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Imperial College of Science, Technology and Medicine

This paper is concerned with the integration (of 1-forms) against the
Markov stochastic process associated with a second-order elliptic differ-
ential operator in divergence form. It focuses on the limiting behavior of
the integral as the process leaves a fixed point or goes to infinity. This
extends previous work in the area where advantage was usually taken of
the fact that the operator was self adjoint and started with the associated
invariant measure. Applications are given. For example, it is a trivial con-
sequence that the diffusion associated to a uniformly elliptic operator on a
negatively curved Cartan–Hadamard manifold has an asymptotic direction
(recovering and strengthening the previous arguments of Pratt, Sullivan
and others). The approach can also be used to construct a Lévy area for
such processes, to study the thinness of sets for the elliptic operator, and
probably has wider applications.

1. Introduction. The starting point for this paper consists of a connected
manifold E on which a strictly elliptic divergence form operator

Lu = ρ−1 ∑
ij

∂

∂xi
ρgij ∂

∂xj
u+ bj

∂

∂xj
u�

with measurable coefficients, is defined, which has been closed via its Friedrich
extension and to which has been associated a diffusion process X in E (and
whose finite-dimensional distributions are given by the minimal positive so-
lutions to associated parabolic equations). An expert will realize, from the
intepretation of divergence form operators via duality and the notation we
use for the operator L, which puts in evidence a natural volume measure V
and an energy form, that it is easy to extend some of our arguments to (new)
results in other Dirichlet space settings; we have avoided such generalization
in order to keep the paper accessible.

If a bounded function f is in L2�V� and has finite energy and o ∈ E is a
fixed point, then the process f�Xt� can be uniquely decomposed under Po, in
the form

f�Xt� = f�Xs� + 1
2M

s
t − 1

2M
t
s − αst + βs

t� 0 < s ≤ t�

where for fixed s, �Ms
t� t ≥ s� is an additive functional martingale and for fixed

t� �Mt
s�0 < s ≤ t� is a martingale with respect to the backward filtration of the

process. The processes �αst� βs
t� t ≥ s�, with s fixed, are additive functionals of
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2 T. LYONS AND L. STOICA

finite variation. The decomposition allows one to define the stochastic integral
∫ t

s
ω ◦ dX

of a 1-form ω against the process X, thus continuing the works [14], [15] and
[13].

Two problems arise for such a stochastic integral: (1) the existence of the
limit as s↘ 0 under Po; (2) the existence of the limit as t↗ ζ (the lifetime of
the process). It is the aim of this paper to study these two problems. Theorem
5.2 gives rather general conditions on ω under which the stochastic integral
admits Po-almost surely finite limits as s ↘ 0. This result is in fact a local
one. It depends on certain estimates of the logarithmic gradient of the heat
kernel. For smooth enough coefficients of L, adequate estimates are classical.
We give what we believe is a new estimate in the case of nonsmooth coefficients
(Theorem 8.1), which turns out to be powerful enough for our purposes.

Theorem 5.4 gives general conditions ensuring that the stochastic integral
has finite limits as t ↗ ζ. Explicit and more concrete results are obtained in
the case of a negatively curved complete Riemannian manifold, with L the
Laplace operator. Theorem 7.1 provides a precise convergence and a strong
control of the rate of convergence in the spirit of [21]. A more general result
is obtained in Corollary 7.6. However, the convergence given by this corollary
is not very precise, being like the convergence of a semimartingale. This kind
of result had been initially obtained by Prat [17] for the angular coordinate of
Brownian motion on a negatively curved two-dimensional complete manifold.

Part of the results of this paper has been stated in a slightly different
preliminary form in [12] without detailed proofs.

2. Preliminaries on the framework. Let E be a connected N-dimen-
sional manifold, N ≥ 2, and g a measurable metric such that for each point
e ∈ E there exists a chart �U�φ� with e ∈ U and in local coordinates, the
following conditions are satisfied:

λ−1�ξ�2 ≤ gij�x�ξiξj ≤ λ�ξ�2� x ∈ U� ξ ∈ RN�(1)

the constant λ ≥ 1 depending on the chart and the point e. Let V be a measure
on E such that in local coordinates it is written with a density ρ�V�dx� = ρdx,
which satisfies the condition

λ−1 ≤ ρ�x� ≤ λ� x ∈ U�(2)

with the same constant λ from above. The gradient of a function u is expressed
in local coordinates as the vector with components

ui =∑
j

gij ∂u

∂xj
�

where �gij� is the inverse of the matrix �gij�. The energy (or perhaps more
correctly “action”) form is defined by integrating the pointwise scalar product
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of the gradients �u�x��v�x�� = g�u�x��v�x���

� �u� v� =
∫
E
�u�v�dV� u� v ∈ �∞

c �E�"

Let �H�� � be the Dirichlet space obtained as closure of the space �∞
c �E� with

respect to � �u�u�+�u�2
2 =� �1�u�u� (see [6] and [16] for basic facts concerning

Dirichlet spaces).
The infinitesimal generator �$�� �$�� of the resolvent of this Dirichlet space

is expressed in local coordinates in the variational form

$u = ρ−1 ∑
ij

∂

∂xi
ρgij ∂

∂xj
u"

Consider also a measurable vector field b �= bj�∂/∂xj�, such that �b� is
bounded on E (the magnitude � � of a tangent vector being measured with
the matrix �gij� and using the same notation � � for the uniform norm). The
uniform or L∞ norm of a vector field has a useful alternative characterization
as the smallest value for �b� so that for every u ∈ L2, v ∈H the inequality∫

E
ub�v�dV ≤ �b� �u�2

√
� �v� v�

holds. In the same way we will use � � to indicate the magnitude of a cotangent
(measured by gij) and for the unifom norm of a 1-form.

We define an operator L by setting � �L� = � �$� and

Lu = $u+ b�u�� u ∈ � �$�"
In order to obtain the semigroup generated by L, �Pt� and its adjoint P∗

t

on the space L2�dV�, introduce the (nonsymmetric) bilinear form

� �u� v� = � �u� v� − �bu� v�� u� v ∈H"

For large γ ∈ R, the form � γ = � + γ�·� ·� becomes a coercive closed form in
the sense of [16]. Therefore it generates a semigroup P

γ
t , whose infinitesimal

generator turns out to be L− γ" Then the semigroup generated by L is easily
obtained by the formula

Pt = eγtP
γ
t "

2.1. Properties of the minimal semigroup generated by L. We record in this
section some standard estimates which apply to the semigroup generated by
L. Our approach is to regard L as a pertubation of a self-adjoint operator $.
Standard spectral theory applied to the self-adjoint semigroup and the pertur-
bation estimates that come from iterating the integral form of the Campbell–
Baker–Hausdorff–Dynkin equation, which goes back to Philips, quickly give
all we will need.

We start with the results from spectral theory. It is standard from the theory
of Dirichlet forms that the self-adjoint operator $ defines a bounded semigroup
Qt = exp t$, which is a positive contraction on L2�dV� with range contained
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wholly in � �$�" From the inequality x exp−x ≤ 1/e, it is routine from the
spectral theorem that

�$ Qt f�2 ≤ e−1t−1 �f�2� f ∈ L2�

and from xe−x
2
< 1/

√
2e that

� �Qt f�1/2 ≤ 1√
2e

t−1/2 �f�2� f ∈ L2

and � ��−$�1/2Qtf�f� ≤ �1/√2et�� �f�f�, which leads to

�$Qtf�2 ≤
1√
2e

t−1/2� �f�1/2� f ∈H"

Similarly, from the inequality x3e−x
2 ≤ �3/2e�3/2, one deduces

� �$Qtf�1/2 ≤
(

3
2e

)3/2

t−3/2�f�2� f ∈ L2

and, again from x exp−x ≤ 1/e, one obtains

� �$Qtf�1/2 ≤ 1
e
t−1� �f�1/2� f ∈H"

Finally, we have, from the estimate e−x
2 ≤ 1, the bound

� �Qtf�1/2 ≤ � �f�1/2� f ∈H"

Putting the above together with our characterization of bounded vector fields,
we have

�b�Qt f��2 ≤
1√
2e

t−1/2�b� �f�2� f ∈ L2�

�bQtf�2 ≤ �b�� �f�1/2� f ∈H"

Now we consider the estimates that follow from perurbation theory. Our in-
terest is in the semigroup �Pt� which is related to Qt by the equality

Ptf = Qtf+
∫ t

0
Qt−ubPufdu(3)

that is easily obtained by applying the Leibnitz–Newton formula to the func-
tion u �→ Qt−uPuf" Iteration of this formula gives a sequence of asymptotic
expansions that leads to the following expression for the semigroup:

Ptf = Qtf+
∞∑
n=1

∫ t

0

∫ u1

0
· · ·

∫ un−1

0
Qt−u1

bQu1−u2
" " " bQun−1−un

bQun
fdun " " " du1"
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In fact, we are now going to estimate the terms in the expression of Ptf
sufficiently carefully to see that the series converges and is adequate to obtain
various other a priori estimates that will be important to us. To this end we
denote by In the general term in the sum expressing Ptf,

In =
∫ t

0

∫ u1

0
· · ·

∫ un−1

0
Qt−u1

bQu1−u2
· · · bQun−1−un

bQun
fdun · · ·du1

and observe from above that

�In�2 ≤ �f�2

∫ t

0

∫ u1

0
· · ·

∫ un−1

0

� b �√
2e
√
u1 − u2

· · · � b �√
2e
√
un−1 − un

� b �√
2e
√
un

dun · · ·du1"

Computing the integral
∫ t

0

∫ u1

0
· · ·

∫ un−1

0

dun · · ·du1√�u1 − u2� · · · �un−1 − un�un

= tn/2πn/2/+�n/2+ 1��

we arrive at

�In�2 ≤
�f�2

+�n/2+ 1�
(
tπ � b �2

2e

)n/2

and using the fact that
∑∞

n=0 s
n/2/+�n/2+ 1� < 2es, one gets the inequality

�Ptf�2 ≤ 2�f�2 exp
(
tπ � b �2

2e

)
� f ∈ L2"(4)

Similarly, one obtains the estimates

� �In�1/2 ≤ �f�2
� b �n

�√2e�n+1

t�n−1�/2π�n+1�/2

+��n+ 1�/2� �

� �In�1/2 ≤ � �f�1/2 � b �n
�√2e�n

tn/2πn/2

+��n+ 2�/2�
and hence

� �Ptf�1/2 ≤ �f�2

(
t−1/2

√
2e

+ � b � π
e

exp
(
tπ � b �2

2e

))
� f ∈ L2�(5)

� �Ptf�1/2 ≤ � �f�1/22 exp
(
tπ � b �2

2e

)
� f ∈H"(6)

