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ON LARGE DEVIATIONS IN THE AVERAGING PRINCIPLE
FOR SDEs WITH A ‘‘FULL DEPENDENCE’’1

BY A. YU. VERETENNIKOV

Institute for Information Transmission Problems

We establish the large deviation principle for stochastic differential
equations with averaging in the case when all coefficients of the fast
component depend on the slow one, including diffusion.

1. Introduction. We consider the SDE system

dX � f X , Y dt , X � x ,Ž .t t t 0 0

dY � ��2 B X , Y dt � ��1 C X , Y dW , Y � y .Ž . Ž .t t t t t t 0 0

1Ž .

d ŽHere X � E , Y � M, M is a compact manifold of dimension l e.g., torust t
l . dT , f is a function with values in d-dimensional Euclidean space E , B is a

Ž .l Žfunction with values in TM, C is a function with values in TM i.e., in local
.coordinates an l � l matrix , W is an l-dimensional Wiener process on somet

Ž .probability space �, F, P , � � 0 is a small parameter. Concerning SDE’s on
Ž .manifolds we refer to Watanabe and Ikeda 1989 .

Ž .The large deviation principle LDP for such systems with a ‘‘full depen-
Ž . Ž .dence’’, that is, C X , Y , was not treated earlier. Only the case C Y wast t t

Ž . Ž .considered in papers by Freidlin 1976 , Freidlin 1978 , Freidlin and Wentzell
Ž . Ž .1984 for a compact state space and by Veretennikov 1994 for a noncompact
one. There are, as well, recent papers on more general systems with small
additive diffusions by Liptser and by the author which also only concern the

Ž .case C Y .t
Ž .The LDP for systems like 1 is important in averaging and homogeniza-

tion, in the KPP equation theory, for stochastic approximation algorithms
Ž .with averaging and so forth. The problem of an LDP for the case C X , Yt t

Ž . Ž .has arisen since Freidlin 1976 and Freidlin 1978 . Intuitively, the scheme
Ž .used for C Y should work; at least, almost all main steps go well. Indeed,t

there was only one lacuna; the use of Girsanov’s transformation did not allow
freezing of X if C depended on the slow motion while it worked well andt

Ž .very naturally for the drift B X , Y . Yet the problem remained unresolvedt t
for years and the answer was not clear at all.

Notice that this difficulty does not appear in analogous discrete-time
� Ž . �systems see Gulinsky and Veretennikov 1993 , Chapter 11 .
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It turned out that the use of Girsanov’s transformation in some sense
prevented resolving the problem. Our approach in this paper is based on a
new technical lemma, Lemma 5 below. The main idea is to use two different

� �scales of partitions of the interval 0, T , a ‘‘first-order partition’’ by points �,
2�, . . . , which do not depend on the small parameter � and ‘‘second-order

2 Ž . 2 Ž .partitions’’ which depend on � in a special way, by points � t � , 2� t � , . . . .
Then the exponential estimates needed for the proof of the result can be
established by two steps. First, the estimates for a ‘‘small’’ partition interval

Ž .are derived using the uniform bound of Lemma 3 see below and the
estimates for stochastic integrals. It is important that, in the ‘‘second’’ scale,

� Ž .the fast motion is still close enough to its frozen version the bound 11
�below . Second, the bounds for ‘‘small’’ partitions and induction give one the

estimate for a ‘‘large’’ partition interval.
The main result is stated in Section 2. In Section 3 we expose auxiliary

lemmas, among them the main technical Lemma 5 with proof and a version
Ž . Ž .of an important lemma from Freidlin and Wentzell 1984 see Lemma 6 ,

which requires certain comments. Those comments are given in the Ap-
pendix. The proof of the main theorem is presented in Section 4.

2. Main result. We make the following assumptions.

Ž .A The function f is bounded and satisfies the Lipschitz condition.f
Ž . �A The function CC is bounded, uniformly nondegenerate, C satisfies theC

Lipschitz condition.
Ž .A The function B is bounded and satisfies the Lipschitz condition.B

Some conditions may be relaxed; for example, B can be locally bounded, C
Ž .locally w.r.t. x nondegenerate and so on.

