�	�R� such that

�Dαx�φ−1
s� t�i�x�� ≤Kδ′ �1 + �x�δ′ �mα� i

for all x ∈ Rd and some positive integer mα�i. Now for any given ε > 0, choose
δ′ = γ/mα� i to obtain

�Dαx�φ−1
s� t�i�x�� ≤Kδ′ �1 + �x�γ/mα� i�mα� i ≤ 2mα� iKδ′ �1 + �x�γ�

for all x ∈ Rd. This shows that X̂3 has pth moments for all p ≥ 1.
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The last estimate in (v) follows from a somewhat lengthy argument. We will
only sketch it. First note that for every p ≥ 1, there exists a constant c ≥ 0
such that

E��Dαxφs� t�x� −Dαxφs′� t′ �x′��2p� ≤ c��x− x′�2pδ + �s− s′�p + �t− t′�p�
uniformly for all x� x′ ∈ Rd, 0 ≤ s ≤ t ≤ T ([10], Theorem 4.6.4, pages 172
and 173). Using the above estimate, we can employ the inequality of Garsia–
Rodemich–Rumsey in its majorizing measure version in order to show that
the expression

sup
x∈Rd

sup
0≤s≤t≤T�

0<�x′−x�≤ρ

�Dαxφs� t�x�ω� −Dαxφs� t�x′�ω��
�x− x′�ε�1 + �x��γ

has moments of all orders. The argument used to show this is similar to the
one used in [8]. The application of the Garsia–Rodemich–Rumsey inequality
is effected using the following metric on the space �0�T� × �0�T� × Rd:

d��s� t� x�� �s′� t′� x′�� �= �x− x′�δ + �s− s′�1/2 + �t− t′�1/2

Finally, we extend the estimate to cover the sup over all �s� t� ∈ �0�T�× �0�T�
by appealing to Proposition 2.2 and the argument used above to establish the
existence of pth moments of X̂3. This completes the proof of the theorem. ✷

3. The local stable manifold theorem. In this section, we shall main-
tain the general setting and hypotheses of Section 2.

Furthermore, we shall assume from now on that the P-preserving flow θ� R×
	→ 	 is ergodic.

For any ρ > 0 and x ∈ Rd, denote by B�x� ρ� the open ball with center x
and radius ρ in Rd. Denote by B̄�x� ρ� the corresponding closed ball.

Recall that �φ� θ� is the perfect cocycle associated with the trajectories
φs� t�x� of (S) or (I) (Theorem 2.1).

Definition 3.1. Say that the cocycle φ has a stationary trajectory if there
exists an � -measurable random variable Y� 	→ Rd such that

�3
1� φ�t�Y�ω��ω� = Y�θ�t�ω��
for all t ∈ R and every ω ∈ 	. In the sequel, we will always refer to the
stationary trajectory (3.1) by φ�t�Y�.

If (3.1) is known to hold on a sure event 	t that may depend on t, then
there are “perfect” versions of the stationary random variable Y and of the
flow φ such that (3.1) and the conclusions of Theorem 2.1 hold for all ω ∈ 	
(under the hypotheses therein) [26].

We may replace ω in (3.1) by θ�s�ω�, s ∈ R, to get

�3
2� φ�t�Y�θ�s�ω��� θ�s�ω�� = Y�θ�t+ s�ω��
for all s� t ∈ R and every ω ∈ 	.
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To illustrate the concept of a stationary trajectory, we give a few simple
examples.

Examples. (i) Consider the Itô SDE,

dφ�t� = h�φ�t��dt+
m∑
i=1

gi�φ�t��dWi�t��

where W �= �W1� 
 
 
 �Wm� is an m-dimensional Brownian motion on Wiener
space �	�� �P�. Namely, 	 is the space of all continuous paths ω� R → Rm

given the topology of uniform convergence on compacta, � �= Borel	, P is
Wiener measure on 	 and W is defined by evaluations

W�t�ω� �= ω�t�� ω ∈ 	� t ∈ R+


The vector fields h�gi� Rd → Rd� i = 1� 
 
 
 �m� are in Ck�δb for some k ≥ 1�
δ ∈ �0�1�. Let θ� R ×	→ 	 denote the canonical Brownian shift

θ�t�ω��s� �= ω�t+ s� −ω�t�� t� s ∈ R� ω ∈ 	

Suppose h�x0� = gi�x0� = 0, 1 ≤ i ≤m for some fixed x0 ∈ Rd. TakeY�ω� = x0
for all ω ∈ 	. Then Y is a stationary trajectory of the above SDE.

(ii) Consider the affine linear one-dimensional SDE,

dφ�t� = λφ�t�dt+ dW�t��
where λ > 0 is fixed and W is one-dimensional Brownian motion. Take

Y�ω� �= −
∫ ∞

0
e−λu dW�u��

and let θ denote the canonical Brownian shift in Example (i) above. Using
integration by parts and variation of parameters, the reader may check that
there is a version of Y such that φ�t�Y�ω��ω� = Y�θ�t�ω�� for all �t�ω� ∈
R ×	.

(iii) Consider the two-dimensional affine linear SDE,

dφ�t� = Aφ�t�dt+GdW�t��
where A is a fixed hyperbolic �2 × 2�-diagonal matrix,

A �=
(
λ1 0

0 λ2

)
� λ2 < 0 < λ1�

and G is a constant matrix, for example,

G �=
(
g1 g2

g3 g4

)
�

with gi ∈ R, i = 1�2�3�4. Let W �= (
W1
W2

)
be two-dimensional Brownian mo-

tion. Set Y �= (
Y1
Y2

)
where

Y1 �= −g1

[∫ ∞

0
exp�−λ1�dW1�u�

]
− g2

[∫ ∞

0
exp�−λ1u�dW2�u�

]
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and

Y2 �= g3

[∫ 0

−∞
exp�−λ2u�dW1�u�

]
+ g4

[∫ 0

−∞
exp�−λ2u�dW2�u�

]



Using variation of parameters and integration by parts [as in (ii)], it is easy
to see that Y has a measurable version Y� 	→ R2 which gives a stationary
trajectory of the SDE in the sense of Definition 3.1.

In the general white noise case in Example (i) above, one can generate a
large class of stationary trajectories as follows. Let ρ be an invariant probabil-
ity measure on Rd for the Markov process associated with the solution of the
SDE in Example (i). Then ρ gives rise to a stationary trajectory by suitably
enlarging the underlying probability space using the following procedure.

If Pt� Cb�Rd�R� → Cb�Rd�R�� t ≥ 0, is the Markov semigroup associated
with the SDE, then∫

Rd
�Ptf��x�dρ�x� =

∫
Rd
f�x�dρ�x�� t ≥ 0�

where

�Ptf��x� �= E�f�φ�t� x� ·���� t ≥ 0� x ∈ Rd�

for all f ∈ Cb�Rd�R�. Define

	̃ �= 	× Rd� �̃ �= � ⊗��Rd�� P̃ �= P⊗ ρ� ω̃ �= �ω�x� ∈ 	̃�
θ̃�t� ω̃� �= �θ�t�ω�� φ�t� x�ω��� t ∈ R+� ω ∈ 	� x ∈ Rd�

φ̃�t� x′� ω̃� �= φ�t� x′�ω�� t ∈ R+� x′ ∈ Rd� ω̃ ∈ 	̃�
Ỹ�ω̃� �= x� ω̃ = �ω�x� ∈ 	̃


The group θ̃�t� ·�� 	̃→ 	̃� t ∈ R+, is P̃-preserving (and ergodic) [6]. Further-
more, it is easy to check that �φ̃�t� ·� ω̃�� θ̃�t� ω̃�� is a perfect cocycle on Rd and
Ỹ� 	̃→ Rd satisfies

φ̃�t� Ỹ�ω̃�� ω̃� = Ỹ�θ̃�t� ω̃��
for all t ∈ R+� ω̃ ∈ 	̃. Hence Ỹ is a stationary trajectory for the cocycle �φ̃� θ̃�
and ρ = P̃ ◦ Ỹ−1.

Conversely, let Y� 	→ Rd be a stationary trajectory satisfying the identity
(3.1) and independent of the Brownian motion W�t�, t ≥ 0. Then ρ �= P ◦Y−1

is an invariant measure for the one-point motion.
For related issues on statistical equilibrium and invariant measures for

stochastic flows, the reader may consult [11], [12], [7], [4] and [1], Chapter 1.

Lemma 3.1. Let the conditions of Theorem 2.1 hold. Assume also that
log+ �Y�·�� is integrable. Then the cocycle φ satisfies

�3
3�
∫
	

log+ sup
−T≤t1� t2≤T

�φ�t2�Y�θ�t1�ω�� + �·�� θ�t1�ω���k� ε dP�ω� <∞
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for any fixed 0 < T�ρ < ∞ and any ε ∈ �0� δ�. The symbol � · �k�ε denotes the

Ck�ε-norm on Ck�ε mappings B̄�0� ρ� → Rd. Furthermore, the linearized flow
�D2φ�t�Y�ω��ω�� θ�t�ω�� t ≥ 0� is an L�Rd�-valued perfect cocycle and

�3
4�
∫
	

log+ sup
−T≤t1� t2≤T

�D2φ�t2�Y�θ�t1�ω��� θ�t1�ω���L�Rd� dP�ω� <∞

for any fixed 0 < T < ∞. The forward cocycle �D2φ�t�Y�ω��ω�� θ�t�ω��
t > 0� has a nonrandom finite Lyapunov spectrum �λm < · · · < λi+1 < λi <
· · · < λ2 < λ1�. Each Lyapunov exponent λi has a nonrandom (finite) mul-
tiplicity qi, 1 ≤ i ≤ m� and

∑m
i=1 qi = d. The backward linearized cocycle

�D2φ�t�Y�ω��ω�� θ�t�ω�� t < 0�, admits a “backward” nonrandom finite Lya-
punov spectrum defined by

lim
t→−∞

1
t

log �D2φ�t�Y�ω��ω��v��� v ∈ Rd

and taking values in �−λi�mi=1 with nonrandom (finite) multiplicities qi, 1 ≤
i ≤m and

∑m
i=1 qi = d.