In order to differentiate with respect to time the expression of Ptf, one writes
the general term in the form In = tnJn, where

Jn =
∫ 1

0

∫ u1

0
· · ·

∫ un−1

0
Qt�1−u1�bQt�u1−u2� · · · bQt�un−1−un�bQtun

fdun · · ·du1�
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thus obtaining

∂

∂t
In = ntn−1Jn + tn

∂

∂t
Jn�

which by straightforward estimates leads to
∥∥∥∥ ∂

∂t
In

∥∥∥∥
2
≤ �f�2

(
n

t
+ 1
et
+ n

2et
33/2

)(
tπ � b �2

2e

)n/2/
+�n/2+ 1��

∥∥∥∥ ∂

∂t
In

∥∥∥∥
2
≤ � �f�1/2

(
n+ 2

e
+ n− 1

2e
33/2

)
� b �

(
tπ � b �2

2e

)�n−1�/2/
+

(
n+ 1

2
+1

)
"

Finally, one deduces

∥∥∥∥ ∂

∂t
Ptf

∥∥∥∥
2
≤ �f�2

[
t−1 2

e
exp

tπ � b �2
2e

+ t−1/2 � b �
√

2
e

(
1+ 1

2e
33/2

)

+ 2π � b �2
e

(
1+ 1

2e
33/2

)
exp

tπ � b �2
2e

]
� f ∈ L2�

(7)

∥∥∥∥ ∂

∂t
Ptf

∥∥∥∥
2
≤ � �f�1/2

[
1√
2e

t−1/2 + 8 � b � exp
tπ � b �2

2e

]
� f ∈H"(8)

Relation (7) should be interpreted as saying that Ptf ∈ � �L� for each
f ∈ L2 and LPtf = �∂/∂t�Ptf satisfies the inequality.

We end this subsection by deducing some similar estimates for the adjoint
semigroup. Clearly from (4) one has

�P∗
tf�2 ≤ 2�f�2 exp

tπ � b �2
2e

� f ∈ L2"(9)

Also, one sees easily that P∗
tf ∈ � �L∗� for each f ∈ L2 and inequality (7)

implies

�L∗P∗
tf�2 ≤ �f�2

[
t−1 2

e
exp

tπ � b �2
2e

+ t−1/2 � b �
√

2
e

(
1+ 1

2e
33/2

)

+ 2π � b �2
e

(
1+ 1

2e
33/2

)
exp

tπ � b �2
2e

]
� f ∈ L2"

(10)

From the identity

� �P∗
tf� g� = −�f�LPtg� + �P∗

tf� bg�
and making use of (8) and (9), one deduces

� �P∗
tf�1/2 ≤ �f�2

(
1
2e

t−1/2 + 10 � b � exp
tπ � b �2

2e

)
� f ∈ L2"(11)
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Analogously, from the identity

� �P∗
tf� g� = � �f�Ptg� − �f� bPtg� + �P∗

tf� bg�
and the inequalities (6) and (9), one gets

� �P∗
tf�1/2 ≤ 2 exp

tπ � b �2
2e

�� �f�1/2 + 2 � b � �f�2�� f ∈H"(12)

The equality

�L∗P∗
tf� g� = −� �f�Ptg� + �f� bPtg�

and the estimate (5) lead to

�L∗P∗
tf�2 ≤ �� �f�1/2+ � b � �f�2�

×
(

1√
2e

t−1/2 + � b � π
e

exp
tπ � b �2

2e

)
� f ∈H"

2.2. The semigroup density. The following theorem introduces the densi-
ties of the semigroup �Pt� and the diffusion process generated by L (whose
transition function is given by the densities). The proof is rather lengthy and
is postponed to Appendix A. It is based on the classical properties of parabolic
equations in divergence form proved by Nash, de Giorgii, Moser and Aronson.

Theorem 2.1. There exists a continuous strictly positive function pt�x�y�
defined on �0�∞�×E×E, such that

pt+s�x�y� =
∫
pt�x� z�ps�z� y�V�dz��

Ptf�x� =
∫
pt�x�y�f�y� V�dy��

P∗
tf�x� =

∫
f�y�pt�y�x�V�dy�"

For each fixed point y, U a neighborhood of y, ε > 0 and K a compact set, the
following relations hold:

�i� lim
t→0

sup
x∈Uc� s∈�0�t�

ps�x�y� = 0�

�ii� sup
z∈K�x∈E� s>ε

ps�x� z� <∞"

Moreover, there exists a diffusion process with transition function
pt�x�y�V�dy�.

For the purposes of this paper, it is useful that the density be a bounded
function in the second variable, too; that is, a bounding relation dual to (ii)
of Theorem 2.1 is of interest. More precisely, since our treatment involves a
single probability measure Po, corresponding to the process started at a fixed
point, it turns out that the following is what we need throughout this work.
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Hypothesis. There exists a point o ∈ E such that the function pt�x� =
pt�o� x� satisfies the following condition for each ε > 0:

sup�pt�x� � x ∈ E� t ∈ �ε� ε−1�� <∞"

Since Pt1 ≤ 1, this hypothesis implies that �pt�2 ≤
√�pt�∞ < ∞. There-

fore, pt = P∗
t/2�pt/2� belongs to � �L∗� and to H. Similarly, pt�·� x� belongs to

� �$� for each x ∈ E. Also, if f ∈ L2, then the random variable f�Xt� is Po

integrable for each t > 0 and

Eo�� f�Xt� �� ≤ �f�2

√
�pt�∞"

Another consequence of the hypothesis we made, which will be essentially
used, is contained in the following lemma.

Lemma 2.2. The following inequality holds for 0 < t <∞:

∫ t

s

∣∣ pe

∣∣2 dVdl ≤ ∣∣�pt�2
2 − �ps�2

2

∣∣+ �t− s��b�2
∞ sup

s≤l≤t
�pl�2"

Proof. Set Fl =
∫
p2
l dV and derive

F′
l = 2

∫
plL

∗pl = −2
∫ ∣∣ pl

∣∣2 + 2
∫
plb�pl�"

Therefore, one deduces

2
∫ t

s

∫ ∣∣ pl

∣∣2 dl = ∫
p2
s −

∫
p2
t + 2

∫ t

s

∫
plb�pl�dl"

Then use the following inequality:

2
∣∣∣∣
∫
plb�pl�

∣∣∣∣ ≤ �b�∞
(
ε
∫
�  pl�2 + ε−1

∫
p2
l

)
" ✷

The next proposition gives a sufficient condition for the fulfilment of the
above hypothesis with respect of all points in E. This condition is expressed
in terms of the divergence of the drift b. [In our context, the divergence of a
measurable vector field X is a distribution divX defined by the relation

divX�ϕ� = −
∫
X�ϕ�dV� ϕ ∈ �∞

c "

In local coordinates one has divX = �∂/∂xi��ρXi�"]

Proposition 2.3. Suppose that the divergence div b is bounded from below
in the sense that there exists a constant γ such that γV+div b is a nonnegative
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measure. Then for each y ∈ E, each open neighborhood U, each compact set K
and ε > 0, one has

�i� lim
t→0

sup
x∈Uc� s∈�0�t�

ps�y�x� = 0�

�ii� sup
x∈E�y∈K�s>ε

e−γsps�y�x� <∞"

Proof. First we note that the assumption on the drift b can be rewritten as∫
�γϕ− bϕ�dV ≥ 0� ϕ ∈ �∞

c �E�� ϕ ≥ 0"

This condition implies that � γ = � + γ�·� ·� is a Dirichlet form in the sense of
[16] and hence, the dual semigroup e−γtP∗

t is sub-Markovian. The reasoning
at the end of the proof of Theorem 2.1 can be applied and gives the desired
estimates. ✷

Finally we remark that, without any assumption on the drift b, if we re-
strict our frame to a relatively compact open subset E′ ⊂ E, then the basic
hypothesis holds true for any point in E′"

3. Decomposition with forward and backward martingales. The
operator L generates a diffusion process in E which, in general, is not nec-
essarily conservative. So the infinity point $ associated to E will, from time
to time, play a (rather formal) role in what follows. We keep the traditional
notation for this point and hope the distinction from the “Laplace operator”
$, which we also use, will be clear from the context.

We denote by 6 the set of all continuous maps ω� �0�∞� → E$ = E ∪ �$�
which admit lifetime ζ�ω� = inf�t� ω�t� = $� in the sense that ω�t� = $ for
each t ≥ ζ�ω�. As usual, the process of projections is denoted by �Xt�, that is,
Xt�ω� = ω�t�" We denote by � t� the usual filtration, obtained by completion,
and denote by � ′t� the “backward filtration”; that is,  ′t is the completion of
σ�Xs� s ≥ t�" The shift operators are denoted by θt and the probability mea-
sures associated with the transition function of the minimal semigroup �Pt�
are denoted Px, x ∈ E. We use the common notation of Markov process theory
(see [2]). For example, any function defined on E is automatically extended to
E! with f�!� = 0 and so on.

If f ∈H, then by choosing an appropriate version, we always assume that
it is quasi-continuous so that f�Xt� is a continuous process. This is possible
according to Appendix C.

Now for each f ∈H we introduce the two-parameter processes αf and βf,
defined by

αfs
t = αst =

∫ t

s
p−1
u �Xu�g�∇pu�∇f��Xu�du�

βft
s = βt

s =
∫ t

s
bf�Xu�du�

(13)
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where 0 < s < t < ∞ and pt = pt�o� ·� is the function associated to the fixed
point o ∈ E. In the rest of this section we will be concerned with properties
which hold under the fixed probability Po. First we remark that the above
processes have finite variation on intervals �s� t� with 0 < s < t < ∞. Indeed
we have, by Lemma 2.2,

Eo�var αst� =
∫ t

s

∫ ∣∣g�∇pu�∇f�
∣∣dVdu

≤ �t− s�1/2� �f�1/2
(∫ t

s

∫
�∇pu�2 dVdu

)1/2

<∞"

Similarly, for the process βf,

Eo�varβs
t� =

∫ t

s

∫
�b�f��pu dVdu

≤ �t− s�� �f�1/2 � b � sup
s≤u≤t

�pu�1/2
∞ <∞"

Let us now suppose that f ∈ � �$� ∩L∞ and introduce the processes Mf, Mf
defined by

Mfs
t =Ms

t = f�Xt� − f�Xs� −
∫ t

s
$f �Xu�du− βs

t�

Mft
s =Mt

s = f�Xs� − f�Xt� −
∫ t

s
$f �Xu�du− 2αst + βs

t"

The process
∫ t
s $f�Xu�du has finite variation and its mean value is bounded

by

Eo

(∫ t

s
�$f��Xu�du

)
≤ �$f�2

∫ t

s

√
�pu�∞ du <∞"

The process Mf is meaningful when s > 0 is fixed and t belongs to �s�∞� as
seen from the next proposition. The process Mf is more interesting when t is
fixed and s belongs to �0� t�. This is the reason for the use of the parameters
s and t up or down. The processes α and β are interesting both forward and
backward. All of the random variables αst , β

s
t , M

s
t and Mt

s are measurable with
respect to σ�Xu$ s ≤ u ≤ t� so that for fixed s, �Ms

t � t ≥ s� is adapted to � t�
and for fixed t, �Mt

t−u$ 0 ≤ u ≤ t� is adapted to � ′t−u�.