The family of processes X � satisfies a large deviation principle in the space
Ž� � d . �2 Ž .C 0, T ; R with a normalizing coefficient � and a rate function S � if

three conditions are satisfied:

2 lim sup lim sup � 2 log P X � � F � � inf S � � F closed,Ž . Ž . Ž .x
F��0 ��0

3 lim inf lim inf � 2 log P X � � G � � inf S � , � G openŽ . Ž . Ž .x
��0 ��0 G

and S is a ‘‘good’’ rate function; that is, for any s � 0, the set

� � d� s � � � C 0, T ; R : S � � s, � 0 � xŽ . Ž . Ž .Ž .Ž .
Ž� � d .is compact in C 0, T ; R .

˜ �1 x
2 2 2Let W � � W , y � Y , x � X and let y denote a solution of SDE,t t� t t� t t� t

x x x ˜ x4 dy � B x , y dt � C x , y dW , y � y .Ž . Ž . Ž .t t t t 0 0

Ž . Ž . Ž . Ž �THEOREM 1. Let A , A , A be satisfied. Then the family X � X ,f B C t t
. Ž� � d .0 � t � T satisfies the LDP as � � 0 in the space C 0, T ; R with a rate

function
T

S � � L � , � dt ,Ž . Ž .˙H t t
0
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where
L x , 	 � sup 	
 � H x , 
 ,Ž . Ž .Ž .




t�1 xH x , 
 � lim t log E exp f x , y ds .Ž . Ž .H sž /t�� 0

The limit H exists and is finite for any 
, the functions H and L are convex in
their last arguments 
 and 	 correspondingly, L � 0 and H is continuously
differentiable in 
.

The differentiability of H at any 
 is provided by the compactness of the
state space of the fast component.

3. Auxiliary lemmas. Let us consider the semigroup of operators T 
,t
Ž .t � 0 on C M defined by the formula

tx �, x , 
 
 x xT g y � T g y � E g y exp 
 f x�, y ds ,Ž . Ž . Ž . Ž .Ht t y t sž /0

where 
 � Ed, 
 f is a scalar product.

Ž . Ž . Ž .LEMMA 1. Let assumptions A , A , A be satisfied. Then for any 
,f B C

 Ž .the operator T is compact in the space C M .1

Ž . Ž . Ž .LEMMA 2. Let assumptions A , A , A be satisfied. Then the spec-f B C
Ž 
 . 
tral radius r T is a simple eigenvalue of T separated from the rest of the1 1

�Ž .spectrum and its eigenfunction e belongs to the cone C M . Moreover,


Ž 
 . Ž �.function r T is smooth of C in 
 and the function e is bounded and1 


� �separated away from zero uniformly in 
 � b and any x�, x.

d Ž . Ž . Ž .LEMMA 3. Let 
 � E and let assumptions A , A , A be satisfied.f B C
Then there exists a limit

t�1 xH x�, x , 
 � lim t log E exp 
 f x�, y ds ;Ž . Ž .Hy sž /t�0 0

Ž . Ž x �, x, 
 . Ž . �moreover, H x�, x, 
 � log r T . The function H x�, x, 
 is of C in 
1
Ž . � �and convex in 
. For any b � 0 there exists C b such that, for any y, 
 � b,

t�1 x �15 t log E exp 
 f x�, y ds � H x�, x , 
 � C b t .Ž . Ž . Ž .Ž .Hy sž /0

� Ž . � � � � �Notice that H x�, x, 
 � f 
 .C

Ž . Ž . Ž .LEMMA 4. Let assumptions A , A , A be satisfied. Then for anyf B C
Ž . � �b � 0 the functions H and  H are uniformly continuous in x�, x, 
 , 
 � b.


� Ž . Ž .�Lemmas 1�4 are standard cf. Veretennikov 1994 or 1992 . They are
�based on Frobenius-type theorems for positive compact operators see Kras-
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Ž .�nosel’skii, Lifshitz and Sobolev 1989 and the theory of perturbations of
˜� Ž . � 2linear operators see Kato 1976 , Chapter 2 . Denote F � F .t t�

Ž . Ž . Ž . Ž . Ž .LEMMA 5. Let assumptions A , A , A , b � 0, t � � � and t � �f B C
Ž �1 . Ž . Ž .o log � as � � 0. Then for any � � 0 there exist � � � 0, � � � 0 such

Ž . � �that for � � � � uniformly w.r.t. t , x�, x, x , y and 
 � b, the inequality0 0 0
� � � Ž .4holds on the set x � x � � � ,t0

Ž .t �t �0 ˜6 log E exp 
 f x�, y ds F � t � H x�, x , 
 � � t � .Ž . Ž . Ž . Ž . Ž .H s t0ž /ž /t0

Ž . Ž � � .�1 Ž .Moreover, if � � � � � 1 � f � � 	2 and � is small enough, thenC
� �uniformly w.r.t. T � 0, t , x�, x, x , y and 
 � b,0 0 0 0

exp ��2� H x�, x , 
 � ����2Ž .Ž .
T ��0�2� E exp 
� f x�, Y ds FŽ .H s T0ž /ž /T0

7Ž .