Note that Lemma 3.1 stipulates regularity only on the forward character-

istics of
◦
F and F.

Proof. We first prove (3.4). Start with the perfect cocycle property for
�φ� θ�,

�3
5� φ�t1 + t2� ·�ω� = φ�t2� ·� θ�t1�ω�� ◦φ�t1� ·�ω��

for all t1� t2 ∈ R and all ω ∈ 	. The perfect cocycle property for �D2φ�t�Y�ω��
ω�� θ�t�ω�� follows directly by taking Fréchet derivatives at Y�ω� on both
sides of (3.5), namely,

�3
6�
D2φ�t1 + t2�Y�ω��ω�

= D2φ�t2� φ�t1�Y�ω��ω�� θ�t1�ω�� ◦D2φ�t1�Y�ω��ω�
= D2φ�t2�Y�θ�t1�ω��� θ�t1�ω�� ◦D2φ�t1�Y�ω��ω�

for all ω ∈ 	0� t1� t2 ∈ R. The existence of a fixed discrete spectrum for the
linearized cocycle follows the analysis in [15] and [16]. This analysis uses the
integrability property (3.4) and the ergodicity of θ. Although (3.4) is an easy
consequence of (3.6) and Theorem 2.1(v), it is clear that (3.3) implies (3.4).
Therefore it is sufficient to establish (3.3).

In view of (3.1) and the identity

φt1� t1+t2�x�ω� = φ�t2� x� θ�t1�ω��� x ∈ Rd� t1� t2 ∈ R�
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[Theorem 2.1(i)], (3.3) will follow if we show that the following integrals are
finite for 0 ≤ �α� ≤ k:

�3
7�
∫
	

log+ sup
0≤s� t≤T�
�x′ �≤ρ

�Dαxφs� t�φ0� s�Y�ω��ω� + x′�ω��dP�ω��

�3
7′�

∫
	

log+ sup
0≤s� t≤T�

x�x′∈B̄�0� ρ�� x "=x′

[�Dαxφs� t�φ0� s�Y�ω��ω� + x�ω�

−Dαxφs� t�φ0� s�Y�ω��ω� + x′�ω��]
× �x− x′�−ε dP�ω�


For simplicity of notation, we shall denote random constants by the lettersKi,
i = 1�2�3�4. Each Ki, i = 1�2�3�4, has pth moments for all p ≥ 1 and may
depend on ρ and T. The following string of inequalities follows easily from
Theorem 2.1(v).

�3
8�

log+ sup
s� t∈�0�T��

�x′ �≤ρ

�Dαxφs� t�φ0� s�Y�ω��ω� + x′�ω��

≤ log+ sup
s∈�0�T�

{
K1�ω��1 + �ρ+ �φ0� s�Y�ω��ω���2�}

≤ log+K2�ω� + log+�1 + 2ρ2 +K3�ω��1 + �Y�ω��4��
≤ log+K4�ω� + log�1 + 2ρ2� + 4 log+ �Y�ω��

for all ω ∈ 	. Now (3.8) and the integrability hypothesis on Y imply that the
integral (3.7) is finite. The finiteness of (3.7′) follows in a similar manner using
Theorem 2.1(v). This completes the proof of the lemma. ✷

Definition 3.2. A stationary trajectory φ�t�Y� of φ is said to be hyper-
bolic if E log+ �Y�·�� <∞ and the linearized cocycle �D2φ�t�Y�ω��ω�� θ�t�ω��
t ≥ 0� has a Lyapunov spectrum �λm < · · · < λi+1 < λi < · · · < λ2 < λ1� which
does not contain 0.

Let ���ω��� �ω�� ω ∈ 	� denote the unstable and stable subspaces for the
linearized cocycle �D2φ�t�Y�·�� ·�� θ�t� ·�� as given by Theorem 5.3 in [16]. See
also [15]. This requires the integrability property (3.4).

The following discussion is devoted to the Stratonovich SDE (S) and the
linearization of the stochastic flow around a stationary trajectory.

The Linearization. In (S), suppose
◦
F is a forward–backward semimartin-

gale helix satisfying Hypotheses [ST(k� δ)] and [ST−(k� δ)] for some k ≥ 2 and
δ ∈ �0�1�. Then it follows from Theorem 4.2(i) that the (possibly anticipating)
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process φ�t�Y�ω��ω� is a trajectory of the anticipating Stratonovich SDE,

�SII� dφ�t�Y� =
◦
F� ◦dt�φ�t�Y��� t > 0�

φ�0�Y� = Y


In the above SDE, the Stratonovich differential
◦
F� ◦dt� ·� is defined as in

Section 4, Definition 4.1 (cf. [10], page 86). The above SDE follows immediately
by substituting x = Y�ω� in

�SI� dφ�t� x� =
◦
F� ◦dt�φ�t� x��� t > 0�

φ�0� = x ∈ Rd�

[Theorem 4.2(i)]. This substitution works in spite of the anticipating nature of
φ�t�Y�ω��ω� = Y�θ�t�ω��, because the Stratonovich integral is stable under
random anticipating substitutions (Theorem 4.1).

Furthermore, we can linearize the SDE (S) along the stationary trajectory
and then match the solution of the linearized equation with the linearized
cocycle D2φ�t�Y�ω��ω�. That is to say, the (possibly nonadapted) process
y�t� �= D2φ�t�Y�ω��ω�, t ≥ 0� satisfies the associated Stratonovich linearized
SDE,

�SIII� dy�t� = D2

◦
F� ◦dt�Y�θ�t���y�t�� t > 0�

y�0� = I ∈ L�Rd�

In (SIII), the symbol D2 denotes the spatial (Fréchet) derivative of the driv-
ing semimartingale along the stationary trajectory φ�t�Y�ω��ω� = Y�θ�t�ω��
[Theorem 4.2(ii)].

In view of Hypothesis [ST−(k� δ)] for k ≥ 2� δ ∈ �0�1�, and Theorem 4.2(iii),
(iv), it follows that the backward trajectories φ�t�Y�, ŷ�t� �= D2φ�t�Y� ·�,
t < 0, satisfy the backward SDEs,

�SII−� dφ�t�Y� = −
◦
F� ◦ d̂t�φ�t�Y��� t < 0�

φ�0�Y� = Y�

�SIII−� dŷ�t� = −D2

◦
F� ◦ d̂t�φ�t�Y��ŷ�t�� t < 0�

ŷ�0�Y� = I ∈ L�Rd�

Note however that the significance of (SIII) is to provide a direct link

between the linearized flow D2φ�t�Y�ω��ω� and the linearized SDE. The
Stratonovich equation (SII) does not play a direct role in the construction of
the stable and unstable manifolds (cf. [27], Section 4.2). On the other hand,
(SII) and (SII−) provide a dynamic characterization of the stable and unstable
manifolds in Theorem 3.1(a), (d).
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In order to apply Ruelle’s discrete theorem, [24], Theorem 5.1, page 292, we
will introduce the following auxiliary cocycle Z� R × Rd × 	 → Rd, which is
essentially a “centering” of the flow φ about the stationary solution,

�3
9� Z�t� x�ω� �= φ�t� x+Y�ω��ω� −Y�θ�t�ω��
for t ∈ R� x ∈ Rd� ω ∈ 	.

Lemma 3.2. Assume the hypotheses of Theorem 2.1. Then �Z�θ� is a perfect
cocycle on Rd and Z�t�0�ω� = 0 for all t ∈ R and all ω ∈ 	.

Proof. Let t1� t2 ∈ R� ω ∈ 	� x ∈ Rd. Then by the cocycle property for φ
and Definition 3.1, we have

Z�t2�Z�t1� x�ω�� θ�t1�ω��
= φ�t2�Z�t1� x�ω� +Y�θ�t1�ω��� θ�t1�ω�� −Y�θ�t2� θ�t1�ω���
= φ�t2� φ�t1� x+Y�ω��ω�� θ�t1�ω�� −Y�θ�t2 + t1�ω��
= Z�t1 + t2� x�ω�


The assertion Z�t�0�ω� = 0, t ∈ R, ω ∈ 	, follows directly from the definition
of Z and Definition 3.1. ✷

The next lemma will be needed in order to construct the shift-invariant
sure events appearing in the statement of the local stable manifold theorem.
The lemma essentially gives “perfect versions” of the ergodic theorem and
Kingman’s subadditive ergodic theorem.

Lemma 3.3. (i) Let h� 	→ R+ be � -measurable and such that∫
	

sup
0≤u≤1

h�θ�u�ω��dP�ω� <∞


Then there is a sure event 	1 ∈ � such that θ�t� ·��	1� = 	1 for all t ∈ R, and

lim
t→∞

1
t
h�θ�t�ω�� = 0

for all ω ∈ 	1.
(ii) Suppose f� R+ × 	→ R ∪ �−∞� is a measurable process on �	�� �P�

satisfying the following conditions:

(a)
∫
	

sup
0≤u≤1

f+�u�ω�dP�ω� <∞�
∫
	

sup
0≤u≤1

f+�1 − u� θ�u�ω��dP�ω� <∞�

(b) f�t1 + t2�ω� ≤ f�t1�ω� + f�t2� θ�t1�ω��
for all t1� t2 ≥ 0 and all ω ∈ 	.
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Then there is sure event 	2 ∈ � such that θ�t� ·��	2� = 	2 for all t ∈ R,
and a fixed number f∗ ∈ R ∪ �−∞� such that

lim
t→∞

1
t
f�t�ω� = f∗

for all ω ∈ 	2.

Proof. A proof of (i) is given in [15], Lemma 5(iii), with a sure event
	̃1 ∈ �̄ such that θ�t� ·��	̃1� ⊆ 	̃1 for all t ≥ 0. Proposition 2.3 now gives a
sure event 	1 ⊆ 	̃1 such that 	1 ∈ � and satisfies assertion (i) of the lemma.