Proposition 3.1. Under Po the following hold.

(i) For each fixed s > 0, the process �Ms
t� t� t ≥ s� is an L2-martingale

and

�Ms
• �t = 2

∫ t

s
�∇f�2�Xu�du"
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(ii) For each fixed t > 0, the process �Mt
t−u� ′t−u� 0 ≤ u < t� is an L2-

martingale and

�Mt
t−•�u = 2

∫ t

t−u
�∇f�2 �X9�d9"

(iii) The following relations hold almost surely �0 < u < s < t�:
f�Xt� − f�Xs� = 1

2M
s
t − 1

2M
t
s − αst + βs

t�

Ms
t =Mu

t −Mu
s �

Ms
u =Mt

u −Mt
s"

(iv) If h is another function in � �$� ∩L∞, then

�Mfs
• �Mhs

• �t = 2
∫ t

s
g�∇f�∇h� �Xu�du�

�Mft
t−•�Mht

t−•�u = 2
∫ t

t−u
g�∇f�∇h� �X9�d9"

Proof. (i) The relation

Pt−sf− f =
∫ t−s

0
Pu Lfdu

holds in L2 and shows that Ex�Ms
t� = 0, for almost evry x ∈ E. Then, by the

Markov property it follows that Ms is a martingale. In order to compute its
bracket, we set

Ht =
∫ t

s
Lf�Xl�d9�

so that we may square the expression for Ms
t and write it in the form

�Ms
t�2 = f2�Xt� − f2�Xs� − 2Ms

t�f�Xs� +Ht� − 2f�Xs�Ht −H2
t "

On the other hand, the function f2 belongs to L2 and, on account of Lemma
3.2, the following equality holds in L2:

Pt−sf
2 − f2 =

∫ t−s

0
LPuf

2 du = 2
∫ t−s

0
Pu�fLf+ �∇f�2�du"

By the Markov property we deduce that

M�f2�st = f2�Xt� − f2�Xs� − 2
∫ t

s
�fLf�Xu� + �∇f�2�Xu��du

is a martingale too. From these relations and using also

H2
t = 2

∫ t

s
Hu dHu�

Ms
t Ht =

∫ t

s
Hu dM

s
u +

∫ t

s
Ms

u dHu�
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one deduces

�Ms
t�2 =M�f2�st + 2

∫ t

s
�∇f�2 �Xu�du− 2f�Xs�Ms

t − 2
∫ t

s
Hu dM

s
u�

which establishes the required formula for the bracket of Ms
• .

(ii) In order to avoid any ambiguity, in what follows we assume that the
process is nonconservative and leave to the reader the simpler case when it is
conservative. When the process is nonconservative, we have Pt�x�E� < 1, for
each x ∈ E and t > 0, because of ellipticity of L and connectivity of E. Then,
we extend the density function pt�x�y� to E$ and set p̄t�x�y� = pt�x�y�, for
x�y ∈ E, p̄t�x�$� = 1 − Pt�x�E�, p̄t�$�x� = 0, for x ∈ E and p̄t�$�$� = 1.
We extend also the measure V and set V�dy� = 1E�y�V�dy� + ε$�dy�. The
semigroup �Pt� has the canonical extension �Pt� defined by

Pt h�x� =
∫
E$

pt�x�y�h�y�V�dy�� x ∈ E$� h ∈ �b�E$�"

The adjoint semigroup �P∗
t � is extended to E$ by the adjoint of Pt, given for

h ∈ �b�E$� by

P∗
th�x� = P∗

t �h1E��x� if x ∈ E�

P∗
t h�$� = h�$� +

∫
E
�1−Pt1�x�� h�x�V�dx�"

The process �Xt� is Markovian under Po, with the semigroup �Pt� on E$. If
we reverse the time from a fixed moment t > 0, the process �Xt−u�0≤u<t is
Markovian, too, under Po with the nonhomogenous transition function on E$,

Qu�v h�x� = pt−u�x�−1P∗
v−u�pt−v h� �x�� x ∈ E$� 0 < u < v < t�

where pt�x� = pt�o� x�. (The function p̄t is strictly positive on E$ for each
t > 0, under the assumption of nonconservativity.) In the sequel we are going
to repeat the arguments used in the above proof of (i). First we have to check
that

Eo
(
Mt

s �  ′t
) = 0�

which clearly implies the martingale property of Mt
• . Because of the Markov

property for the reversed process, this relation is equivalent to

�pt�−1 P∗
t−s�psf� = f+ �pt�−1

∫ t−s

0
P∗

u�pt−u�$f− b�f��

+ 2g�∇pt−u�∇f��du"
This relation should be checked on E$. For x in E it becomes

�∗�
P∗

t−s�psf��x� − �ptf��x�

=
∫ t−s

0
P∗

u�pt−u�$f− b�f�� + 2g�∇pt−u�∇f�� �x�du
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and should be proved in L1�E�dV�" Since f vanishes in $, for x = $ the
relation becomes

�∗∗�

∫
�1−Pt−s1�psfdV

=
∫ t−s

0

∫
�1−Pu1� �pt−u�$f− b�f�� + 2g�∇pt−u�∇f��dVdu"

In order to check relation �∗� one applies the fundamental theorem of cal-
culus to a function with values in the vector space L1�dV� to get

P∗
t−spsf− ptf =

∫ t

0
�L∗P∗

upt−uf+P∗
u∂upt−uf�du"

From Appendix D we know that pt−uf ∈ �L1�L∗� and have a formula for
L∗�pt−uf�. Using this and the fact that L∗pt = ∂tpt, one can put the right-
hand side of the preceding relation in the form appearing in the right part of
�∗�.

In order to prove relation �∗∗� we first write the left-hand term as∫
psf−

∫
P∗

t−s�psf� =
∫
ptf−

∫
P∗

t−s�psf� +
∫
psf−

∫
ptf

and then apply the fundamental theorem of calculus to both differences just
obtained:

=
∫ t

s

∫
P∗

t−u�∂u −L∗��puf�du−
∫ t

s

∫
∂u�puf�du"

By Lemma 3.3 we have ∫
L∗�puf� = 0�

so that the above expression becomes

=
∫ t

s

[∫
P∗

t−u�∂u −L∗��puf� −
∫
�∂u −L∗��puf�

]
du"

This last expression equals the right-hand term of relation �∗∗�.
Now, in order to compute the bracket of Mt

• , one follows the calculations
made for M. First write

Mt
t−u = f�Xt−u� − f�Xt� −Hu�

Hu =
∫ u

0
+vf�Xt−v�dv�

+vf = $f− b�f� + 2�pt−v�−1g �∇pt−v�∇f�"
By using Lemma 3.4 and the final comments of Appendix D, one obtains a
similar backward martingale associated to f2,

M�f2�tt−u = f2�Xt−u� − f2�Xt�

− 2
∫ u

0
f�Xt−v�dHv − 2

∫ u

0
�∇f�2�Xt−v�dv"
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Finally one gets

�Mt
t−u�2 =M�f2�tt−u − 2f�Xt�Mt

t−u

− 2
∫ u

0
Hv dM

t
t−v + 2

∫ u

0
�∇f�2�Xt−v�dv�

which proves the formula for the bracket of Mt
•" The remainder of the asser-

tions in the statement are obvious. ✷

Lemma 3.2. If f ∈ � �$� ∩ L∞ and u > 0, then Pu�� ∇f �2� ∈ L2 and the
following relation holds:

LPuf
2 = 2Pu�fLf� + 2Pu � ∇f �2 "

Proof. Start with the scalar product, with ϕ ∈ �∞
c ,

�LPuf
2� ϕ� = �f2�L∗P∗

uϕ� = −� �f2�P∗
uϕ� + �bf2�P∗

uϕ�

= −2
∫
f �∇f�∇P∗

uϕ� + 2�fbf�P∗
uϕ�"

The first term from the right-hand side can be written as

−2
∫
f �∇f�∇P∗

uϕ� = −2� �f�fP∗
uϕ� + 2

∫
� ∇f �2 P∗

uϕ"

Therefore one has

�LPuf
2� ϕ� = 2�Lf�fP∗

uϕ� + 2
∫
� ∇f �2 P∗

uϕ" ✷

Lemma 3.3. If u ∈ � �L∗� ∩ L∞ and v ∈ � �$� ∩ L∞, then the following
relation holds: ∫

L∗�uv�dV = 0"

Proof. We apply the proposition from Appendix D and get∫
L∗�uv�dV =

∫
�L∗u�v+

∫
u�$− b�v+ 2� �u� v�

= �Lv�u� + �$v− bv�u� + 2� �u� v� = 0" ✷

Lemma 3.4. If u ∈ � �L∗� ∩ L∞ and v ∈ �L1�$� ∩H ∩ L∞, then one has∫
L∗�uv�dV = 0"

The proof is based on the same calculation as the proof of Lemma 3.3, using
the comments at the end of Appendix D.

Definition 3.1. Let A = �As�t�0 < s ≤ t <∞� be a two-parameter process.
For o ∈ E and s > 0 fixed, we set

eos�A� = lim
t↘s

Eo��As� t�2�/2�t− s��
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provided the limit exists. We say that A has uniformly zero energy if for each
ε > 0, the following relation holds:

lim
u↘0

sup
ε≤s≤ε−1

Eo��As� s+u�2�/u = 0"

It is easy to see that the sum of two processes of uniformly zero energy
preserves this property.

Theorem 3.5. For each f ∈ H ∩ L∞ there exist two-parameter processes
Mf = M = �Ms

t� 0 < s ≤ t < ∞� and Mf = M = �Mt
s� 0 < s ≤ t < ∞�, such

that the following conditions are satisfied under the probability Po:

(i) For each fixed s > 0, the process �Ms
t� t� t ≥ s� is a continuous L2-

martingale and its bracket is given by

�Ms
• �t = 2

∫ t

s
�∇f�2�Xu�du"

(ii) If 0 < s ≤ u ≤ t, then Ms
t −Ms

u =Mu
t � almost surely.