� exp ��2� H x�, x , 
 � ����2 .Ž .Ž .

Ž . Ž .PROOF. Step 1. It is sufficient to prove 6 and 7 for T � 0. Moreover,0
since H is continuous, it suffices to check both inequalities for x � x . Indeed,0
the bound

Ž .t �
log E exp 
 f x�, y ds � t � H x�, x , 
 � � t �Ž . Ž . Ž . Ž .H s 0ž /0

implies

Ž .t �
log E exp 
 f x�, y ds � t � H x�, x , 
Ž . Ž . Ž .H sž /0

� t � � � H x�, x , 
 � H x�, x , 
 .Ž . Ž . Ž .Ž .0

The same arguments are applicable to the second inequality of the assertion
of the lemma. So, in the sequel we consider the case x � x.0

Let us show first that

Ž .t ��18 sup t � log E exp 
 f x�, y ds � H x�, x , 
 � �Ž . Ž . Ž . Ž .H sž /0x �, x0

if � is small enough. Due to Lemma 3, it would be correct if y were replaceds
x Ž . �1 Ž .by y and t � � � C b . We will also use the boundss

22 2� � � �9 sup x � x � f � t � C , exp Ct � t � � � 0, � � 0.Ž . Ž . Ž .Ž .Cs 0
0�s�t
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� Ž . Ž �. � � � � � � �Let f x�, y � f x�, y � L y � y for all y, y , x�, L � 0, C � f . WeCf f f
Ž . �1 Ž .estimate for t � � � C b 	4,

Ž .t �
E exp 
 f x�, y dsŽ .H sž /0

� x �� I sup y � y � �	 4L bŽ .t t fž /½
Ž .0�t�t �

� x ��I sup y � y � �	 4L bŽ .t t fž / 5
Ž .0�t�t �

Ž .t � x� E exp 
 f x�, y ds � t � �	4Ž .Ž .H sž /010Ž .
� x ��I sup y � y � �	 4L bŽ .t t fž /

Ž .0�t�t �

� x ��exp C bt � � EI sup y � y � �	 4L bŽ . Ž .Ž .f t t fž /
Ž .0�t�t �

Ž .t � x� E exp 
 f x�, y ds exp t � �	4Ž .Ž .Ž .H sž /0

�2 � x � 2�exp C bt � � � E sup y � y .Ž .Ž .f t t
Ž .t�t �

By virtue of Lemma 3 we have

Ž .t � xE exp 
 f x�, y ds � exp t � H x�, x , 
 � �	4Ž . Ž .Ž .Ž . Ž .H sž /0

if � is small enough. A similar lower bound holds true also.
Let us estimate the second term. By virtue of the inequalities for the Itô

and Lebesgue integrals, we have

� x � 2� �E sup y � yt t
�t �t

t 2x� CE C x , y � C x , y dsŽ . Ž .H s s s
0

t 2x� CtE B x , y � B x , y dsŽ . Ž .H s s s
0

t t2 2x� � � �� C E x � x ds � C E sup y � y dsH Hs s s
0 0 u�s

t 22 2 x� �� Ct � � C E sup y � y ds.H u u
0 u�s

By virtue of Gronwall’s lemma, one gets

� x � 2 2 2
� �E sup y � y � Ct � exp Ct .Ž .t t

�t �t



LARGE DEVIATIONS AND AVERAGING FOR SDEs 289

In particular,
22x 2� �� �11 E sup y � y � Ct � � exp Ct � .Ž . Ž . Ž .Ž .t t

� Ž .t �t �

Ž . Ž Ž . . �2 Ž .2 2So the second term in 10 does not exceed the value exp C bt � � � Ct � �f
Ž Ž Ž ... Ž Ž .Ž .. �2 Ž .2 2which is o exp Ht � for any H. Indeed, exp t � C b� � H � Ct � �f

Ž . Ž �1 . Ž .� 0 due to the assumption t � � o log � , � � 0. This proves 8 .
Ž . � �Notice that the bound 8 is uniform w.r.t. 
 � b and x�, x, y . Since the0

� � � Ž .4function H is continuous, we get on the set x � x � � � ,t0

Ž .t �t �0 x ˜sup sup sup log E exp 
 f x�, y ds FŽ .H s t0ž /ž /tx�, x , y � � t 0
 �b0 0
12Ž .