Assertion (ii) follows from [15], Lemma 7 and Proposition 2.3. ✷

The proof of the local stable-manifold theorem (Theorem 3.1) uses a dis-
cretization argument that requires the following lemma.

Lemma 3.4. Assume the hypotheses of Lemma 3.2 and suppose that
log+ �Y�·�� is integrable. Then there is a sure event 	3 ∈ � with the following
properties:

(i) θ�t� ·��	3� = 	3 for all t ∈ R.
(ii) For every ω ∈ 	3 and any x ∈ Rd, the statement

�3
10� lim sup
n→∞

1
n

log �Z�n�x�ω�� < 0

implies

�3
11� lim sup
t→∞

1
t

log �Z�t� x�ω�� = lim sup
n→∞

1
n

log �Z�n�x�ω��


Proof. The integrability condition (3.3) of Lemma 3.1 implies that

�3
12�
∫
	

log+ sup
0≤t1� t2≤1�
x∗∈B̄�0�1�

�D2Z�t1� x∗� θ�t2�ω���L�Rd� dP�ω� <∞


Therefore by (the perfect version of) the ergodic theorem [Lemma 3.3(i)], there
is a sure event 	3 ∈ � such that θ�t� ·��	3� = 	3 for all t ∈ R, and

�3
13� lim
t→∞

1
t

log+ sup
0≤u≤1�
x∗∈B̄�0�1�

�D2Z�u�x∗� θ�t�ω���L�Rd� = 0

for all ω ∈ 	3.
Let ω ∈ 	3 and suppose x ∈ Rd satisfies (3.10). Then (3.10) implies that

there exists a positive integer N0�x�ω� such that Z�n�x�ω� ∈ B̄�0�1� for all
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n ≥ N0. Let n ≤ t < n + 1 where n ≥ N0. Then by the cocycle property for
�Z�θ� and the mean value theorem, we have

sup
n≤t≤n+1

1
t

log �Z�t� x�ω�� ≤ 1
n

log+ sup
0≤u≤1�
x∗∈B̄�0�1�

�D2Z�u�x∗� θ�n�ω���L�Rd�

+ n

�n+ 1�
1
n

log �Z�n�x�ω��


Take lim supn→∞ in the above relation and use (3.13) to get

lim sup
t→∞

1
t

log �Z�t� x�ω�� ≤ lim sup
n→∞

1
n

log �Z�n�x�ω��


The inequality

lim sup
n→∞

1
n

log �Z�n�x�ω�� ≤ lim sup
t→∞

1
t

log �Z�t� x�ω��

is obvious. Hence (11) holds, and the proof of the lemma is complete. ✷

In order to formulate the measurability properties of the stable and un-
stable manifolds, we will consider the class � �Rd� of all nonempty compact
subsets of Rd. Give � �Rd� the Hausdorff metric d∗,

d∗�A1�A2� �= sup�d�x�A1� � x ∈ A2� ∨ sup�d�y�A2�� y ∈ A1��
where A1�A2 ∈ � �Rd� and d�x�Ai� �= inf��x−y�� y ∈ Ai�� x ∈ Rd� i = 1�2.
Denote by ��� �Rd�� the Borel σ-algebra on � �Rd� with respect to the metric
d∗. Then �� �Rd�� d∗� is a complete separable metric space. Morevover, it is
not hard to see that finite nonempty intersections are jointly measurable and
translations are jointly continuous on � �Rd�. These facts are used in the
proof of Theorem 3.1(h).

We now state the local stable manifold theorem for the SDEs (S) and (I)
around a hyperbolic stationary solution.

Theorem 3.1 (Local stable and unstable manifolds). Assume that
◦
F satis-

fies Hypothesis [ST(k� δ)] (resp., F satisfies [IT(k� δ)]) for some k ≥ 1 and δ ∈
�0�1�. Suppose φ�t�Y� is a hyperbolic stationary trajectory of (S) [resp., (I)]
with E log+ �Y� <∞. Suppose the linearized cocycle �D2φ�t�Y�ω��ω�� θ�t�ω��
t ≥ 0� has a Lyapunov spectrum �λm < · · · < λi+1 < λi < · · · < λ2 < λ1�. Define
λi0 �= max�λi� λi < 0� if at least one λi < 0. If all λi > 0, set λi0 = −∞. (This
implies that λi0−1 is the smallest positive Lyapunov exponent of the linearized
flow, if at least one λi > 0; in case all λi are negative, set λi0−1 = ∞.)

Fix ε1 ∈ �0�−λi0� and ε2 ∈ �0� λi0−1�. Then there exist:

(i) A sure event 	∗ ∈ � with θ�t� ·��	∗� = 	∗ for all t ∈ R.



STABLE MANIFOLD THEOREM FOR SDEs 633

(ii) � -measurable random variables ρi� βi� 	∗ → �0�1�, βi > ρi > 0, i =
1�2, such that for each ω ∈ 	∗, the following is true: there are Ck�ε (ε ∈ �0� δ�)
submanifolds ˜� �ω�� �̃�ω� of B̄�Y�ω�� ρ1�ω�� and B̄�Y�ω�� ρ2�ω�� (resp.) with
the following properties:

(a) ˜� �ω� is the set of all x ∈ B̄�Y�ω�� ρ1�ω�� such that

�φ�n�x�ω� −Y�θ�n�ω��� ≤ β1�ω� exp��λi0 + ε1�n�
for all integers n ≥ 0. Furthermore,

�3
14� lim sup
t→∞

1
t

log �φ�t� x�ω� −Y�θ�t�ω��� ≤ λi0

for all x ∈ ˜� �ω�. Each stable subspace � �ω� of the linearized flow D2φ is
tangent at Y�ω� to the submanifold ˜� �ω�, namely, TY�ω� ˜� �ω� = � �ω�. In

particular, dim ˜� �ω� = dim� �ω� and is nonrandom.

(b) lim sup
t→∞

1
t

log
[
sup

{ �φ�t� x1�ω� −φ�t� x2�ω��
�x1 − x2�

�

x1 "= x2� x1� x2 ∈ ˜� �ω�
}]

≤ λi0 


(c) (Cocycle-invariance of the stable manifolds). There exists τ1�ω� ≥ 0
such that

�3
15� φ�t� ·�ω�� ˜� �ω�� ⊆ ˜� �θ�t�ω��� t ≥ τ1�ω�

Also

�3
16� D2φ�t�Y�ω��ω��� �ω�� = � �θ�t�ω��� t ≥ 0


(d) �̃�ω� is the set of all x ∈ B̄�Y�ω�� ρ2�ω�� with the property that

�3
17� �φ�−n�x�ω� −Y�θ�−n�ω��� ≤ β2�ω� exp��−λi0−1 + ε2�n�
for all integers n ≥ 0. Also

�3
18� lim sup
t→∞

1
t

log �φ�−t� x�ω� −Y�θ�−t�ω��� ≤ −λi0−1

for all x ∈ �̃�ω�. Furthermore, ��ω� is the tangent space to �̃�ω� at Y�ω�. In
particular, dim �̃�ω� = dim��ω� and is nonrandom.

(e) lim sup
t→∞

1
t

log
[
sup

{ �φ�−t� x1�ω� −φ�−t� x2�ω��
�x1 − x2�

�

x1 "= x2� x1� x2 ∈ �̃�ω�
}]

≤ −λi0−1
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(f) (Cocycle-invariance of the unstable manifolds). There exists τ2�ω� ≥ 0
such that

�3
19� φ�−t� ·�ω���̃�ω�� ⊆ �̃�θ�−t�ω��� t ≥ τ2�ω�

Also

�3
20� D2φ�−t�Y�ω��ω����ω�� = ��θ�−t�ω��� t ≥ 0


(g) The submanifolds �̃�ω� and ˜� �ω� are transversal, namely,

�3
21� Rd = TY�ω��̃�ω� ⊕TY�ω� ˜� �ω�

(h) The mappings

	→ � �Rd�� 	→ � �Rd��
ω �→ ˜� �ω�� ω �→ �̃�ω�

are �� ���� �Rd���-measurable.

Assume, in addition, that
◦
F satisfies Hypothesis [ST(k� δ)] (resp., F satisfies

[IT(k� δ)]) for every k ≥ 1 and δ ∈ �0�1�. Then the local stable and unstable
manifolds ˜� �ω�� �̃�ω� are C∞.

The following corollary follows from Theorem 3.1. See [24], Section (5.3),
page 49.

Corollary 3.1.1 (White noise, Itô case). Consider the Itô SDE

�V� dx�t� = h�x�t��dt+
m∑
i=1

gi�x�t��dWi�t�


Suppose that for some k ≥ 1, δ ∈ �0�1�� h�gi, 1 ≤ i ≤ m, are C
k�δ
b vector

fields on Rd, and W �= �W1� 
 
 
 �Wm� is an m-dimensional Brownian motion
on Wiener space �	�� �P�. Let θ� R ×	→ 	 denote the canonical Brownian
shift

�3
22� θ�t�ω��s� �= ω�t+ s� −ω�t�� t� s ∈ R� ω ∈ 	

Suppose φ�t�Y� is a hyperbolic stationary trajectory of (V) with E log+ �Y� <
∞. Then the conclusions of Theorem 3.1 hold.

Furthermore, if the vector fields h�gi� 1 ≤ i ≤ m, are C∞
b , then the conclu-

sions of Theorem 3.1 hold, where ˜� �ω�, �̃�ω� are C∞ manifolds.