(iii) The process �f�Xt� − f�Xs� −Ms
t� 0 < s ≤ t <∞� has uniformly zero

energy.
(i′) For each fixed t > 0, the process �Mt

t−u� ′t−u�0 ≤ u < t� is a continuous
L2-martingale and its bracket is

�Mt
t−•�u = 2

∫ t

t−u
�∇f�2�X9�d9"

(ii′) If 0 < s ≤ u ≤ t� then Mt
s −Mt

u =Mu
s � almost surely.

(iii′) The process �f�Xt� − f�Xs� +Mt
s, 0 < s < t ≤ ∞� has uniformly zero

energy.
(iv) The processes �Ms

t + Mt
s� 0 < s ≤ t < ∞�, �αst� 0 < s ≤ t < ∞�,

�βs
t� 0 < s ≤ t <∞�, all have uniformly zero energy and the following relation

is fullfilled:

f�Xt� − f�Xs� = 1
2M

s
t − 1

2M
t
s − αst + βs

t� 0 < s ≤ t"

Proof. Let us first consider the case when f ∈ � �$�∩L∞ is such that $f−
bf ∈ L∞. Then the assertions (i), (ii), (i′), and (ii′) follow from Proposition 3.1.
Assertion (iii) is a consequence of Lemma 3.6. Now, let us check assertion
(iii′). Because βf and +$f are again uniformly of zero energy by Lemma 3.6
(+ being defined there), all we have to prove is that αf has the same property.
Squaring the relation

−Mt
s = f�Xt� − f�Xs� + 2αst + +�$f− b�f��st �

we obtain

�Mt
s�2 = �f�Xt� − f�Xs��2 + 4�αst�2 + �+�!f− b�f��st�2

+ 4�f�Xt� − f�Xs��αst + 2�f�Xt� − f�Xs��+�$f− b�f��st
+ 4αst+�$f− b�f��st "
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By Lemmas 3.7 and 3.8 we know that eos�M� = eos�f�X�−f�X�� = �ps� �∇f�2�,
with a uniform limit relation.

On the other hand, the assumption that $f − b�f� is bounded implies a
uniform bound +�$f − b�f��st ≤ K�t − s�, with K a constant independent of
s and t. This implies that the mean value of the last two terms in the above
expression, divided by �t− s�, tend to zero uniformly in s, as t↘ s" If we show
that

�∗� lim
u↘0

sup
ε≤s≤ε−1

u−1Eo��f�Xs+u� − f�Xs��αss+u� = 0�

then it follows, from the above relation, that αf has uniformly zero energy.
Now, let us prove relation �∗�. Because f is bounded and f�X•� is almost
surely continuous, it follows that the random variables

Yu = sup
ε≤s≤ε−1

�f�Xs+u� − f�Xs��

are uniformly bounded and tend almost surely to zero, as u↘ 0. On the other
hand, the random variables u−1αss+u may be expressed as

u−1αss+u�w� =
∫ 1

0
hs�u�w�r�dr�

where �hs�u�s ∈ �ε� ε−1�, u ∈ �0�1�� are random variables on the product space
�6 × �0�1�, Po ⊗ dr�, defined by hs�u�w�r� = p−1

s+ru g�∇ps+ru�f��Xs+ru�" So
relation �∗� would follow if we are able to show that the family of random vari-
ables on �6�Po�, �p−1

u g�∇pu�f��Xu�u ∈ �ε� ε−1+1�� is uniformly integrable.
If K is a compact set and λ > 0, then we have

{
p−1
u �g�∇pu�∇f�� > λ

} ⊂Kc ∪Dλ�

where Dλ = ��g�∇pu�∇f�� > λγ� and γ = inf�pu�x�� x ∈K, u ∈ �ε� ε−1 + 1��.
Then we may write

Eo�p−1
u �g�∇pu�∇f���Xu�$p−1�g�∇pu�∇f���Xu� > λ�

≤
∫
Kc∪Dλ

�g�∇pu�∇f��dV

≤ � �pu�1/2
(∫

Kc
�∇f�2

)1/2

+
∫
Dλ

�g�∇pu�∇f��"

Now we choose K as large as the first term in the right-hand side is small.
Then we use the fact that the family of functions

{�g�∇pu�∇f��$ u ∈ �ε� ε−1 + 1�}
is L1-continuous, and hence uniformly integrable, so that, letting λ be large,
the last term from above is small, too. This completes the proof of relation �∗�
and of assertion (iii′).
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The relation from assertion (iv) is exactly the same as in (iii) of Proposi-
tion 3.1. It may be written as

�∗∗� f�Xt� − f�Xs� −Ms
t = − 1

2�Ms
t +Mt

s� − αst + βs
t"

From this relation one sees that �Ms
t +Mt

s� has uniformly zero energy.
Now let us treat the case of a function of f ∈ H ∩ L∞. We can choose a

sequence �fn� ⊂ D�$�∩L∞ such that $fn−bfn ∈ L∞, �fn�∞ ≤ �f�∞ for each
n, and limn fn = f in H. We may do so using the resolvent �Wλ� generated
by $− b. This resolvent is sub-Markovian, so that fn = n Wnf is a sequence
satisfying the above requirements.

For each fixed s > 0, the martingales �Mfs
n•� form a Cauchy sequence which

has a limit denoted by Mfs
• . Then conditions (i) and (ii) are easily verified. To

check property (iii) we write

f�Xt� − f�Xs� −Mfs
t = �fn�Xt� − fn�Xs� −Mfs

nt�
+ ��f− fn��Xt� − �f− fn��Xs��
+ �Mfs

nt −Mfs
t�"

The first term in the right-hand side has uniformly zero energy and the ratios
measuring the energy of the other two terms are arbitrarily small as n→∞,
by Lemmas 3.7 and 3.8. The assertions (i′), (ii′) and (iii′) are proved similarly.
The relation from (iv) passes through the limit. Then relation �∗∗� from above
and the following one,

f�Xt� − f�Xs� +Mt
s = 1

2�Ms
t +Mt

s� − αst + βs
t�

show that both �Ms
t+Mt

s� and �−αst+βs
t� have uniformly zero energy. Since �βs

t�
has the same property by Lemma 3.7, it follows that �αst� also has uniformly
zero energy. ✷

Lemma 3.6. If f ∈ L2, then the process +f defined by +fs
t =

∫ t
s f�Xu�du,

has uniformly zero energy.

Proof. A direct calculation gives

Eo

[(∫ s+u

s
f�X9�d9

)2]
= 2Eo

[∫ u

0
f�Xs+v�

∫ u−v

0
f�Xs+v+9�d9dv

]

= 2
∫ u

0

∫ u−v

0
Ps+v�fP9f��o�d9dv"

On the other hand, one has
∣∣Ps+v�fP9f��o�

∣∣ = ∣∣�ps+vf�P9f�
∣∣ ≤ �f�2

2 sup
ε≤t≤ε−1+1

�pt�∞�

which leads to the conclusion of the lemma. ✷
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Lemma 3.7. For each ε > 0, there exists a constant C > 0 such that for any
f ∈H ∩L∞, u ∈ �0�1�, and any s ∈ �ε� ε−1� the following estimate holds:

Eo��f�Xs+u� − f�Xs��2� ≤ Cu� �f�1/2��f�∞ + �f�2 + � �f�1/2�"
Moreover for each fixed f, the following limit relation acts uniformly in

s ∈ �ε� ε−1�:

lim
u↘0

Eo��f�Xs+u� − f�Xs��2�/2u =
∫
ps�  f�2 dV"

Proof. Write the left-hand side of the inequality as

�ps�Puf
2 − f2� − 2�psf�Puf− f�

=
∫ u

0

[−� �ps�P9f
2� + �ps� b�P9f

2��

+ 2� �psf�P9f� − 2�psf� b�P9f��
]
d9"

Because ps = P∗
s−ε/2pε/2, from estimate (11) one deduces

� �ps�1/2 ≤ Cε� s ∈ �ε� ε−1�"
On the other hand, we have � �f2�1/2 ≤ 2�f�∞� �f�1/2 and hence

� �P9f
2�1/2 ≤ C�f�∞� �f�1/2"

Estimating term-by-term the above integral, one gets the inequality in the
statement. In order to prove the limit relation, we note that the preceding
expression under the integral differs from a similar one with P9 replaced with
P0 = I, which equals 2

∫
ps�∇f�2, by a quantity that is smaller than

Cε�� �P9f
2 − f2�1/2 + ��f�∞ + � �f�1/2�� �P9f− f�1/2�"

Now using relation (3), one deduces

� �Peh−Q9h�1/2 ≤ C91/2� �h�1/2� h ∈H"

Since lim9→o � �Q9h − h� = 0, for each h ∈ H, these estimates imply the
desired limit relation. ✷

Lemma 3.8. For each ε > 0 there exists a constant C > 0 such that

Eo

(∫ s+u

s
�∇f�2�X9�d9

)
≤ Cu� �f��

for any f ∈H� u ∈ �0�1� and s ∈ �ε� ε−1�. If f ∈ � �$�∩L∞, then the following
limit relation holds uniformly in s ∈ �ε� ε−1�:

lim
u↘0

Eo

[∫ s+u

s
�∇f�2�X9�d9

]/
u =

∫
ps�∇f�2"
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Proof. For the inequality, it suffices to write the term in the left-hand
side as ∫ s+u

s

∫
p9�∇f�2 dVd9 ≤ u� �f� sup

s≤9≤s+u
�p9�∞"

In order to prove the limit relation we have to estimate the difference∫
p9�∇f�2 −

∫
ps�∇f�2 =

∫
�p9 − ps��∇f�2"

Setting h = p9 − ps we write∫
h�∇f�2 = −

∫
hf$f−

∫
fg�∇h�∇f��

so that∣∣∣∣
∫
p9�∇f�2 −

∫
ps�∇f�2

∣∣∣∣≤�f�∞�$f�2�p9−ps�2 +�f�∞� �f�1/2� �p9−ps�1/2"

Since p9−ps = P∗
s−ε�P∗

9−spε−pε�, from relation (12) we get a uniform estimate
that proves the limit relation in the statement. ✷

Remark 3.1. If f, h ∈ H ∩ L∞� then from the formulas expressing the
brackets of M�f+ h��Mf�Mh one deduces

�Mfs
• �Mhs

• �t = 2
∫ t

s
g�∇f�∇h��X9�d9�

and a similar relation for the backward martingales,

�Mft
t−•�Mht

t−•�u = 2
∫ t

t−u
g�∇f�∇h��X9�d9"

Remark 3.2. The martingale property and properties (ii) and (iii) in The-
orem 3.5 uniquely determine the process Mf. Similarly, the backward mar-
tingale property, (ii′), and (iii′) determine the process Mf.