�t � H x�, x , 
 � � t �Ž . Ž . Ž .

Ž .if � � is small enough.
Ž � � .�1 Ž . �2 Ž .�1Step 2. Let � � 1 � f � � 	2 and N � �� t � . ThenC

� � Ž . � � Ž . �sup x � x � � � 	2. Let x � x � � � 	2. So, sup x0 � s� N tŽ� . s 0 0 0 � s� N tŽ� . s
� Ž . � � Ž .� x � � � . In particular, x � x � � � for any 1 � k � N. By induc-k tŽ� .

Ž .tion, we get from 12 for such k,

exp kt � H x�, x , 
 � � kt �Ž . Ž . Ž .Ž .
Ž .kt �� E exp 
 f x�, y dsŽ .H sž /0

� exp kt � H x�, x , 
 � � kt � ,Ž . Ž . Ž .Ž .
or, after the time change,

exp kt � H x�, x , 
 � � kt �Ž . Ž . Ž .Ž .
Ž . �2kt � ��2� E exp 
� f x�, Y dsŽ .H sž /0

� exp kt � H x�, x , 
 � � kt � .Ž . Ž . Ž .Ž .
Since H is continuous, we obtain for k � N,

exp ��2� H x�, x , 
 � ����2Ž .Ž .
��2� E exp 
� f x�, Y dsŽ .H sž /0

13Ž .

� exp ��2� H x�, x , 
 � ����2 .Ž .Ž .0

Lemma 5 is proved. �

Ž . Ž . Ž .In the sequel we denote � � � � . An important point is that � � 	� � �
const � 0.

� Ž . Ž .� Ž .LEMMA 6 Freidlin 1978 , Freidlin and Wentzell 1984 . Let S � � �. If
n � � d .� is a sequence of step functions tending uniformly to � in C 0, T ; R as
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n � �, then there exists a sequence of piecewise linear functions � n which
also tend uniformly to � and such that

T n nlim sup L � , � ds � S � .Ž .˙Ž .H s s
0n��

Moreover, one may assume without loss of generality that for any s there
exists a value


 � argmax 
� n � H � n , � n , 
Ž .˙Ž .s s� s s



and
L � n , 	 � L � n , � n � 	 � � n 
 � 	 	 � n .Ž . Ž .˙ ˙ ˙Ž .s s s� s� s s

ˆ nIf � is close enough to � then there exists a values

ˆ n n ˆ
 � argmax 
� � H � , � , 
 ,˙ Ž .ž /s s� s



n ˆ n ˆ n n ˆ nL � , � , 	 � L � , � , � � 	 � � 
 �	 	 �Ž .˙ ˙ ˙Ž . ž /s s s� s� s s

and
n ˆ n n n n ˆ nL � , � , � � L � , � , � , � � � .˙ ˙Ž .ž /s s� s s s� s

We added to the original assertion the property which is used in the next
section, that is, that � may be chosen piecewise linear. Indeed, such func-t

Ž .tions are used in the proof; see Freidlin and Wentzell 1984 , Section 7.5. The
existence of 
 asserted in the lemma also follows from the proof; see Freidlins

ˆ ˆŽ . Ž .and Wentzell 1984 or Freidlin 1978 . Assertions about � and 
 also addeds
to the original assertion can be deduced from the proof using similar argu-
ments.

In fact, there is a little gap in the original proof; namely, an additional
assumption was used which was not formulated explicitly. This is why we
have to present a precise statement and give necessary comments on it in the
Appendix.