Remarks. (i) A similar statement to that of Corollary 3.1.1 holds for the
corresponding Stratonovich SDE driven by finite-dimensional Brownian mo-
tion, namely

�SIV� dx�t� = h�x�t��dt+
m∑
i=1

gi�x�t�� ◦dWi�t�
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However, in this case one needs stronger conditions to ensure that Hypothesis
[ST(k� δ)] holds for (SIV). In fact, such hypotheses will hold if we assume that
the functions

Rd � x �→
m∑
l=1

∂gil�x�
∂xj

g
j
l �x� ∈ R

are in C
k�δ
b for each 1 ≤ i� j ≤ d and some k ≥ 1, δ ∈ �0�1�. Compare

the conditions expressed in [2]. For example, this holds if for some k ≥ 1,
δ ∈ �0�1�, the vector field h is of class Ck�δb and gi, 1 ≤ i ≤ m, are globally
bounded and of class Ck+1� δ

b . We conjecture that the the global boundedness
condition is not needed. This conjecture is not hard to check if the vector fields
gi, 1 ≤ i ≤m, are C∞

b and generate a finite-dimensional solvable Lie algebra.
See [10], Theorem 4.9.10, page 212.

(ii) Recall that if
◦
F is a forward–backward semimartingale helix satisfying

Hypotheses [ST(k� δ)] and [ST−(k� δ)] for some k ≥ 2 and δ ∈ �0�1�, then the
inverse φ�t� ·� θ�−t�ω��−1�x� = φ�−t� x�ω�, t > 0� corresponds to a solution
of the SDE (S−). Furthermore, φ�−t�Y� and D2φ�−t�Y�, t > 0, satisfy the
anticipating SDEs (SII−) and (SIII−), respectively. See Theorem 4.2(iii), (iv),
of Section 4.

(iii) In Corollary 3.1.1, let ρ be an invariant probability measure for the
one-point motion in Rd. Assume that∫

Rd
log+ �x�dρ�x� <∞


Recall the discussion and the notation preceding Lemma 3.1. More specifically,
we will work on the enlarged probability space �	̃ �= 	 × Rd� �̃ �= � ⊗
��Rd�� P̃ �= P ⊗ ρ�. Define the process W̃ �= �W̃1� 
 
 
 � W̃m�� R × 	̃ → Rm

by W̃i�t� ω̃� �= Wi�t�ω�, ω̃ �= �ω�x� ∈ 	̃�1 ≤ i ≤ m. Then W̃ is a Brownian
motion on �	̃� �̃ � P̃� and the perfect cocycle �φ̃� θ̃� solves a SDE similar to (V),
with the same coefficients but driven by the Brownian motion W̃. Assuming
hyperbolicity of the linearized cocycle �D2φ̃�t� Ỹ�ω̃�� ω̃�� θ̃�t� ω̃��, we may apply
Corollary 3.1.1 to obtain stable and unstable manifolds that are defined for
all pairs �ω�x� in a θ̃�t� ·�-invariant set of full P⊗ ρ-measure; compare [6] for
the globally asymptotically stable case on a compact manifold. Note also that
the local stable/unstable manifolds are asymptotically invariant with repect to
�φ̃� θ̃� and the corresponding backward flow. The reader may fill in the details.

(iv) In Corollary 3.1.1, one can allow for infinitely many Brownian motions
(cf. [10], pages 106 and 107). Details are left to the reader.

(v) Consider the SDE (S) and assume that the helix forward semimartin-

gale
◦
F has local characteristics of class �Bk+1� δ

loc �B
k� δ
loc � for some k≥1, δ∈

�0�1�. See Section 2 for the definition of Bk�δloc . Suppose that
◦
F�t�0�ω� = 0

for all t ∈ R�ω ∈ 	. Then (S) admits a local (possibly explosive) forward flow
�φ�t� x�ω�� x ∈ Rd� τ+�x�ω�� ω ∈ 	�, where τ+� Rd × 	 → �0�∞� denotes
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the forward explosion time random field. A similar statement holds for the
local backward flow with backward explosion time random field τ−� Rd×	→
�−∞�0� ([10], pages 176–185). Furthermore, τ+�0�ω� = ∞� τ−�0�ω� = −∞
and φ�t�0�ω� = 0 for all t ≥ 0,ω ∈ 	. Suppose further that the Lyapunov spec-
trum of the linearized SDE (SIII) (with Y ≡ 0) does not vanish. We claim that
for ε1� ε2 as in Theorem 3.1, there exist ρi� βi� i = 1�2 and Ck�ε �0 < ε < δ�
local stable and unstable manifolds ˜� �ω� ⊆ B̄�0� ρ1�ω��, �̃�ω� ⊆ B̄�0� ρ2�ω��
satisfying assertions (3.14), (b), (c), (3.18), (e), (g) and (h) of Theorem 3.1 with
Y ≡ 0. To see this, pick a smooth funtion ψ� Rd → �0�1� with compact support

and such that ψ�B̄�0�1� ≡ 1. Define
◦
F0 �=

◦
F·ψ. Then

◦
F0 is a helix semimartin-

gale satisfying Hypothesis [ST(k� δ)], and
◦
F0�t� ·�ω��B̄�0�1�=

◦
F�t� ·�ω��B̄�0�1�

for all t ∈ R� ω ∈ 	. Now in (S) replace
◦
F by

◦
F0 and denote by φ0 the Ck�ε

cocycle of the resulting (truncated) SDE. Apply Theorem 3.1 to φ0. This gives
local stable and unstable manifolds ˜�0�ω�� �̃0�ω� for φ0. These manifolds will
also serve as local stable/unstable manifolds for φ and satisfy our claim above.
Indeed, observe that we may define ˜� �ω� to be the set of all x ∈ B̄�0� ρ1�ω��
with τ+�x�ω� = ∞ and for which the first assertion in (a) holds. Define �̃�ω�
in a similar fashion. Hence ˜� �ω� = ˜�0�ω� and �̃�ω� = �̃0�ω�. This fol-
lows directly from the fact that for all x ∈ ˜�0�ω�, one has τ+�x�ω� = ∞
and φ�t� x�ω� = φ0�t� x�ω� for every t ∈ R+. A similar observation holds for
x ∈ �̃0�ω�. The local stable/unstable manifolds for (S) depend on the choice
of truncation, but for different truncations these manifolds agree within a
sufficiently small neighborhood of 0; compare [1], 7.5. The truncation argu-
ment may be adapted to cover the case of an essentially bounded stationary
trajectory.

Proof of Theorem 3.1. Assume the hypotheses of the theorem. Consider
the cocycle �Z�θ� defined by (3.9). Define the family of maps Fω� Rd → Rd

by Fω�x� �= Z�1� x�ω� for all ω ∈ 	 and x ∈ Rd. Let τ �= θ�1� ·�� 	 → 	.
Following [24], page 292, define Fnω �= Fτn−1�ω� ◦ · · · ◦Fτ�ω� ◦Fω. Then by the
cocycle property for Z, we get Fnω = Z�n� ·�ω� for each n ≥ 1. Clearly, each
Fω is Ck�ε �ε ∈ �0� δ�� and �DFω��0� = D2φ�1�Y�ω��ω�. By measurability
of the flow φ, it follows that the map ω �→ �DFω��0� is � -measurable. By
(3.4) of Lemma 3.1, it is clear that the map ω �→ log+ �D2φ�1�Y�ω��ω��L�Rd�
is integrable. Furthermore, the discrete cocycle ��DFnω��0�� θ�n�ω�� n ≥ 0�
has a nonrandom Lyapunov spectrum which coincides with that of the lin-
earized continuous cocycle �D2φ�t�Y�ω��ω�� θ�t�ω�� t ≥ 0�, namely, �λm <
· · · < λi+1 < λi < · · · < λ2 < λ1�, where each λi has fixed multiplicity qi,
1 ≤ i ≤ m (Lemma 3.1). Note that λi0 (and λi0−1) are well defined by hyper-
bolicity of the stationary trajectory. If λi > 0 for all 1 ≤ i ≤ m, then take
˜� �ω� �= �Y�ω�� for all ω ∈ 	. The assertions of the theorem are trivial in

this case. From now on suppose that at least one λi < 0.
We use Theorem 5.1 of [24], page 292, and its proof to obtain a sure event

	∗
1 ∈ � such that θ�t� ·��	∗

1� = 	∗
1 for all t ∈ R, � -measurable positive random

variables ρ1� β1� 	∗
1 → �0�1�, ρ1 < β1, and a random family of Ck�ε �ε ∈ �0� δ��
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submanifolds of B̄�0� ρ1�ω�� denoted by ˜�d�ω�, ω ∈ 	∗
1 and satisfying the

following properties for each ω ∈ 	∗
1:

�3
23�
˜�d�ω� =

{
x ∈ B̄�0� ρ1�ω��� �Z�n�x�ω�� ≤ β1�ω� exp��λi0 + ε1�n�

for all integers n ≥ 0
}



Each ˜�d�ω� is tangent at 0 to the stable subspace � �ω� of the linearized flow
D2φ, namely, T0 ˜�d�ω� = � �ω�. In particular, dim ˜�d�ω� is nonrandom by
the ergodicity of θ. Furthermore,

�3
24� lim sup
n→∞

1
n

log

[
sup
x1 "=x2�

x1� x2∈ ˜�d�ω�

�Z�n�x1�ω� −Z�n�x2�ω��
�x1 − x2�

]
≤ λi0 


Before we proceed with the proof, we will indicate how one may arrive
at the above θ�t� ·�-invariant sure event 	∗

1 ∈ � from Ruelle’s proof. Con-
sider the proof of Theorem 5.1 in [24], page 293. In the notation of [24], set
Ttω �= D2Z�t�0�ω�� Tn�ω� �= D2Z�1�0� θ�n − 1�ω��� τt�ω� �= θ�t�ω�, for
t ∈ R+� n = 1�2�3� 
 
 
 
 By the integrability condition (3.4) (Lemma 3.1) and
Lemma 3.3(i), (ii), there is a sure event 	∗

1 ∈ � such that θ�t� ·��	∗
1� = 	∗

1 for
all t ∈ R, with the property that continuous-time analogues of equations (5.2),
(5.3), (5.4) in [24], page 45, hold. In particular,