Moreover, both processes Mf and Mf are uniquely determined by their (for-
ward, respectively, backward) martingale properties, properties (ii) and (ii′),
the fact that their sum Mf+Mf has uniformly zero energy and the relation
from (iv) of Theorem 3.5.

These are consequences of the following fact: if a two parameter process
A = �As� t�0 < s ≤ t <∞� has uniformly zero energy and if �τn� is a sequence
of partitions of an interval �u� v� ⊂ �0�∞�, with δ�τn� → 0, then

lim
n→∞Eo

( ∑
ti∈τn

�Ati� ti+1
�2
)
= 0�

that is, A has zero quadratic variation.

Remark 3.3. Even if f ∈H is not assumed to be bounded, then the asser-
tions (i), (ii), (i′), (ii′) of Theorem 3.5, the fact that Mf +Mf has uniformly
zero energy, and the relation of (iv) all still remain valid.
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4. Stochastic integration of differential forms. Let f ∈ H ∩L∞ and
u� E→ R be such that ∫

u2�∇f�2 dV <∞"(14)

Keeping the point o ∈ E fixed as in the preceding section, we define under Po

the stochastic integral over an interval �s� t�, 0 < s < t <∞,
∫ t

s
u�X9� ◦ df�X9� =� 1

2

∫ t

s
u�X9�dMs

9 − 1
2

∫ t−s

0
u�Xt−9�d9M

t
t−9

−
∫ t

s
u�X9�dαs9 +

∫ t

s
u�X9�dβs

9�

(15)

where M�M�α�β are associated to f. Note that condition (14) ensures the
existence in L2 of the stochastic integrals with respect to the forward, respec-
tively, backward martingales Ms

• and Mt
t−• as well as the finiteness of the

pathwise ordinary integrals with respect to dαs• and dβs
• . The next proposi-

tion shows that the above definition of stochastic integral is of the Stratonovich
type.

Proposition 4.1. Let f, u ∈H∩L∞ and assume condition (14) is satisfied.
Let �τn� be a sequence of partitions of �s� t�, 0 < s < t <∞, such that δ��τn�� →
0. Then the stochastic integral is approximated in probability as follows:

∫ t

s
u�X9� ◦ df�X9� = lim

n→∞
∑
tk∈τn

1
2 �u�Xtk

� + u�Xtk+1
���f�Xtk+1

� − f�Xtk
��"

Proof. Each integral appearing in the right-hand side of (15) is approxi-
mated by Riemannian sums, so that their sum is approximated by

1
2

∑
u�Xtk

��Ms
tk+1

−Ms
tk
� − 1

2

∑
u�Xtk+1

��Mt
tk
−Mt

tk+1
�

−∑
u�Xtk+1

��αstk+1
− αstk� +

∑
u�Xtk+1

��βs
tk+1

− βs
th
�"

If we set Ns
9 = f�Xe� − f�Xl� −Ms

s, by (iii′) of Theorem 3.5 this is uniformly
of zero energy. The relation of (iv) in the same theorem tells that

Ns
9 = f�Xs� − f�X9� −M9

s − 2αs9 + 2βs
9"

Therefore the above approximating sums may be written as
∑ 1

2�u�Xtk
� + u�Xtk+1

���f�Xtk+1
� − f�Xtk

��
+ 1

2

∑�u�Xtk+1
� − u�Xtk

���Ns
tk+1

−Ns
tk
�"

The mean value of the modulus of the last sum is dominated by the product

Eo
(∑�u�Xtk+1

� − u�Xtk
��2

)1/2
Eo

(∑�Ns
tk+1

−Ns
tk
�2
)1/2

�
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The first factor of this product is bounded by Lemma 3.8. The second fac-
tor tends to zero because N has uniformly zero energy. The proposition is
proved. ✷

The following proposition ensures the uniqueness of the forward- and
backward-martingales appearing in relation (15).

Proposition 4.2. Let f ∈ H ∩ L∞ and u be such that condition (14) is
satisfied. Then the following process is uniformly of zero energy:

∫ t

s
u�x9�dMs

9 +
∫ t−s

0
u�Xt−9�d9M

t
t−9� 0 < s < t"

Proof. Assume first that f ∈ �∞
c and u ∈ �b. We may write each term of

the above expression as follows:
∫ t

s
u�X9�dMs

9 =
∫ t

s
�u�X9� − u�Xs��dMs

9

+ 1
2�u�Xs� + u�Xt��Ms

t + 1
2�u�Xs� − u�Xt��Ms

t�∫ t−s

0
u�Xt−l�d9M

t
t−l =

∫ t−s

0
u�Xt−l� − u�Xt��d9M

t
t−l

+ 1
2�u�Xs� + u�Xt��Mt

s + 1
2�u�Xt� − u�Xs��Mt

s"

The square of the sum of the middle terms appearing in the right-hand side
of the above relations is bounded by

[ 1
2�u�Xs� + u�Xt���Ms

t +Mt
s�
]2 ≤ �u�2

∞�Mt
s +Mt

s�2"

Then one uses (iv) of Theorem 3.5 to deduce that this sum has uniformly zero
energy. Clearly, each of the other terms has uniformly zero energy, too. When
f and u are in the general case, one proceeds by approximation and uses
Lemma 3.8. ✷

In order to give a detailed definition of the stochastic integral of differential
forms, we need some preparatory lemmas.

Lemma 4.3. Let f1 · · ·fn ∈H ∩L∞ and φ ∈ C1�Ru� be such that φ�0� = 0.
Then F = φ�f1 · · ·fn� belongs to H ∩ L∞ and the martingales in the decom-
position of F are related to the martingales corresponding to f1 · · ·fn by the
following formulas:

MFs
t =

n∑
i=1

∫ t

s
∂iφ�f1 · · ·fn��X9�dMf

i� s
9 �

MFt
s =

n∑
i=1

∫ t−s

0
∂iφ�f1 · · ·fn��Xt−9�dMf

i� t
t−9"
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Moreover, if u is such that the finiteness condition (14) is satisfied with each
fi� i = 1 · · ·n, then the same condition is verified with F and the following
relation holds:∫ t

s
u�X9� ◦ dF�X9� =

n∑
i=1

∫ t

s
u∂iφ�fi · · ·fn��X9� ◦ dfi�X9�"

(The constant functions are in general not in H, so condition φ�0� = 0 is
needed to ensure that F is in H")

Proof. Just compute the bracket of the difference〈
MFs

• −
n∑
i=1

∫ •

s
∂iφ�f1 · · ·fn��X9�dMf

i� s
9

〉
t

�

taking into account the formula ∇F =∑
∂iφ�f1 · · ·fu�∇fi. The bracket turns

out to be zero, thus proving the first formula. The proof of the second is similar.
The last formula follows from the others. ✷

Lemma 4.4. If f ∈ H ∩ L∞ is constant on an open set U ⊂ E�u vanishes
outside a compact set K ⊂ U and condition (14) is satisfied, then∫ t

s
u�X9� ◦ df�X9� ≡ 0"

Proof. Each term appearing in definition (3.2) vanishes. For the martin-
gale terms one sees that the brackets vanish. ✷

Now, let us consider an open set U and a compact set K ⊂ U. Let f be
a function defined in U such that it is locally in H ∩ L∞ [in the sense that
f•ϕ ∈H ∩L∞ for each φ ∈ C∞

c �U��. Let u be a function vanishing outside K
and satisfying (14). Then we may define the integral∫ t

s
u�X9� ◦ df �X9�

as follows: take a function ϕ ∈ C∞
c �U� such that ϕ = 1 on a neighborhood of

K and set h = ϕ•f; then define
∫ t

s
u�X9� ◦ df�X9� =�

∫ t

s
u�X9� ◦ dh�X9�"

By Lemma 4.4, this definition does not depend on the function ϕ. Also, if
f′ = f+ c, with c ∈ R, then∫ t

s
u�X9� ◦ df�X9� =

∫ t

s
u�X9� ◦ df′�X9�"

Now let us extend the last relation of Lemma 4.3. Let f1 · · ·fn be functions
defined in U such that they are locally in H ∩ L∞" Let V be an open set in
R
n such that the vector �f1 · · ·fn� maps U into V" Suppose that φ ∈ C1

b�Rn�
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admits an extention as a function φ in C1
b�Rn� and set F = φ�fs · · ·fn�" Then

F is locally in H ∩L∞ and the following relation holds:

∫ t

s
u�X9� ◦ dF�X9� =

n∑
i=1

∫ t

s
u∂iφ�f1 · · ·fn��X9� ◦ dfi�X9��

for u vanishing outside K and satisfying condition (14) with respect to each
function f1 · · ·fn.

Now we are able to write down the definition of the stochastic integral of
a differential 1-form ω which is in L2" So let ω be a measurable 1-form such
that the pointwise norm �ω��x� = �ω�g�x� is in L2" We are going to define the
integral

∫ t

s
ω ◦ dX�

such that if ω is of the form ω = udf� it coincides with definition (15). Let
�Ui�φi�i∈I be a covering of E with charts. Then choose a partition of the unity
1 =∑

i∈I Fi� subordinated to the covering and a family �σi�i∈I of functions in
C∞�E� such that suppσi ⊂ Ui and σi = 1 on a neighborhood of suppFi" If for
i ∈ I� the map φi has components φi = �φ1

i · · ·φN
i• �, we set fj

i = σiφ
j
i and if

ω is written on Ui as ω =∑
j ωi� jdφ

j
i � then we define (for 0 < s < t <∞),

∫ t

s
ω ◦ dX =∑

i∈I

N∑
j=1

∫ t

s
Fiωi� j�X9� ◦ dfj

i �X9�"(16)

In order to make clear the summation in the above formula, one should decom-
pose each integral in the right-hand side and separately add the components.
Writing

b�fj
i � = df

j
i �b�� g�p9�fj

i � = df
j
i �p9��

and ω = ∑
i Fiω = ∑

i

∑
j Fiωi�jdf

j
i , one can see that the sums of β and

α-components are

∑
i

∑
j

∫ t

s
Fiωi� j�X9�dβ�fj

i �s9 =
∫ t

s
ω�b��X9�d9�

∑
i

∑
j

∫ t

s
Fiωi� j�X9�dα�fj

i �s9 =
∫ t

s
p−1
9 �X9�ω�p9��X9�d9"

Denoting by βωs
t = βs

t , respectively, αωs
t = αst these sums, one sees that, as

in the case of expression (14), one has

Eo�Varβs
t� ≤ �t− s��ω�L2�b�∞ sup

s≤u≤t
�pu�1/2

∞ <∞�

Eo�Var αst� ≤ �t− s�1/2�ω�L2

(∫ t

s
�  p9�2 dVdl

)1/2

<∞"
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The sums defining αst and βs
t converge in the mean of variation. The sums

corresponding to the forward and backward martingale components,

Mωs
t =Ms

t =
∑
i

∑
j

∫ t

s
Fiωij�X9�d�Mf

j
i �s9�

Mωt
s =Mt

s =
∑
i

∑
j

∫ t−s

0
Fiωi�j�Xt−9�d�Mf

j
i �tt−9

converge as L2-martingales. The brackets of these martingales are

�Ms
• �t = 2

∫ t

s
�ω�2�X9�d9�

�Mt
t−•�t−s = 2

∫ t

s
�ω�2�X9�d9"

With this notation, relation (16) may be written as
∫ t

s
ω ◦ dX = 1

2M
s
t − 1

2M
t
s − αst + βs

t"(17)

By using Lemmas 4.3 and 4.4, one deduces that the above definition is inde-
pendent of the family of charts �Ui�φi�� of the partition �Fi� as well as of the
family of functions �σi�" Also, because of Proposition 4.2, Ms

t +Mt
s has uni-

formly zero energy, and consequently M and M are uniquely determinated in
relation (17).