Ž . Ž .4. Proof of Theorem 1. Step 1. Denote H x, 
 � H x, x, 
 . The exis-
Ž .tence of the limit H x, � and its differentiability and continuity are asserted

in Lemmas 3 and 4.
Step 2. Let � � T	m, m � 0 an integer. Let � , � be two functions close to

� with the following properties: � is a step function and � is piecewise linear
� �function in accordance with the partition of 0, T by points k�, k �

Ž . Ž .1, 2, . . . , m, and � �, � � � �, � � � where � � 0 is small enough.
Denote

t
�X � x � f � , Y ds.Ž .Ht 0 s s

0

We have, due to the Lipschitz condition on f ,

14 � X , � � � 
 � X � , � � � �� 4Ž . Ž . � 4Ž .
if � � is small enough w.r.t. � .
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� Ž . � �Denote � � � , � , . . . , � . Since f � �, we haveC� 2� m�

�� 
� � �15 � X , � � � 
 � X , � � �Ž . Ž .� 4Ž . ž /½ 5

 Ž .if � and � are small enough. We can and will assume � � � cm� � , c � 0.

Ž .Step 3. We assume S � � �. By virtue of Lemma 6, we can choose a step
function � and a linear piecewise � so that

T T
L � , � ds � L � , � ds � �Ž .Ž .˙ ˙H Hs s s s

0 0

and
� �sup � � C � �.˙s

s

Moreover, for any s there exists 
 such thats


 � argmax 
� � H � , � , 
Ž .Ž .˙s s� s s



and
L � , 	 � L � , � � 	 � � 
 � 	 	 � .Ž . Ž .Ž .˙ ˙ ˙s s s� s� s s

Let us show that we may assume
� �sup 
 � b � �s

s

with some b � 0. Indeed, we can find b such that

T T
� �16 L � , � I 
 � b ds � L � , � ds � 2� .Ž . Ž .Ž . Ž .˙ ˙H Hs s s s s

0 0

Ž .For any � the function L � , � is equal to zero at some point, which wes s
� Ž . � � � � � � �denote by 	 . Since  H � , � � f then 	 � f .ˆ ˆC Cs 
 s s

Consider a new curve

t
� � � �� � � I 
 � b � 	 I 
 � b ds.Ž . Ž .ˆ ˙ ˆŽ .Ht s s s s

0

� � Ž .Let 
 � b. Recall that L � , � � 0 and this function is equal to zero at as s
unique point which follows from the differentiability of H. Hence, we can put
ˆ Ž
 � 0 here we use the same notation 
 as above with a ‘‘hat’’ for the curves s

ˆ. � �� . If 
 � b, then we take 
 � 
 .ˆ s s s
If b is large enough, then � is arbitrarily close to � . By construction, weˆ

have for this new curve

ˆ� �sup 
 � b � �.s
s

Moreover, � is also piecewise linear. Denote this new curve again by � .ˆ
Step 4. Now, let us estimate from below the value

m
��� �E I X � � � �Ž .Ł k� k� k

k�1

Ž ŽŽ � .� � . �. Ž � � . �rather than P � X , � � � . We choose � � � 2T 1 � f and � �C i
Ž . Ž . Ž . Ž .i	m � �, i � 1, . . . , m. Notice that c� � � � �	m � � � c � 0 .



A. YU. VERETENNIKOV292

Ž Ž � �We start with the estimation of the conditional expectation E I X �m�
� � ˆ ˆ� . � . � 4 � �� � � F on the set X � � with � � � �m� m Žm�1.� Žm�1.� Žm�1.� Žm�1.� Žm�1.�

� � �� . Let us apply the Cramer transformation of measure. Let 
 � b, we´m� 1
� � �will choose this vector a bit later. We get, on the set X � �Žm�1.� Žm�1.�

� � 4� � ,m� 1

��� �E I X � � � � FŽ .ž /m� m� m Žm�1.�


 � � � �� E I X � � � �Ž .ž m� m� m

�2 � � �2 � , ��exp �� 
 X � X � � � H 
 F ,Ž .Ž .ž / /m� Žm�1.� m Žm�1.�

where E 
 is the expectation w.r.t. the measure P 
 defined on the sigma-field
F by its densitym�

dP 
	dP � exp ��2
 X � � X � � ��2� H � , � 
Ž .Ž .ž /m� Žm�1.� m

and

�2 � , � �2 � �� � H 
 � log E exp � 
 X � X F .Ž . Ž .ž /ž /m m� Žm�1.� Žm�1.�

By virtue of Lemma 5, we get
��� �E I X � � � � FŽ .ž /m� m� m Žm�1.�


 � � � �� E I X � � � �Ž .ž m� m� m

�exp ���2�
 � � � 	�Ž .Ž .Ž m� Žm�1.�

17Ž .