�3
25�
lim
t→∞

��D2Z�t�0�ω��∗�D2Z�t�0�ω���1/�2t� = @�ω��

lim
t→∞

1
t

log+ �Z�1� ·� θ�t�ω���1� ε = 0

for all ω ∈ 	∗
1� ε ∈ �0� δ�. See Theorem (B.3), [24], page 304. The rest of the

proof of Theorem 5.1 works for a fixed choice of ω ∈ 	∗
1. In particular, (the

proof of) the “perturbation theorem,” [24], Theorem 4.1, does not affect the
choice of the sure event 	∗

1 because it works pointwise in ω ∈ 	∗
1 and hence

does not involve the selection of a sure event ([24], pages 285–292).
For each ω ∈ 	∗

1, let ˜� �ω� be the set defined in part (a) of the theorem.
Then it is easy to see from (3.23) and the definition of Z that

�3
26� ˜� �ω� = ˜�d�ω� +Y�ω�

Since ˜�d�ω� is a Ck�ε �ε ∈ �0� δ�� submanifold of B̄�0� ρ1�ω��, it follows from
(3.26) that ˜� �ω� is a Ck�ε �ε ∈ �0� δ�� submanifold of B̄�Y�ω�� ρ1�ω��. Further-
more,TY�ω� ˜� �ω� = T0 ˜�d�ω� = � �ω�. In particular, dim ˜� �ω� = dim� �ω� =∑m
i=i0 qi and is nonrandom.
Now (3.24) implies that

�3
27� lim sup
n→∞

1
n

log �Z�n�x�ω�� ≤ λi0

for all ω in the shift-invariant sure event 	∗
1 and all x ∈ ˜�d�ω�. Therefore, by

Lemma 3.4, there is a sure event 	∗
2 ⊆ 	∗

1 such that θ�t� ·��	∗
2� = 	∗

2 for all
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t ∈ R, and

�3
28� lim sup
t→∞

1
t

log �Z�t� x�ω�� ≤ λi0

for all ω ∈ 	∗
2 and all x ∈ ˜�d�ω�. This immediately implies assertion (3.14) of

the theorem.
To prove assertion (b) of the theorem, let ω ∈ 	∗

1. By (3.24), there is a pos-
itive integer N0 �=N0�ω� [independent of x ∈ ˜�d�ω�] such that Z�n�x�ω� ∈
B̄�0�1� for all n ≥ N0. Let 	∗

4 �= 	∗
2 ∩ 	3, where 	3 is the shift-invariant

sure event defined in the proof of Lemma 3.4. Then 	∗
4 is a sure event and

θ�t� ·��	∗
4� = 	∗

4 for all t ∈ R. Using an argument similar to the one used in
the proof of Lemma 3.4, it follows that

sup
n≤t≤n+1

1
t

log
[

sup
x1 "=x2�

x1� x2∈ ˜� �ω�

�φ�t� x1�ω� −φ�t� x2�ω��
�x1 − x2�

]

= sup
n≤t≤n+1

1
t

log
[

sup
x1 "=x2�

x1� x2∈ ˜�d�ω�

�Z�t� x1�ω� −Z�t� x2�ω��
�x1 − x2�

]

≤ 1
n

log+ sup
0≤u≤1�
x∗∈B̄�0�1�

�D2Z�u�x∗� θ�n�ω���L�Rd�

+ n

�n+ 1�
1
n

log
[

sup
x1 "=x2�

x1� x2∈ ˜�d�ω�

�Z�n�x1�ω� −Z�n�x2�ω��
�x1 − x2�

]

for all ω ∈ 	∗
4� all n ≥ N0�ω� and sufficiently large. Taking lim supn→∞ in

the above inequality and using (3.24), immediately gives assertion (b) of the
theorem.

To prove the invariance property (3.16), we apply the Oseledec theorem to
the linearized cocycle �D2φ�t�Y�ω��ω�� θ�t�ω�� ([15], Theorem 4, Corollary
2). This gives a sure θ�t� ·�-invariant event, also denoted by 	∗

1, such that
D2φ�t�Y�ω��ω��� �ω�� ⊆ � �θ�t�ω�� for all t ≥ 0 and all ω ∈ 	∗

1. Equality
holds because D2φ�t�Y�ω��ω� is injective and dim� �ω� = dim� �θ�t�ω��
for all t ≥ 0 and all ω ∈ 	∗

1.
To prove the asymptotic invariance property (3.15), we will need to take a

closer look at the proofs of Theorems 5.1 and 4.1 in [24], pages 285–297. We
will first show that ρ1� β1 and a sure event (also denoted by) 	∗

1 may be chosen
such that θ�t� ·��	∗

1� = 	∗
1 for all t ∈ R, and

�3
29�
ρ1�θ�t�ω�� ≥ ρ1�ω� exp��λi0 + ε1�t��
β1�θ�t�ω�� ≥ β1�ω� exp��λi0 + ε1�t�

for every ω ∈ 	∗
1 and all t ≥ 0. The above inequalities hold in the discrete

case (when t = n, a positive integer) from Ruelle’s theorem ([24], Remark
(c), page 297, following the proof of Theorem 5.1). We claim that the relations
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(3.29) hold also for continuous time. To see this, we will use the method of proof
of Theorems 5.1 and 4.1 in [24]. In the notation of the proof of Theorem 5.1,
[24], page 293, observe that the random variable G in (5.5) may be replaced
by the larger one,

�3
30� G̃�ω� �= sup
t≥0

�Fτtω�1� θ exp��−tη− λθ�� < +∞� θ ∈ �0�1�

for 0 < η < −�λi0 +ε�/4, and Ruelle’s λ corresponds to λi0 +ε1 in our notation.
Now β1 may be chosen using δ�A from Theorem (4.1) [24] and replacing G
with G̃ in (5.10), [24], page 293. Note that ρ1 �= β1/B

′
ε, where B′

ε is given by
(4.5) in Theorem (4.1) of [24], page 285. Therefore, given any fixed ω ∈ 	∗

1, we
need to determine how the choices of Ruelle’s constants δ, A and B′

ε are af-
fected if ω is replaced by θ�l�ω� = τl�ω�, where l is any positive real number.
Since Tn�τl�ω�� = D2Z�1�0� θ�n− 1� θ�l�ω��� = Tn+l�ω�, for all positive inte-
gers n, it is sufficient to apply Theorem 4.1 [24] to the sequence �Tn+l�ω��∞n=1.
Hence we may follow the discussion in Section (4.7), [24], pages 291 and 292.
We claim that the argument therein still works for positive real l. We will indi-
cate the reasoning for δ and leave the rest of the details to the reader. Consider
the definition of δ in (4.15) in the proof of Lemma (4.2), [24], page 288. Set
δ�ω� �= δ, D�ω� �= D, C�ω� �= C given by (4.15), (4.11), (4.13), respectively.
Redefine D and C by larger constants which we will denote by the symbols,

Dη�ω� �= sup
t≥0

exp�−tη���ξ�t��−1� <∞�(3.31)

Cη�ω� �= sup
0<s<t<∞
1≤h�k≤m

�Ttξ�0�h ��Tsξ�0�k �
�Tsξ�0�h ��Ttξ�0�k �

(3.32)
× exp���λ�r�k�� −λ�r�h����t− s�+λ�r�k�� −λ�r�µ�� −2ηt��<∞�

where ξ�t� �= �ξ�t�1 � 
 
 
 � ξ
�t�
m �, ξ�t�k �= Ttξ�0�k /�Ttξ

�0�
k �� 1 ≤ k ≤ m. The λ�r�k�� are

the eigenvalues of log@�ω� with multiplicities. Observe that Dη�ω� is finite
because the following continuous-time version of (4.9), [24], page 287,

�3
33� lim
t→∞

1
t

log �Ttξ�0�1 ∧ · · · ∧Ttξ�0�m � =
m∑
k=1

λ�r�k���

holds everywhere on a θ�t� ·�-invariant sure event in � also denoted by 	∗
1.

This is an immediate consequence of Lemma 3.3(ii). Compare [24], pages 287
and 303. The constant Cη�ω� satisfies the inequality (4.13) of [24], page 288,

because [by choice of �t�n�k �∗ �= t�n�k exp��λ�r�µ�� − λ�r�k����] one has

N∏
n=1

�t�n�k �∗ = �TNξ�0�k � exp�N�λ�r�µ�� − λ�r�k�����

for all positive integers N and 1 ≤ k ≤ µ ≤m. Indeed, Cη�ω� is finite because

lim
t→∞

1
t

log �Ttξ�0�k � = λ�r�k��
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on a θ�t� ·�-invariant sure event in � (also denoted by 	∗
1). Now replace ω in

(3.31) and (3.32) by θ�l�ω�. This changes ξ�t� to ξ�t+l� and Ttξ�0�h to Tt+lξ�0�h .
Hence we get

Dε�θ�l�ω�� ≤ eεl/2Dε�ω�� Cε�θ�l�ω�� ≤ eεl/2Cε�ω�

for sufficiently small ε ∈ �0� ε1� and all l ∈ R+. From (4.15) in [24], page 288,
we obtain

δ�θ�l�ω�� ≥ eεlδ�ω�

for all l ∈ R+ and all sufficiently small ε. The behavior of the constants A and
B′
ε in Theorem 4.1, [24], page 285, can be analyzed in a similar fashion. See

[24], Section 4.7. This yields the inequalities (3.29). We now prove (3.15). Use
(b) to obtain a sure event 	∗

5 ⊆ 	∗
4 such that θ�t� ·��	∗

5� = 	∗
5 for all t ∈ R, and

for any 0 < ε < ε1 and ω ∈ 	∗
4, there exists βε�ω� > 0 (independent of x) with

�3
34� �φ�t� x�ω� −Y�θ�t�ω��� ≤ βε�ω� exp��λi0 + ε�t�

for all x ∈ ˜� �ω�, t ≥ 0. Fix any real t ≥ 0, ω ∈ 	∗
5 and x ∈ ˜� �ω�. Let n be a

nonnegative integer. Then the cocycle property and (3.34) imply that

�3
35�

�φ�n�φ�t� x�ω�� θ�t�ω�� −Y�θ�n� θ�t�ω����
= �φ�n+ t� x�ω� −Y�θ�n+ t�ω���
≤ βε�ω�e�λi0+ε��n+t�

≤ βε�ω�e�λi0+ε�te�λi0+ε1�n


If ω ∈ 	∗
5, then it follows from (3.29), (3.34), (3.35) and the definition of

˜� �θ�t�ω�� that there exists τ1�ω� > 0 such that φ�t� x�ω� ∈ ˜� �θ�t�ω�� for
all t ≥ τ1�ω�. This proves (3.15) and completes the proof of assertion (c) of the
theorem.