This definition may be extended. In order to do so, we are going to point
out the local character of the stochastic integral. So, let U be an open set such
that ω vanishes on it and set

Gs� t = �Xs ∈ U� ∩ �TUc ◦ θs > t− s��
for 0 < s < t" Define the backward stopping time

R = inf
{
u > 0� Xt−u ∈ Uc

}
"

Then obviously Gs� t = �Xt ∈ U� ∩ �R > t − s�. On the set Gs� t the following
integrals vanish: αst� β

s
t� �Ms

•�t� �Mt
t−•�t−s. This implies that each term in the

right-hand side of (17) vanishes on the set Gs� t.
Now, let us assume that ω is satisfying the weaker condition that �ω� ∈ L2

9oc.
Choose an increasing sequence �Un�, of relatively compact open sets such that
E = ⋃

n Un. Then 1Un
�ω� is in L2, so that the integral of the form 1Un

ω is well
defined. Then we define the integral of ω by the limit

∫ t

s
ω ◦ dX = lim

n

∫ t

s
1Un

ω ◦ dX�

on the set �t < ζ�. The sequence of integrals in the right side is stationary
almost surely on this set, because it may be written as a union

�t < ζ� =⋃
n

�t < TUc
n
�
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and on the set �t < TUc
n
� the integrals corresponding to m’s greater than n

all coincide. In fact, all the component sequences are almost surely stationary.
Let us set

β�ω� ζ�st = 1�t<ζ�
∫ t

s
ω�b��X9�d9 = 1�t<ζ� lim

n
β�1Un

ω�st�

α�ω� ζ�st = 1�t<ζ�
∫ t

s
p−1
9 ω�∇p9��X9�d9 = 1�t<ζ�m lim

n
α�1Un

ω�st�

M�ω� ζ�st = 1�t<ζ� lim
n

M�1Un
ω�st�

M�ω� ζ�ts = 1�t<ζ� lim
n

M�1Un
ω�ts"

Of course, we have

1�t<ζ�
∫ t

s
ω ◦ dX = 1

2M�ω� ζ�st − 1
2M�ω� ζ�ts − α�ω� ζ�st + β�ω� ζ�st "(18)

Remark 4.1. For s fixed, the process �M�ω� ζ�sTn∧t
, t ∈ �s�∞�� is an L2

martingale, with Tn = TUc
n
, n ∈ N. The process �M�ω� ζ�st� t > s�, however,

is not necessarily a local martingale, because limn Tn = ζ, which in general
is different from ∞. Instead, the process �M�w� ζ�tt−u�  t′−u� u ∈ �0� t�� is
a local martingale with parameter set �0� t� (t fixed) This is easily checked,
taking into account that �t < ζ� = �Xt ∈ E� ∈  ′ and using the reducing
sequence of backward stopping times Rn = inf�u ∈ �0� t�� Xt−u ∈ Uc

n�� (under
the natural convention inf � = t).

5. Limits of stochastic integrals of 1-forms. In this section we are
going to study the possibility of taking the limit as s ↘ 0 or t ↗ ζ in the
integral ∫ t

s
w ◦ dX"

We approach this limit on the components of stochastical integrals. In order
to do so, we need a jointly continuous [in �s� t�] version of each component.
The following simple lemma allows us to assume that the components of the
stochastic integral are always jointly continuous.

Lemma 5.1. Let �6�� �P� be a probability space, S ≤ T two real-valued
random variables and �Ms

t� S < s ≤ t ≤ T� a two-parameter real-valued
process defined on the random interval �S�T�" Assume that for each fixed s the
process �Ms

t� s ≤ t ≤ T� is continuous on the set �S < s ≤ T� and for each
triple u� s� t such that u ≤ s ≤ t, the following equality holds almost surely on
the set �S < u� t ≤ T�:

Ms
t =Mu

t −Mu
s "

Then the process has a version which is jointly continuous in �s� t� and the
above relation is satisfied everywhere.
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A two-parameter process as in the conclusion of Lemma 5.1 will be called
smooth in what follows.

Theorem 5.2. Let ω be a differential form such that �ω� ∈ L2
loc and suppose

that U is an open neighborhood of o such that the following conditions are
satisfied with T = TUc , the hitting time of Uc:

�i�
∫ T

0
�ω�2�Xs�ds <∞ Po almost surely�

�ii�
∫ T

0
p−1
s �ω�∇ps���Xs�ds <∞ Po almost surely"

If we choose a smooth version of the stochastic integral and fix t > 0, then the
following limit exists and is finite Po almost surely on �t < ζ�:

�iii� lim
s↘0

∫ t

s
ω ◦ dX"

Proof. By the above lemma we may suppose that all components of the
integral in (iii) are smooth on the set �t < ζ�" Condition (ii) ensures the
existence of the limit

lim
s↘0

α�ω� ζ�st
and similarly, condition (i) together with the inequality �ω�b�� ≤ �ω�g�b�g en-
sure the existence of the limit

lim
s↘0

β�ω� ζ�st "

The process �M�ω� ζ�tt−u� ′t−u� u ∈ �0� t�� is a local martingale. Its bracket on
�0� t� is

1�t<ζ�
∫ t

0
�ω�2�Xt−9�d9"

Condition (i) ensures that it is Po-almost surely finite. This implies the exis-
tence of the limit lims↘0 M�ω� ζ�ts.

Now, let us look at the process �M�ω� ζ�st� s ∈ �0� t��" Take V, a relatively
compact open set, and put R = TVc . Then we have

M�ω� ζ�sR∧t =M�1Vω�sR∧t�
which is an L2-martingale for any fixed s > 0 and t ∈ �s�∞�. On the set
�t < R� one obviously has

lim
s↘0

M�ω� ζ�st = lim
s↘0

M�1Vω�sR∧t�

whenever one of the limits exists. On the other hand, condition (i) leads to the
fulfillment of condition (iii′) of Lemma 6.2 for the process �M�1Vω�st , 0 < s ≤
t�. This lemma implies the existence of the limit in the above right-hand side.
Since V is arbitrary, this completes the proof. ✷
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As we remarked in Section 4, the stochastic integral of a form ω has a
local character. Now we underline this aspect by remarking that if we restrict
the process to an open set U (by killing at the boundary), then the stochastic
integral of ω�U made with this process coincides with the stochastic integral
of ω made with the global process before the first exit time T = TUc . So, if
U is a small open neighborhood of o, which is included in a chart, it can be
included in R

N. Then the infinitesimal generator L�U may be extened to R
N

such that it satisfies the conditions of Section 8. By Theorem 8.1 we get the
following result.

Corollary 5.3. Suppose that the form ω is such that �ω� ∈ L2
loc and

∫ 1∧T

0
f−1�s� �ω�2�Xs�ds <∞ Po-almost surely,

where f ∈ C1��0�1�� is a function with the following properties: f > 0,

lim sup
s↘0

f�s�� ln s� <∞�

∫ 1

0
�f′�s�� � ln s�ds <∞"

Then the conclusion of the above theorem holds.

Remark that, because of Aronson’s estimates, the condition in the above
corollary is satisfied if 1U�ω� ∈ Lp for some neighborhood U, p > N and
f�s� = � ln s�−2"

Now, let us direct our attention to the case where ω is of the particular
form ω = df for some f ∈H. It is not difficult to see that for such a form the
stochastic integral is expressed as

∫ t

s
ω ◦ dX = f�Xt� − f�Xs�"

(To check this, it suffices to take first f ∈ C∞
c and then to make an approxi-

mation.) The existence of the limit as s ↘ 0 is equivalent to the existence of
the limit lims→0 f�Xs�, under Po. Let us suppose that this last limit exists
Po-almost surely. By Blumenthal’s 0–1 law, it should be a constant; denote it
by 9. Then, for each ε > 0, consider the set

Uε = �x ∈ E� �f�x� − 9� < ε�"
The first exit time TUc

ε
is strictly positive under Po, because of our supposition.

In other words Uε is a fine neighborhood of o and this tells us that f admits
9 as fine limit in o. Thus the above results offer us criteria of existence of fine
limit of a function at a point, in terms of its (generalized) first derivatives.
If the function �df� = �∇f� is in L

p�U�, for some open neighborhood U of o,
with p > N, it is known by Sobolev estimates that f admits a limit in the
ordinary topology. This agrees with the above remark, which ensures only the
fine limit of the function. However, the above results offer more insight in
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cases where f is not continuous. So, let us consider the classical case E = R
3

and L = $ �Laplace operator = ∑N
i=1 ∂

2/∂xi2� when the process is Brownian
motion. We consider a kind of Lebesgue spine or thorn set,

Cδ =
{�x�y� z� ∈ R

3� x > 0� �y2 + z2�1/2 ≤ exp−x−δ}"
Define a function f� R

3 → R by setting r = �x2+y2+z2�1/2, θ = arctan�y2+
z2�1/2/x, x > 0 and

f�x�y� z� = rα�ln 1/θ�α/θδ
for x > 0 and θ < 1, and set f�x�y� z� = 0 if x ≤ 0 or θ ≥ 1.

We assert that

lim
Cδ*

inf
�x�y� z�→0

f�x�y� z� = 1"

To see this it suffices to treat only the points in the plane z ≡ 0, because of
rotational symmetry around the x-axis. Let us look in the plane z ≡ 0 at the
graph of the function y = exp−1/xδ. For small values of θ, the line y = tan θx
intersects the graph. Let �x�θ�� y�θ��0� be the nearest intersection point. This
point is in the boundary of Cδ. The coordinate x�θ� satisfies the relation

x�θ�δ ln
1

x�θ� + x�θ�δ ln
1

tan θ
= 1"

This relation shows that if θ → 0, we have x�θ� → 0, and hence
x�θ�δ ln 1/x�θ� → 0, which leads to x�θ�δ ln 1/tgθ→ 1 or x�θ�δ ln 1/θ→ 1.