�2�� � H � , 
 � � F .Ž .Ž . / /Žm�1.� Žm�1.�

ˆŽ . Ž Ž ..Step 5. Now choose 
 m � argmax 
� � H � , � , 
 .˙
 Žm�1.�� Žm�1.� Žm�1.�
If � � is small enough then it follows from the properties of convex functions
and considerations in the proof of Lemma 7.5.2 from Freidlin and Wentzell

ˆŽ . � Ž . �1984 that 
 is uniformly close to 
 ; whence we can assume 
 m � b.s s
Moreover,

ˆ ˆ
 m � � H � , � , 
 m � L � , � , � .Ž . Ž .˙ ˙ž / ž /Žm�1.�� Žm�1.� Žm�1.� Žm�1.� Žm�1.� Žm�1.��

Ž .So 17 implies that
��� �E I X � � � � FŽ .ž /m� m� m Žm�1.�

�2 ˆ� exp �� � L � , � , � � �˙ž /Žm�1.� Žm�1.� Žm�1.��ž /ž /18Ž .
�
 Žm. �� �� E I X � � � � F .Ž .ž /m� m� m Žm�1.�

Let us show the bound
�
 Žm. � �2� �19 E I X � � � � F � 1 � exp �C��Ž . Ž .Ž .ž /m� m� m Žm�1.�

ˆ �� � � 4on the set � � � � � if � is small enough.Žm�1.� Žm�1.� m�1



LARGE DEVIATIONS AND AVERAGING FOR SDEs 293

� �There exists a finite number of vectors v , v , . . . , v s.t. v � 1 � k,1 2 N k
N � 2 d and

�
 Žm. �� �E I X � � � � FŽ .ž /m� m� m Žm�1.�

N

 Žm. � �� E I X � X � � � � v � � � � F ,Ž .Ž .Ý ž /ž /m� Žm�1.� m� Žm�1.� k Žm�1.�

k�1

Ž .�1	2where c 2 N � � . We estimate, for any v � v , 0 � z � 1,k


 Žm. � �E I X � X � � � � v � � � � FŽ .Ž .ž /ž /m� Žm�1.� m� Žm�1.� Žm�1.�

�2 �2� exp �� � z�� exp �� �zv�Ž . ˙Ž . Žm�1.��ž
20Ž .

ˆ�H � , � , 
 m � vzŽ .ž /Žm�1.� Žm�1.�

ˆ�H � , � , 
 m � 2�Ž .ž /Žm�1.� Žm�1.� /
if � is small enough. Denote

h z � � � ���1 z � � vzŽ . Ž . Ž̇m�1.��

ˆ ˆ� H � , � , 
 m � vz � H � , � , 
 m .Ž . Ž .ž / ž /Žm�1.� Žm�1.� Žm�1.� Žm�1.�

Ž .We have h 0 � 0. Moreover,

� �1 ˆh 0 � � � �� � � v �  H � , � , 
 m vŽ . Ž . Ž .˙ ž /Žm�1.�� 
 Žm�1.� Žm�1.�

� � � ��1� � C � 0,Ž .
ˆŽ Ž ..for � �  H � , � , 
 m � 0. Finally, since  H is boundedŽ̇m�1.�� 
 Žm�1.� Žm�1.� 


�Ž .and continuous due to Lemma 4, h z � C	2 for small z, say, for 0 � z � z .0
Ž . Ž .Then h z � Cz 	2. Hence, the r.h.s. in 20 with z � z does not exceed the0 0 0

value
�2 �2exp �� 2� � h z � exp �C� z � 	4Ž .Ž .Ž . Ž .0

if we choose
� � Cz 	8.0

This gives the bound

�
 Žm. � �2� �E I X � � � � F � exp �C�� 	4Ž .Ž .ž /m� m� m Žm�1.�

Ž .which is equivalent to 19 . This implies the estimate

� � � � �P X � � � � FŽ .m� m� m Žm�1.�

� exp ���2� L � , � � �˙ ˜Ž .Ž .ž /Žm�1.� Žm�1.��

where � is arbitrarily small if � � and � are small enough. By induction, we˜
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get
� � � � � � � �P X � � � � , . . . , X � � � �Ž .� m � m m � � 1

m
�2� exp �� � L � , � � �˙ ˜Ž .Ž .Ý Žm�i.� Žm�i.��ž /

i�1

T�2� exp �� L � , � ds � � T .Ž .˙ ˜H s sž /ž /0

Ž .Finally, by virtue of 16 this gives one

P � X � , � � � � exp ���2 S � � � T , � � 0.Ž . Ž .Ž . Ž .˜Ž .0T 0T

� Ž .� d � �cf. Freidlin and Wentzell 1984 . This bound is uniform in x � E , y � r
Ž .and � � � s for any r, x � 0.x