Note that assertions (a), (b) and (c) still hold for all ω ∈ 	∗
5.

We now prove assertion (d) of the theorem, regarding the existence of the
local unstable manifolds �̃�ω�. We do this by running both the flow φ and the
shift θ backward in time. Define

φ̃�t� x�ω� �= φ�−t� x�ω�� Z̃�t� x�ω� �= Z�−t� x�ω�� θ̃�t�ω� �= θ�−t�ω�

for all t ≥ 0 and all ω ∈ 	. Clearly, �Z̃�t� ·�ω�� θ̃�t�ω�� t ≥ 0� is a smooth
cocycle, with Z̃�t�0�ω� = 0 for all t ≥ 0. By the hypothesis on F and Y,
it follows that the linearized flow �D2φ̃�t�Y�ω��ω�� θ̃�t�ω�� t ≥ 0� is an
L�Rd�-valued perfect cocycle with a nonrandom finite Lyapunov spectrum
�−λ1 < −λ2 < · · · < −λi < −λi+1 < · · · < −λm� where �λm < · · · < λi+1 <
λi < · · · < λ2 < λ1� is the Lyapunov spectrum of the forward linearized flow
�D2φ�t�Y�ω��ω�� θ�t�ω�� t ≥ 0�. Now apply the first part of the proof of this
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theorem. This gives stable manifolds for the backward flow φ̃ satisfying as-
sertions (a), (b), (c). This immediately translates into the existence of unstable
manifolds for the original flow φ, and assertions (d), (e), (f) automatically hold.
In particular, we get a sure event 	∗

6 ∈ � such that θ�−t� ·��	∗
6� = 	∗

6 for all
t ∈ R, and with the property that assertions (d), (e) and (f) hold for all ω ∈ 	∗

6.
Define the sure event 	∗ �= 	∗

6 ∩ 	∗
5. Then θ�t� ·��	∗� = 	∗ for all t ∈ R.

Furthermore, assertions (a)–(f) hold for all ω ∈ 	∗.
Assertion (g) follows directly from the following facts:

TY�ω��̃�ω� = ��ω�� TY�ω� ˜� �ω� = � �ω�� Rd = ��ω� ⊕� �ω�
for all ω ∈ 	∗.

We shall now prove assertion (h). Recall that by (3.26),

�3
36� ˜� �ω� = � �Y�ω�� ˜�d�ω��
for all ω ∈ 	∗

1, where � � Rd ×� �Rd� → � �Rd� denotes the translation map

� �x�A� �= x+A� x ∈ Rd� A ∈ � �Rd�

Hence, by joint continuity of � and measurability of Y, the � -measurability
of the mapping 	 � ω �→ ˜� �ω� ∈ � �Rd� would follow from (3.36) if we can
show that the map 	 � ω �→ ˜�d�ω� ∈ � �Rd� is � -measurable. The rest of
the argument will demonstrate this.

Define the sequence of random diffeomorphisms,

fn�x�ω� �= β1�ω�−1 exp�−�λi0 + ε1�n�Z�n�x�ω�� x ∈ Rd� ω ∈ 	∗
1�

for all integers n ≥ 0. Let Hom�Rd� be the topological group of all homeomor-
phisms of Rd onto itself. Hom�Rd� carries the topology of uniform convergence
of sequences of maps and their inverses on compacta. The joint measurability
of fn implies that for each positive integer n, the map 	 � ω �→ fn�·�ω� ∈
Hom�Rd� is measurable into the Borel field of Hom�Rd�. Using (3.23), ˜�d�ω�
can be expressed in the form

�3
37� ˜�d�ω� = lim
m→∞ B̄�0� ρ1�ω�� ∩

m⋂
i=1

fi�·�ω�−1�B̄�0�1��

for all ω ∈ 	∗
1. In (3.37), the limit is taken in the metric d∗ on � �Rd�. The

� -measurability of the map ω �→ ˜�d�ω� follows directly from (3.37), the mea-
surability of fi, ρ1, that of finite intersections and the continuity of the maps

R+ � r �→ B̄�0� r� ∈ � �Rd��
Hom�Rd� � f �→ f−1�B̄�0�1�� ∈ � �Rd�


Hence the mapping 	 � ω �→ ˜� �ω� ∈ � �Rd� is �� ���� �Rd���-measurable.
A similar argument yields the measurability of 	 � ω �→ �̃�ω� ∈ � �Rd�.

This completes the proof of assertion (h) of the theorem.

If
◦
F (resp.F) satisfies Hypothesis [ST(k� δ)] (resp., [IT(k� δ)]) for every k ≥ 1

and δ ∈ �0�1�, then a simple adaptation of the argument in [24], Section 5.3,
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page 297, gives a sure event in � , also denoted by 	∗ such that ˜� �ω�� �̃�ω�
are C∞ for all ω ∈ 	∗. This completes the proof of Theorem 3.1. ✷

Global stable and unstable manifolds. We will conclude this section by a
discussion of global stable and unstable manifolds for the SDEs (S) and (I).
Assume all the conditions of Theorem 3.1. Define the set

˜�g�ω� �=
{
x ∈ Rd� lim sup

t→∞
1
t

log �φ�t� x�ω� −Y�θ�t�ω��� ≤ λi0
}

for each ω ∈ 	∗. The family ˜�g�ω�� ω ∈ 	∗, is clearly invariant under φ;
that is,

φ�t� ·�ω�� ˜�g�ω�� = ˜�g�θ�t�ω��
for all t ∈ R and all ω ∈ 	∗.

Using induction, we may define the family � ˜� n�ω��∞n=0 of Ck�ε stable sub-
manifolds as follows:

˜� 0�ω� �= ˜� �ω��

˜� n�ω� �=



φ�−n� ·� θ�n�ω��� ˜� �θ�n�ω���

if ˜� n−1�ω� ⊆ φ�−n� ·� θ�n�ω��� ˜� �θ�n�ω����
˜� n−1�ω�� otherwise

for n ≥ 1. In the above definition, ˜� �ω� refers to the stable manifolds con-
structed in the proof of Theorem 3.1. Note that ˜� n�ω� ⊆ ˜� n+1�ω� for all
n ≥ 0. Furthermore, the global stable manifold ˜�g�ω� is given by

�3
38� ˜�g�ω� =
∞⋃
n=1

˜� n�ω�� ω ∈ 	∗


We will indicate a proof of (3.38). Fix any ω ∈ 	∗. Then by asymptotic cocycle
invariance of the stable manifolds, there is an a positive l0 �= l0�ω� such that

�3
39� φ�l� ·�ω�� ˜� �ω�� ⊆ ˜� �θ�l�ω��
for all integers l ≥ l0. The inclusion (3.39) follows from Remark 5.2(c) in
[24], page 297. In particular, and by the definition of ˜� n�ω�, it follows that
˜� n�ω� = φ�−n� ·� θ�n�ω��� ˜� �θ�n�ω��� for infinitely many integers n > 0.

Now let x ∈ ˜�g�ω�. Then it is easy to see that φ�k� x�ω� ∈ ˜� �θ�k�ω�� for
sufficiently large k. Fix such a k and call it k0. Then there exists l ≥ k0 such
that φ�l� x�ω� ∈ ˜� �θ�l�ω�� and ˜� l�ω� = φ�−l� ·� θ�l�ω��� ˜� �θ�l�ω���. Hence
x ∈ ˜� l�ω� and therefore x ∈ ⋃∞

n=1
˜� n�ω�. Conversely, let x belong to the set

on the right-hand side of (3.38). Then by definition of the ˜� n�ω�, there exists
k such that x ∈ φ�−k� ·� θ�k�ω��� ˜� �θ�k�ω���. By Theorem 3.1(a), this implies
that lim supt→∞�1/t� log �φ�t� x�ω� −Y�θ�t�ω��� ≤ λi0 . Hence x ∈ ˜�g�ω�, and
the proof of (3.38) is complete.
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Similar remarks hold for the global unstable manifold,

�̃g�ω� �=
{
x ∈ Rd � lim sup

t→∞
1
t

log �φ�−t� x�ω� −Y�θ�−t�ω��� ≤ λi0−1

}



The above considerations also show that for each ω ∈ 	∗, ˜�g�ω� and �̃g�ω�
are Ck�ε manifolds which are immersed (but not in general imbedded) in Rd.
Furthermore, dim ˜�g�ω� and dim �̃g�ω� are nonrandom.

APPENDIX

The substitution rule. In this Appendix, we will establish some results
that are aimed towards showing that certain extensions of the Itô integral and
the Stratonovich integral are stable under random substitutions.

Throughout this Appendix, F� R × Rl × 	 → Rd is a continuous spatial
semimartingale based on a filtered probability space such that F�0� x� = 0
for all x ∈ Rl. (Note that the helix property is not needed in this section.) We
shall use the notation in Sections 1 and 2. Decompose F as

�A
1� F�t� x� = V�t� x� +M�t� x�� t ≥ 0� x ∈ Rl�

where V�·� x� �= �V1�·� x�� 
 
 
 �Vd�·� x�� is a continuous bounded variation
process and M�·� x� �= �M1�·� x�� 
 
 
 �Md�·� x��, x ∈ Rl, is a continuous spatial
local martingale such that M�0� x� = V�0� x� = 0 for all x ∈ Rl and all ω ∈ 	.