On the other hand, the relation y�θ�/x�θ� → 0 (as θ → 0), implies
r�θ�/x�θ� → 1. Therefore we have

f�x�θ�� y�θ��0� = r�θ�α�ln 1/θ�α/δ → 1� θ→ 0"

This proves the assertion.
Moreover, by a straightforward computation, one can prove that for α < δ/2,

the following relation holds:

E◦
[∫ ∞

0
�ln t�21B�Xt��  f�2�Xt�dt

]
<∞�

with B the unit ball. This relation implies the finiteness condition of Corollary
5.3 with ω = df, and hence f is finely continuous at 0. Thus the preceding
reasoning offers a proof of the fact that Cδ is thin at 0.

Now we continue with a discussion of the limit of the stochastic integral
when t tends to the lifetime of the process ζ. If �w� ∈ L2, then all components
Ms

t�M
t
s� α

s
t� β

s
t are continuous in t when s is fixed, and so the existence of the

limit of the stochastic integral as t ↗ ζ is automatic on the set �s < ζ < ∞�.
It remains then to investigate the existence of the limit as t ↗ ∞ on the set
�ζ = ∞�. If ω is such that �ω� belongs only to L2

loc, the stochastic integral is
defined up to ζ and it is a consistent problem to study the limit at ζ, on the
finite as well on the infinite part. The next theorem offers a criterion.
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Theorem 5.4. Let ω be such that �ω� ∈ L2
loc and satisfy the following con-

ditions for certain s > 0:

�i�
∫ ∞

s
�ω�2�X9�d9 <∞ Po-almost surely,

�ii�
∫ ∞

s
�ω�b���X9�d9 <∞ Po-almost surely,

�iii�
∫ ∞

s
p−1
9 �ω�∇p9���X9�d9 <∞ Po-almost surely.

If a smooth version of the stochastic integral is choosen, then the following limit
exists and is finite Po-almost surely on the set �s < ζ�:

lim
t↗ζ

∫ t

s
ω ◦ dX"

[Remark that in the above three conditions the integral is in fact taken only
on the interval �s� ζ�.]

Proof. We look at each component appearing in relation (17). Conditions
(ii) and (iii) imply the convergence of terms αst and βs

t" The forward martingale
component M�ω� ζ�st is like a local martingale and condition (i) ensures that its
bracket �Ms

• �ζ is almost surely finite. Then it is easy to deduce the convergence
of this component. Now let us look at the backward martingale component,
M�ω� ζ�ts. Define for 0 < u ≤ v ≤ 1�

Nu
v =M

�ζ−u�∨s
�ζ−v�∨s on �s < ζ <∞��

Nu
v = 0 on �ζ ≤ s� ∪ �ζ = ∞�"

Because ζ is a stopping time for the backward filtration, it follows that �ζ −
u�∨s is alike. Then it is not difficult to check that the process �Nu

v � with
the filtration �u =  ′�ζ−u�∨s satisfies conditions (i′), (ii), (iii′) of Lemma 6.2.
Therefore, the following limit exists almost surely on the set �s < ζ <∞�:

lim
u↘0

Nu
1 = lim

u↘0
M

�ζ−u�
�ζ−1�∨s = lim

t↗ζ
Mt

�ζ−1�∨s"

Since one has Mt
s = Mt

�ζ−1�∨s +M
�ζ−1�∨s
s (we assume that a smooth version

was choosen), the desired conclusion is obtained on �s < ζ <∞�.
In order to get the same result on the set �ζ = ∞� one should again use

Lemma 6.2. However, another method of reversing the time should be em-
ployed. Let ϕ� �0�1� → �s�∞� be a bijection (order reversing), for example,
ϕ�t� = s− ln t. Define for 0 < u ≤ v ≤ 1,

Nu
v =M

ϕ�u�
ϕ�v� on �ζ = ∞��

Nu
v = 0 on �ζ <∞��

and �u =  ′ϕ�u�. We get the existence of the desired limit as before, thus
completing the proof. ✷
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We complete this section with some remarks concerning possibilities of
checking the conditions (i), (ii), and (iii) of the theorem in concrete situations.
Let us suppose that the process is transient and denote by U its potential
kernel

Uf�x� = Ex

(∫ ∞

0
f�Xt�dt

)
"

If there exists a compact set K such that

U�1Kc �ω�2��o� <∞�

U�1Kc �ω�b����o� <∞�

then clearly conditions (i) and (ii) follow.
Now let us assume that the semigroup Pt is symmetric and its density pt

satisfies an estimate of the following type: �pt�∞ ≤ ct−d/2, for large t, with
some constant d > 0. Also suppose that �ω� ∈ L2" Then we write

Eo

(∫ ∞

s
p−1
9 �ω�∇p9���X9�d9

)
=

∫ ∞

s

∫
�ω�∇p9��dVd9

≤
(∫

�ω�2dV
)1/2 ∫ ∞

s

(∫
�∇p9�2 dV

)1/2

d9

The tail of the last integral may be majorized by a series

∑
n≥n0

∫ 2n+1

2n

(∫
�∇p9�2

)1/2

d9 ≤∑
2n/2

(∫ 2n+1

2n

∫
�∇p9�2 d9

)1/2

"

Because of the relation

d

d9
p29�o� =

d

d9

∫
p2
9 = −2

∫
�∇p9�2�

it follows that the preceding sum is dominated by

C
∑
n≥n0

2n/22−nd/4"

If d > 2, this sum is finite and condition (iii) follows.

6. Technical probabilistic lemmas. In this section we prove the prob-
abilistic arguments used in the proofs of the limit theorems of the previous
section.

Lemma 6.1. Let �6� �P� be a probability space and  s, s ∈ �0�1� an in-
creasing family of sub σ-algebras. Let �Ms

t� 0 < s ≤ t ≤ 1� be a jointly contin-
uous two-parameter process satisfying the following conditions.

(i) for each fixed s ∈ �0�1�� the process �Ms
t� t� t ∈ �s�1�� is an L2-

martingale.
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(ii) For 0 < u ≤ s ≤ t ≤ 1� it satisfies the next relation

Ms
t =Mu

t −Mu
s everywhere.

(iii) lims↘0 E��Ms
1�2� <∞"

Under these conditions, the following lim t exists almost surely and in L2:

lim
s↘0

Ms
1"

Proof. Remark that relation (ii) above implies that Ms
s = 0. Also from

relation (ii) and the martingale property, it follows that

E��Mu
t �2� = E��Ms

t�2� +E��Mu
s �2�"

Therefore the limit in (iii) is increasing. Let us take a sequence sn → 0 and
set Hn =M

sn
1 . By the preceding relation we deduce

∥∥Hn+p −Hn

∥∥2
2 =

∥∥Msn+p
sn

∥∥2
2 =

∥∥Msn+p
1

∥∥2
2 −

∥∥Msn
1

∥∥2
2�

which shows that the sequence �Hn� is a Cauchy sequence in L2, and con-
sequently it has a limit H. Then we put Hs = H −Ms

1 and assert that the
process �Hs� s� s ∈ �0�1�� is an L2-martingale. First, the relation

Hs = lim
n→∞M

sn
1 −Ms

1 = limMsn
s �

shows that Hs is  s-measurable. Then, for 0 < s ≤ t ≤ 1, we have

E�Ht −Hs� s� = E�Ms
t � s� = 0"

We conclude by the usual convergence theorem for martingales, that lims↘0 Hs

exists almost surely and in L2, which implies the conclusion of the lemma. ✷

Lemma 6.2. Assume that condition (ii) of Lemma 6.1 remains valid and
conditions (i) and (iii) are replaced by the following ones.

(i′) The process �Ms
t� t� t ∈ �s�1�� is a local martingale for each fixed

s ∈ �0�1�.
(ii′) There exists a sequence sn ↘ 0 such that

lim
sn↘0

�Msn
• �1 <∞ almost surely.

Then the following limit exists and is almost surely finite:

M = lim
s↘0

Ms
1"

Moreover, there exists a strictly positive stopping time T > 0 (almost surely)
such that the following limit relation holds in L2:

lim
s↘0

�Ms∧T
1 −M� = 0"

(Note that M is not necessarily in L2.)
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Proof. Let us denote K = limn→∞�Msn
• �1, where �sn� is choosen such that

sn ↘ 0. We assert that there exists a continuous, increasing and adapted
process �Ks� s ∈ �0�1��, such that K0 = 0 and

Ks =K− �Ms
• �1�

almost surely.
It suffices to define the process Kn, which has the same increments on the

interval �sn�1�, by

Kn
s =K− ��Msn

• �1 − �Msn
• �s�� s > sn"

Clearly this process is continuous and increasing. To see that it is adapted one
uses the relation

Kn
s = lim

m
�Msm

• �1 − ��Msn
• ��1s��

which by condition (2) becomes, for m > n� equal to

lim
m
��Msm

• �1 − ��Msm
• � �1s�� = lim

m→∞�M
sm�s"

If m > n and s ∈ �sn�1�, then Km
s =Kn

s � almost surely. Then one may define a
continuous, increasing and adapted process �Ks� s ∈ �0�1�� such that K0 = 0
and Ks = Kn

s almost surely for s ∈ �sn�1�. Now, let us define the stopping
time,

T = inf
{
s ∈ �0�1�� Ks ≥ 1

}
�

(with the convention inf � = 1). Then set

Ns
t =Ms

�t∧T�∨s�

obtaining a process which clearly satisfies condition (2) of the preceding
lemma. Let us check conditions (1) and (3) now. From the relation

Kt −Ks = �Ms
• �1 − �Mt

•�1 = �Ms
• �t� 0 < s ≤ t ≤ 1�

it follows that

�Ns
• �1 = �Ms

• �T∨s =KT∨s −Ks ≤KT ≤ 1�

almost surely, which implies that E��Ns
1�2� ≤ 1� checking conditions (1) and

(3). By the preceding lemma, the following limit exists almost surely and in
L2:

N = lim
s↘0

Ns
1"

Because Ms
T∨s

= Ns
1, we may write Ms

1 = Ns
1 +MT∨s

1 . On the other hand,
because T > 0 almost surely, it follows that lims↘0 M

T∨s
1� =MT

1 almost surely
and consequently

M = lim
s↘0

Ms
1 =N+MT

1 almost surely"
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The first assertion of our lemma is proved. Further, noting that Ns
1 = Ms∧T

T �
we have

Ms∧T
1 =Ns

1 +MT
1 "

This relation, together with the preceding one, leads to the second assertion
of the lemma. ✷

7. The case of a negatively curved manifold. Let us suppose that E
together with g is a complete and connected Riemannian manifold, V is the
volume measure associated to g and L = $� so that the associated process
is symmetric. Let o ∈ E be fixed and denote by r�x� = d�o� x�, the geodesic
distance between x and o. Assume further that the sectional curvature k is
negatively bounded: −b ≤ k ≤ −a, with two constants 0 < a < b < ∞. Under
these assumptions it is known that there exists a constant θ > 1, such that

θ−1 < lim inf
t→∞

r �Xt�/t ≤ lim sup
t→∞

�Xt�/t < θ�(19)

almost surely and a constant γ > 0 such that the volume of a ball Bδ centered
at o and of radius δ satisfies a growth bounding condition such as

V�Bδ� ≤ Ceγδ"(20)

A result of Li and Karp [9] ensures that the process is conservative; that is,
Pt1 = 1 under this growth condition. The stochastic calculus under an infinite
measure such as PV was presented in [14] and [13]. Clearly, the definition of
the stochastic integral of 1-forms coincides with that presented in Section 4.
The following theorem offers a strong control over the rate of convergence of
the stochastic integrals of forms.