Step 6. If the first inequality is established, the proof of the second one is
standard; see the corresponding part of Theorem 7.4.1 from Freidlin and

Ž .Wentzell 1984 . Theorem 1 is proved. �

APPENDIX

A. Comments on Lemma 6. To explain that Lemma 6 is valid without
additional assumptions, we have to review very briefly its proof and show
those assumptions.

Ž . tk Ž .Let 0 � t � t � ��� � t � T be a partition, � 
 � H H � , 
 ds,0 1 m k t sk� 1
Ž . Ž Ž .. � Ž . 4 ol 	 � sup 	
 � � 
 , A � 	 : l 	 � � , A its interior w.r.t. thek 
 k k k k

linear hull L .Ak
Ž . T Ž .The inequality S � � H L � , � dt � � implies˙0 t t

m m

sup � � � � � 
 � l � � � � S � .Ž . Ž . Ž . Ž .Ž .Ý Ýt t k k t tk k�1 k k�1

k�1 k�1

Under the additional assumption Ao 	 �, it is proved in Freidlin andk
Ž . Ž .Wentzell 1984 using the arguments from Rockafellar 1970 that for any

Ž .� � 0, there exists a function � such that � �, � � � and there exist 
˜ ˜ k
such that

21 l � � � � � � � 
 � � 
Ž . Ž .˜ ˜ ˜ ˜Ž . Ž .k t t t t k k kk k�1 k k�1

and
22 � � � � � 
 .Ž . Ž .˜ ˜t t k kk k�1

The proof goes well if Ao 	 � � k.k
Let us show that the same is true if Ao � � for some k ’s. The propertyk

o Ž .A � � is equivalent to dim L � 0. In this case, � 
 � c 
 with somek A k kkd Ž . Ž .c � R . Hence, l 	 � � means that l 	 � 0 and for any other 	 ,k k k k k
Ž . Ž .l 	 � �� and � 
 � 	 
. So, we havek k k

l � � � � 0 � � � � 
 � � 
Ž . Ž . Ž .k t t t t kk k�1 k k�1

for any 
. Let 
 � 0. Evidently,k

� � � � 
 .Ž .t t k kk k�1
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Hence, in the case Ao � �, one should not just change the curve � on thek s
Ž . Ž . Ž .interval t , t ; that is, 21 and 22 are valid in this case also.k�1 k

The rest of the proof is not changed. For any step function � , one defines a
piecewise linear � by the formula

� � � , � �  H � , 
 , t � s � t , k � 1, 2, . . . , m.Ž . .˙0 0 s 
 s k k�1 k

Then it is shown that � n � � implies � n � � due to the property that the
convergence of smooth convex functions to the limit implies the convergence
of their gradients. Then there exists a partition such that this construction
gives one

T
L � , � dt � S � � � .Ž .Ž .˙H t t

0

So, the lemma holds true without additional assumptions. The assertions
ˆ ˆabout � and 
 can be shown similarly.s

o Ž .B. Comments on the property A 	 �. Denote the interior of A xk
oŽ . o oŽ .w.r.t. L by A x . Then A � � � A � � �. In this section we showAŽ x . k tk� 1

the following equivalence:

card f � Rd : f � f x , y , y � M � 1 � dim L � 0 � Ao x � �.Ž . Ž .Ž . AŽ x .