We now introduce a definition of the Itô and the Stratonovich integral with
respect to integrands that are possibly anticipating.

Let f� �0�∞� × 	 → Rl be a measurable process with continuous sample
paths. Take any sequence of partitions πn �= �0 = tn0 < tn1 < · · · < tnn� of �0�∞�.
Suppose limn→∞ tnn = ∞ and limn→∞ max�tni − tni−1� i = 1� 
 
 
 � n� = 0. Define
the sequence,

�A
2� In�t� �=
n−1∑
k=0

�M�tnk+1 ∧ t� f�tnk�� −M�tnk ∧ t� f�tnk���� n ≥ 1� t ≥ 0


If, in addition, M is a C1 spatial local martingale, then define

�A
3� Sn�t� �= In�t� +Cn�t�� n ≥ 1� t ≥ 0�

where

Cn�t� �=
1
2

n−1∑
k=0

�D2M�tnk+1∧t� f�tnk��−D2M�tnk∧t� f�tnk����f�tnk+1∧t�−f�tnk∧t��


Definition A.1. (i) Define the Itô integral of f with respect to the contin-
uous spatial local martingale M by

�A
4�
∫ T

0
M�dt� f�t�� �= lim

n→∞In�T��
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when the limit in probability exists uniformly on compact subsets of �0�∞�
for any sequence of partitions as above.

(ii) Define the Stratonovich integral of f with respect to the C1 local mar-
tingale M by

�A
5�
∫ T

0
M� ◦dt� f�t�� �= lim

n→∞Sn�T�

when the limit exists uniformly on compact subsets of �0�∞� in probability
for any sequence of partitions as above.

(iii) If F is a spatial semimartingale given by (A.1), define the Stratonovich
integral of f with respect to F by

�A
6�
∫ T

0
F� ◦dt� f�t�� �=

∫ T
0
V�dt� f�t�� +

∫ T
0
M� ◦dt� f�t���

provided the right side of (A.6) is defined. The Itô integral is defined analo-
gously (without the circle).

Note that our definitions of the Itô and the Stratonovich integral agree
with the classical ones when the integrand process f is a continuous semi-
martingale. For the Stratonovich integral this follows from [10], Theorem
3.2.5, page 86. As will be clear from the sequel, the computations become
simpler under Definition A.1 than if we had directly extended Kunita’s defini-
tion to the nonadapted case. We remark that our definition of the Itô integral
does not always coincide with the well-known Skorohod integral even if both
are defined.

In the following theorem, Bk�δc denotes the class of all Ck spatial semi-
martingales such that for any T > 0, any p ≥ 1 and any compact subset K
of Rl (or Rm) the pth moment of the (k + δ)-norms of the characteristics re-
stricted to K are uniformly bounded on �0�T�. Observe that Bk�δub ⊂ Bk�δc . The
flow generated by an Itô equation driven by F ∈ B0�1

ub is always in B0�1
c but

generally not in B0�1
ub (see Theorem A.2).

We now state the substitution rule.

Theorem A.1. Fix δ ∈ �0�1� and let F�t� y� =M�t� y� +V�t� y� ∈ Rd, y ∈
Rl� be a spatial semimartingale of class B0� δ

c such that M�0� y� = V�0� y� = 0
for all y ∈ Rl. Further let f� �0�∞� × Rm × 	 → Rl be a continuous spatial
semimartingale such that for any compact subset K of Rm, any T > 0 and any
p > 1, there exists a constant c such that E��f�t� x� − f�t� y��p� ≤ c�x − y�δp
for all x�y ∈K and all 0 ≤ t ≤ T.

Then there is a modification of the Itô integral such that for any � -
measurable random variable Y� 	→ Rm, one has a.s.,

�A
7�
∫ T

0
F�dt� f�t� x��

∣∣∣∣
x=Y

=
∫ T

0
F�dt� f�t�Y��

for all T > 0.
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If, moreover, M is of class B1�1
c and f ∈ B0� δ

c , then we also have

�A
8�
∫ T

0
F� ◦dt� f�t� x��

∣∣∣∣
x=Y

=
∫ T

0
F� ◦dt� f�t�Y�� a.s.

for all T > 0.

For Brownian linear integrators, a similar result is given in [19], Proposi-
tions 7.7, 7.8, [2], Theorem 2, Corollary 1 and [18], Theorem 5.3.3. In order
to prove Theorem A.1, we will adopt the approach in [18]. The essence of the
argument is to replace f by f�t� x� on the right-hand side of (A.2), substitute
x = Y�ω� in each finite sum in (A.2), and then pass to the limit in probability
in order to get (A.7) and (A.8).

Note that the substitution rule holds trivially in the bounded variation
integral on the right-hand side of (A.6). Hence in all subsequent computations,
we can and will assume that V ≡ 0 and F =M.

The proof of Theorem A.1 turns on the following lemma.

Lemma A.1. Let �Sn�x�� x ∈ Rm�� n ≥ 1, be a sequence of (jointly) measur-
able random fields taking values in a complete separable metric space �E�ρ�
such that

lim
n→∞Sn�x� = S�x�

in probability, where �S�x�� x ∈ Rm� is a random field. Assume that there
exist positive constants p ≥ 1� α > m� C = C�T�K�p� such that whenever
K > 0, and �x�� �x′� ≤K, one has

E�ρ�Sn�x�� Sn�x′��p� ≤ C�x− x′�α

for all n ≥ 1. Then the random fields S� Sn� n ≥ 1� have continuous modi-
fications (denoted by the same symbols). For any such modifications and any
random variable Y� 	→ Rm, one has

lim
n→∞Sn�Y� = S�Y�

in probability.

The proof is given in [18], Lemma 5.3.1, in the special case where E = Rd

but the argument therein carries over to our case without change. Observe that
the conditions of the lemma imply that Sn�·� converges to S�·� uniformly on
compact subsets of Rm in probability (which is the reason why the substitution
property holds).
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Proof of Theorem A.1. Assume, without loss of generality, that F =M,
a local martingale. Let us first assume in addition that M and f are bounded
uniformly in �t� x�ω� on compact subsets of �0�∞� × Rl (resp. �0�∞� × Rm).
For a given sequence of partitions πn �= �0 = tn0 < t

n
1 < · · · < tnn� of �0�∞�

as in Definition A.1, define the sequence of random fields In�t� x�� x ∈ Rm�
n ≥ 1� by

�A
9� In�t� x� �=
n−1∑
k=0

[
M�tnk+1 ∧ t� f�tnk� x��−M�tnk ∧ t� f�tnk� x��

]
� t≥0


We want to check the assumptions of Lemma A.1 for the sequence In tak-
ing values in the space of Rd-valued continuous functions on �0�∞�. Write
In�t� x� �= �I1

n�t� x�� 
 
 
 � Idn�t� x��. It is enough to show that for every compact
subset K of Rm, every T > 0 and every j ∈ �1�2� 
 
 
 � d�, we have

E
[

sup
0≤s≤T

�Ijn�s� x� − Ijn�s� y��p
]
≤ c�x− y�α

for some p > 1, some α > m, some c > 0 and all x�y ∈K.
Fix a compact subset K of Rm, T > 0, j ∈ �1� 
 
 
 � d�, p > 1, and abbreviate

uk = tnk∧T. Using the Burkholder–Davis–Gundy inequality, we find constants
c1, c2 and c3 (independent of n) such that for all x�y ∈K, one has

E
[

sup
0≤s≤T

�Ijn�s� x� − Ijn�s� y��p
]

≤ c1E

[ n−1∑
k=0

{
Mj�uk+1� f�uk� x�� −Mj�uk+1� f�uk�y��

−Mj�uk� f�uk� x�� +Mj�uk� f�uk�y��
}2]p/2

≤ c1

[ n−1∑
k=0

{
E�Mj�uk+1� f�uk� x�� −Mj�uk+1� f�uk�y��

−Mj�uk� f�uk� x�� +Mj�uk� f�uk�y���p
}2/p]p/2

≤ c2

[ n−1∑
k=0

{
E

(∫ uk+1

uk

ajj�s� f�uk� x�� f�uk� x�� − 2ajj�s� f�uk� x�� f�uk�y��

+ ajj�s� f�uk�y�� f�uk�y��ds
)p/2}2/p]p/2

≤ c3

[ n−1∑
k=0

�uk+1 − uk��E��f�uk� x� − f�uk�y��2δp��1/p
]p/2

�
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where we have used Hölder’s inequality, the boundedness of f and the fact
that M ∈ B0�δ

c to obtain the last inequality.
Inserting the moment estimate on f in Theorem A.1, we see that for each

p ≥ 1� T > 0 and each compact subset K of Rm, there exists a constant c4
such that

E
[

sup
0≤s≤T

�In�s� x� − In�s� y��p
]
≤ c4�x− y�δ2p

for all n and all x�y ∈ K. Now take p sufficiently large so that δ2p > m.
Therefore the substitution formula follows from Lemma A.1 in the Itô case
under the additional constraint that M and f are bounded. For general M
and f, we get the uniform convergence In�t� x� → I�t� x� in probability on
compacts of �0�∞�× Rm, by a straightforward localization argument.

To show (A.8) we assume first that M, D2M and f are uniformly bounded
in �t� x�ω� on compact subsets. Let

Cn�t� x� =
1
2

n−1∑
k=0

�D2M�tnk+1 ∧ t� f�tnk� x�� −D2M�tnk ∧ t� f�tnk� x���

× �f�tnk+1 ∧ t� x� − f�tnk ∧ t� x��


To apply Lemma A.1, we will show that for every compact subset K of Rm

and every T > 0 there exist p > 1, α > m and c5 > 0 such that

E sup
0≤s≤T

�Cn�s� x� −Cn�s� y��p ≤ c5�x− y�α

for all n ∈ N and all x�y ∈K.
We will use the following abbreviations (suppressing the dependence on n):

Ak�t� x� = D2M�tnk+1 ∧ t� f�tnk� x�� −D2M�tnk ∧ t� f�tnk� x��

and

Bk�t� x� = f�tnk+1 ∧ t� x� − f�tnk ∧ t� x�


Then we get for p ≥ 1 and all x�y ∈K,

�A
10�

E sup
0≤t≤T

�2Cn�t� x� − 2Cn�t� y��p

≤ 2p
(
E sup

0≤t≤T

∣∣∣∣
n−1∑
k=0

�Ak�t� x� −Ak�t� y��Bk�t� x�
∣∣∣∣
p

+E sup
0≤t≤T

∣∣∣∣
n−1∑
k=0

Ak�t� y��Bk�t� x� −Bk�t� y��
∣∣∣∣
p)
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Using Hölder’s inequality, we get

�A
11�

E sup
0≤t≤T

∣∣∣∣
n−1∑
k=0

�Ak�t� x� −Ak�t� y��Bk�t� x�
∣∣∣∣
p

≤
(n−1∑
k=0

(
E
((

sup
0≤t≤T

�Ak�t� x� −Ak�t� y��p
)

×
(

sup
0≤t≤T

�Bk�t� x��p
)))1/p

)p

≤
( n−1∑
k=0

(
E sup

0≤t≤T
�Ak�t� x� −Ak�t� y��2p

)1/2p
)

×
(
E sup

0≤t≤T
�Bk�t� x��2p

)1/2p)p



Now use the Burkholder–Davis–Gundy inequality and Theorem 3.1.2 in [10],
in order to interchange spatial derivatives and the quadratic variation. There-
fore, there exist constants c6, c7 and c8 (independent of k and n) such that

�A
12�
(
E sup

0≤t≤T
�Ak�t� x� −Ak�t� y��2p

)1/2p
≤ c6�uk+1 − uk�1/2�x− y�δ2

and

�A
13�
(
E sup

0≤t≤T
��Bk�t� x��2p�

)1/2p
≤ c7�uk+1 − uk�1/2 + c8�uk+1 − uk�


The inequality (A.12) is derived as in the first part of the proof. Since �uk+1 −
uk� ≤ T1/2�uk+1 −uk�1/2, we can in fact delete the term c8�uk+1 −uk� in (A.13)
by increasing c7 accordingly.

Similarly, for p ≥ 1 there exists some constant c9 such that for all x�y ∈K,
we have

�A
14�

E sup
0≤t≤T

∣∣∣∣
n−1∑
k=0

Ak�t� y��Bk�t� x� −Bk�t� y��
∣∣∣∣
p

≤
[ n−1∑
k=0

((
E sup

0≤t≤T
�Ak�t� y��2p

)1/2p)

×
(
E sup

0≤t≤T
�Bk�t� x� −Bk�t� y��2p

)1/2p
]p

≤ c9

( n−1∑
k=0

�uk+1 − uk�1/2�x− y�δ�uk+1 − uk�1/2
)p

≤ c9T
p�x− y�δp


Inserting (A.12) and (A.13) into (A.11) and then (A.11) and (A.14) into (A.10),
we see that for all p ≥ 1 there exists a constant c5 such that for all x�y ∈ K
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we have

E sup
0≤t≤T

�2Cn�t� x� − 2Cn�t� y��p ≤ c5�x− y�δp

as desired. The case of generalM and f is again easily obtained by localization.
This proves Theorem A.1. ✷

The next result allows us to start the solution of a SDE and its linearization
at any random (possibly anticipating) initial state. In all parts of the following
theorem the stochastic flow associated with an Itô equation driven by F (or a

Stratonovich equation driven by
◦
F) will be denoted by φ. Recall that φ�t� x� �=

φ0t�x�.

Theorem A.2. Suppose Y� 	→ Rd is any � -measurable random variable
and let δ ∈ �0�1�.

(i) Let F be a spatial (forward) semimartingale in B
0�1
ub . Then φ�t�Y�� t ≥

0� is a solution of the anticipating Itô SDE

�I′�
dφ�t�Y� = F�dt�φ�t�Y��� t > 0�

φ�0�Y� = Y


If the spatial (forward) semimartingale
◦
F is in �B2� δ

ub �B
1� δ
ub �, then φ�t�Y�, t ≥ 0�

is a solution of the anticipating Stratonovich SDE,

�SII� dφ�t�Y� =
◦
F� ◦dt�φ�t�Y��� t > 0�

φ�0�Y� = Y


(ii) Assume that
◦
F is a (forward) spatial semimartingale of class �B3� δ

ub �

B
2� δ
ub �. Then the (possibly nonadapted) process y�t�ω� �= D2φ�t�Y�ω��ω�, t ≥

0� satisfies the Stratonovich linearized SDE,

�SIII� dy�t� = D2

◦
F� ◦dt�φ�t�Y��y�t�� t > 0�

y�0� = I ∈ L�Rd�

A similar result is true in the Itô case.

(iii) Let
◦
F be a spatial backward semimartingale of class �B2� δ

ub �B
1� δ
ub �. Then

φ�t�Y�� t ≤ 0� is a solution of the backward Stratonovich SDE,

�SII−� dφ�t�Y� = −
◦
F� ◦ d̂t�φ�t�Y��� t < 0�

φ�0�Y� = Y


(iv) Assume that
◦
F is a spatial backward semimartingale of class �B3� δ

ub �

B
2� δ
ub �. Then the process y�t�ω� �= D2φ�t�Y�ω��ω�� t ≤ 0� satisfies the back-
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ward Stratonovich linearized SDE,

�SIII−� dŷ�t� = −D2

◦
F� ◦ d̂t�φ�t�Y��ŷ�t�� t < 0�

ŷ�0� = I ∈ L�Rd�


Proof. Let F be in B0�1
ub and define f�t� x� �= φ�t� x�. Then the moment

estimate for f in Theorem A.1 is satisfied (with δ = 1), thanks to [10], Lemma
4.5.6. Therefore (I′) follows.

Next suppose that
◦
F is in �B2� δ

ub �B
1� δ
ub �, so in particular the local martingale

part is in B1�1
ub . By [10], Theorem 3.4.7 (or our Proposition 2.1), we know that

φ is also generated by an Itô equation which is driven by a semimartingale
F with local characteristics of class �B2� δ

ub �B
1�δ
ub �. Observe that f �= φ0· ∈ B0�1

c

because, for every compact subset K ⊂ Rd, every T > 0 and every p ≥ 1, we
have

�A
15� sup
0≤s≤T

E
[

sup
x∈K

�φ0s�x��p
]
<∞

and

�A
16� sup
0≤s≤T

E

[
sup

x�y∈K�x"=y

( �φ0s�x� −φ0s�y��
�x− y�

)p]
<∞


The estimates (A.15) and (A.16) follow from Theorem 2.1(v). This proves
part (i).

We next proceed to prove assertion (ii) of the theorem. To do this we will
reduce the problem to a system of SDEs which satisfies the hypotheses of part
(i) of the theorem. Define the spatial semimartingales,

z�t� x� v� �= �φ�t� x��D2φ�t� x��v���

G�t� x� v� �= �
◦
F�t� x��D2

◦
F�t� x��v��

for all �x� v� ∈ Rd × Rd� t > 0. Then the SDE (S) and its linearization,

d�D2φ�t� x��v�� = D2

◦
F� ◦dt�φ�t� x��D2φ�t� x��v�� t > 0�

D2φ�0� x��v� = v ∈ Rd�

viewed as a coupled pair, are equivalent to the SDE,

�SIV�
dz�t� x� v� = G� ◦dt� z�t� x� v��� t > 0�

z�0� x� v� = �x� v� ∈ Rd × Rd


By hypothesis,
◦
F has local characteristics of class �B3� δ

ub �B
2�δ
ub �. We claim that

G has local characteristics of class �B2� δ
ub �B

1� δ
ub � (in R2d). To see this, use coor-

dinates

x �= �x1� 
 
 
 � xd�� x′ �= �x′1� 
 
 
 � x′d�� v �= �v1� 
 
 
 � vd�� v′ �= �v′1� 
 
 
 � v′d��
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and observe that the semimartingale �D2

◦
F�t� x��v�� �x� v� ∈ Rd × Rd� t ≥ 0�

has local characteristics �ãk� l�t� �x� v�� �x′� v′��� �x� v�� �x′� v′� ∈ Rd × Rd� t ≥
0� 1 ≤ k� l ≤ d�, �b̃k�t� �x� v��� �x� v� ∈ Rd × Rd� t ≥ 0� 1 ≤ k ≤ d� given by

ãk� l�t� �x� v�� �x′� v′�� =
d∑

i� j=1

∂2

∂xi∂x
′
j

ak� l�t� x� x′�viv′j�

b̃k�t� �x� v�� =
d∑
i=1

∂

∂xi
bk�t� x�vi


From these relations, our claim follows. By the first part of the proof, we can
substitute x = Y�ω� in (SIV) and keep v ∈ Rd arbitrary but fixed (nonrandom).
This gives (SIII) [and (SII)]. Hence assertion (ii) of the theorem holds.

The proofs of assertions (iii) and (iv) are similar to those of (i) and (ii). This
completes the proof of the theorem. ✷

In the case of Brownian linear integrators, a version of Theorem A.2(i)
is given in [13], Theorem 3.1, page 1920, under somewhat more restrictive
hypotheses. In this case too, similar results to Theorem 4.2(i), (ii) appear in
[2], Theorems 4, 5 and [18], Theorems 5.3.4, 6.1.1.
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Moscow Math. Soc. 19 197–221.)

[22] Protter, P. E. (1986). Semimartingales and measure-preserving flows. Ann. Inst. H.
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