Ž .Since A x is convex, clearly the first two conditions are equivalent.
� Ž .4 Ž .If f x, � contains only one point then H x, 
 is linear w.r.t. 
 ; hence,

Ž . oŽ .A x consists of a unique point and A x � �.
� Ž .4 Ž .Now, let f x, � contain at least two different points, say, f x, y 	1

Ž . Ž Ž . Ž ..f x, y . Then there exists 1 � k � d such that f x, y � f x, y 	 0.2 1 2 k
kŽ . kŽ . Ž Ž .Denote M � sup f x, y , m � inf f x, y . Let 0 � � � f x, y �k y k y 1

Ž .. � 
 kŽ �.f x, y 	2. Take two points y and y such that f x, y � m � �	3 and2 k k
kŽ 
 . � 
f x, y � M � �	3. There exist two open sets B � M and B � M suchk

kŽ . kŽ .� 
that sup f x, y � m � �	2 and inf f x, y � M � �	2.y � B k y � B k
Since the process y x is a nondegenerate ergodic diffusion, there existst

such q � 0 that

P y x � B� , 0 � s � t � qt , P y x � B
 , 0 � s � t � qt , t � �.Ž . Ž .s s

Let 
 � z
 where 
 � Ed is a kth unit coordinate vector and z � R.k k
Then for z � 0 we have,

t�1 �1 xz t log E exp z
 f x , y dsŽ .Hkž /0

t 
�1 �1 x x� z t log E exp z
 f x , y ds I y � B , 0 � s � tŽ . Ž .Hk sž /0

� z�1 t�1 log exp z M � �	2 qt � M � �	2 � z�1 log q � M � �Ž .� 4Ž .k k k

Ž .if z is large enough. In other words, for large positive z one has H x, z
 �k
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Ž .z M � � . Similarly, for large negative z,k

t�1 �1 x� �z t log E exp z
 f x , y dsŽ .Hkž /0

t�1 ��1 x x� �� z t log E exp z
 f x , y ds I y � B , 0 � s � tŽ . Ž .Hk sž /0

� ��1 �1 t� z t log exp z m � �	2 qŽ .� 4Ž .k

� ��1� � m � �	2 � z log q � �m � �Ž .k k

� �if z is large enough. In other words, for negative z with large absolute
Ž . Ž . �values one has H x, z
 � z m � � . Therefore, 	 : 	 � 
 � , m � � �k k k k

4 Ž .� � M � � � A x .k
Similar inequalities are valid for any unit vector 
 from the linear hull0
Ž . � Ž .4 Ž .L x of the set f x, � . This shows, in particular, that dim L x �f A

Ž . Ž . oŽ .dim L x . Since A x is convex, it shows also that the interior A x w.r.t.f
L is not empty.AŽ x .

Hence, the third condition is equivalent to the second and the first.
o � Ž .4So, the condition A 	 � is always satisfied if the set f x, � for any xk

� Ž .4consists of more than one point. In fact, if card f x, � � 1 for any x then f
does not depend on y. In this case, one has nothing to average.

REFERENCES
Ž .FREIDLIN, M. I. 1976 . Fluctuations in dynamical systems with averaging. Dok. Acad. Nauk

Ž .SSSR 226 273�276 in Russian .
Ž .FREIDLIN, M. I. 1978 . Averaging principle and large deviations. Uspekhi Mat. Nauk. 33 107�160

Ž .in Russian .
Ž .FREIDLIN, M. I. and WENTZELL, A. D. 1984 . Random Perturbations of Dynamical Systems.

Springer, New York.
Ž .GULINSKY, O. V. and VERETENNIKOV, A. YU. 1993 . Large Deviations for Discrete-Time Processes

with Averaging. VSP, Utrecht.
Ž .KATO, T. 1976 . Perturbation Theory for Linear Operators, 2nd ed. Springer, New York.

Ž .KRASNOSEL’SKII, M. A., LIFSHIFTZ, E. A. and SOBOLEV, A. V. 1989 . Positive Linear Systems.
Helderman, Berlin.

Ž .ROCKAFELLAR, R. T. 1970 . Convex Analysis. Princeton Univ. Press.
Ž .VERETENNIKOV, A. YU. 1992 . On large deviations in the averaging principle for stochastic

differential equations with periodic coefficients 2. Math. USSR Izvestiya 39 677�701.
Ž .VERETENNIKOV, A. YU. 1994 . Large deviations in averaging principle for stochastic differential

Ž .equation systems noncompact case . Stochastics Stochastics Rep. 48 83�96.
Ž .WATANABE, S. and IKEDA, N. 1989 . Stochastic Differential Equations and Diffusion Processes,

2nd ed. North-Holland, Amsterdam.

INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS

19 BOLSHOY KARETNII

101447 MOSCOW

RUSSIA

E-MAIL: ayu@sci.lpi.ac.ru