Theorem 7.1. Let ω be a bounded differential form such that the function
ϕ� �0�∞� → R, defined by ϕ�t� = sup��ω��x�/r�x� ≥ t� satisfies the condition∫ ∞

0
ϕ�t�dt <∞"

Then the following limit exists and is almost surely finite:

lim
t→∞

∫ t

0
ω ◦ dX"

Moreover, the oscillation of the stochastic integral over the interval �2n� 2n+1�
is asymptotically almost surely dominated by

osc2n≤t≤2n+1

(∫ t

2n
ω ◦ dX

)
≤ C

∫ 2n+1

2n
ϕ�θ−1 t�dt"

Proof. Under the measure PV, the stochastic integral is written as the
difference of a forward and a backward martingale, that is, the finite variation
term α disappears (the term β disappears, too, because the drift b vanishes),

�∗� It =
∫ t

0
ω ◦ dX = 1

2M
0
t − 1

2M
t
0"
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Let �λn� be a sequence of nonnegative numbers to be specified later to suit
our proof and set

Tn = inf
{
t > 0/r�Xt� ≥ θ2n

}
�

6n =
{
r�X0� ≤ θ2n�2n < Tn�

∫ 2n

2n−1
�ω�2�Xt�dt ≤Kn� osc−2n−1≤t≤2n�It� > λn

}
�

Kn =
∫ 2n

2n−1
ϕ2�θ−1t�dt"

Observe that in the definition of 6n only the condition concerning the oscil-
lation of It is nontrivial asymptotically, because relation (19) implies that for
PV-almost surely for large n and t one has 2n < Tn and

�ω��Xt� ≤ ϕ�θ−1t�"
Now we are going to estimate the PV-measure of 6n by using the method

of Takeda [22]. The Dirichlet space associated with $�V and the Neumann
boundary conditions generate a semigroup and a process on the closed ball
B̄θ2n . Until the first hitting time of the boundary this process coincides with
the process we already have. The advantage of the new process is that its in-
variant measure is the restriction of V to Bθ2n� which is a bounded measure.
Let us denote by µn this measure normalized such that it becomes a prob-
ability measure and write P̂µn for the associated probability measure on the
path space of the process with Neumann conditions. Under P̂µn� the stochastic
integral It preserves the above decomposition �∗� with the same forward and
backward martingales so that we may write

PV�6n� = V�Bθ2n�P̂µn�6n� ≤ V �Bθ2n�

× P̂µn

(
osc2n−1≤t≤2n�M0

t � > λn or osc0≤t≤2n−1�M2n
2n−t� > λn$

∫ 2n

2n−1
�ω�2�X9�d9 ≤Kn

)
"

By Lemma 7.2 we have

P̂µn�6n� ≤ C�
√
Kn/λn� exp−�λ2

n/2Kn�
and hence, on account of (20), we get

PV�6n� ≤ C �
√
Kn/λn� exp�γθ2n − �λ2

n/2Kn��"
In order to make convergent the series∑

n

PV�6n��

we choose λn = τ
√

2nKn, with τ > 2γθ" It follows by a Borel–Cantelli argu-
ment that for large n we have

osc2n−1≤t≤2n�It� ≤ λn"
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Because obviously Kn ≤ 2n−1ϕ�θ−12n−1�2, it follows that

λn ≤ C
∫ 2n

2n−1
ϕ �θ−1t�dt�

and hence
∑
n

λn ≤ C
∫ ∞

0
ϕ�t�dt <∞"

The assertions of the theorem clearly follow from these estimates. ✷

Lemma 7.2. Let �6� � t�P� be a filtered probability space and �Mt� be a
continuous martingale. Then the following inequality holds:

P�osc0≤t≤τMt > λ$ �M�τ < K� ≤ C�
√
K/λ� exp−�λ2/2K�"

For the proof, see [11], page 80.
Another criterion for the existence of the limit of a stochastic integral for

large t is the following proposition.

Proposition 7.3. Let ω ∈ L2 be such that r�ω�2 ∈ L1. Then the following
limit exists and is PV-almost surely finite

lim
t↗∞

∫ t

0
ω ◦ dX"

Proof. Let us set At = �x ∈ E� θ−1t ≤ r�x� ≤ θt� and compute

EV

(∫ ∞

0
1At

�ω�2�Xt�dt
)
=

∫ ∞

0

∫
At

�ω�2 dVdt

=
∫
�θ− θ−1�r�ω�2 dV <∞"

Again we look at the decomposition �∗�. The bracket of M (and of M) is finite

�M0
• �∞ =

∫ ∞

0
�ω�2�Xt�dt <∞ almost surely�

because its tail coincides with the tail of the integral
∫ ∞

0
1At

�ω�2�Xt�dt�

which is almost surely finite according to the above computation. To be more
specific, let us denote by

T = sup
{
t� r�Xt� ≤ θ−1t or θt ≤ r�Xt�

}
"

By (19), we know that T < ∞ almost surely. On the set �T < t� one has
1At

�Xt� = 1� almost surely, and this fact ensures that the two tails coincide.
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The finiteness of the bracket suffices to conclude the convergence of the
forward martingale

lim
t↗∞

M0
t "

It remains to treat the backward martingale. Set Bt = 1At
�Xt� and observe

that the process �Bt� is previsible and Bt = 1 almost surely on the set �T < t�.
Note also that t−T on �T < t� is a stopping time with respect to the filtration
�� ′

t−u� u ∈ �0� t��" Let us put

Nt
s =

∫ t−s

0
Bt−u duM

t
t−u"

Certainly we have Nt
T =Mt

T almost surely on �T ≤ t�. The bracket of N is

�Nt
t−•�u =

∫ t

t−u
B9�ω�2�X9�d9

and it follows that

sup
t

EV��Nt
t−•�t� = �θ− θ−1�

∫
r�ω�2 dV <∞"

Now, choose a smooth version of N and inverting the time with a bijection
ϕ� �0�1� → �0�∞�, apply Lemma 7.4. This implies, almost surely, the existence
and finitenes of the limit

lim
t→∞

N̄t
0"

Because for smooth versions one has �on �T < t��
Mt

0 =Mt
T +MT

0 � Nt
0 =Nt

T +NT
0 �

it follows that

lim
t↗∞

Mt
0 =MT

0 + lim
t↗∞

Nt
0 −NT

0 " ✷

Lemma 7.4. Let �6� �Q� be a measure space with a filtration � t$ t ∈
�0�1�� such that Q is σ finite with respect to each σ-algebra  t. Let �Ms

t� 0 <
s ≤ t ≤ 1� be a continuous smooth process such that the following conditions
are satisfied:

(i) Ms
t is  t measurable, E��Ms

t�2� <∞, and the martingale relation

E�Ms
t2
$A� = E�Ms

t1
$A�

holds for any 0 < s ≤ t1� ≤ t2 ≤ 1� A ∈  t1
;

(ii) M
t1
t2
=Ms

t2
−Ms

t1
;

(iii) lims↘0 E��Ms
1�2� <∞"

Then the following limit exists in L2 and almost surely:

lim
s→0

Ms
1"
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Proof. First note that for 0 < s ≤ t ≤ 1 one has

E��Ms
1�2� = E��Mt

1�2� +E��Ms
t�2�"

This and condition (3) imply that

lim
t↘s

E��Ms
1 −Mt

1�2� = lim
t↘s

E��Ms
t�2� = 0"

Thus we have obtained the existence of the L2-limit,

M0
1 �= lim

s↘0
Ms

1"

For the almost sure convergence we introduce the variables M0
t =M0

1−Mt
1.

One easily checks that M0
t = lims↘0 M

s
t and then deduces that �M0

t ��t� t ∈
�0�1�� is a generalized martingale in the sense of (1).

The problem is that the restriction of Q to �0 is not known to be σ-finite.
Therefore we consider the process ��M0

t �2��t�, which is a generalized sub-
martingale. Doob’s down-crossing inequality applies to it and gives the almost
sure convergence, completing the proof of the lemma. ✷

Without assuming that the curvature of the manifold has an upper bound,
we may obtain another criterion based on Theorem 5.4 and an estimate of
Li-Yau [10]. The result of Li-Yau assumes only that the Ricci curvature is
bounded from below by a constant −K, with K ≥ 0. Then it states that any
positive solution u of the equation $u − ∂tu = 0 on �0�∞� × E satisfies the
estimate (∇u

u

)2

− α
$u

u
≤ Nα

2

(
1
t
+ K

2�α− 1�
)
�

where α is an arbitrary constant such that α > 1. As a consequence of this
estimate, we have the following lemma.

Lemma 7.5. If f� �1�∞� → R+ is such that
∫∞

1 f�t�dt < ∞, then the fol-
lowing integrability condition holds:

Eo

[∫ ∞

1
f �t��∇ lnpt�2�Xt�dt

]
<∞"

Proof. The proof follows from the preceding estimate and the following
relation

Eo

[
$pt

pt

�Xt�
]
=

∫
$pt dV = 0

In order to prove this relation we first apply Theorem 6.3 of [18] and deduce
that $pt ∈ L1. Then we write pt in the form

pt = Uλϕ�
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with ϕ = �λ − $�pt, so that $pt = −ϕ + λUλϕ.Then one takes a sequence
�ϕn� ⊂ �∞

c , such that 0 ≤ ϕn ≤ 1 and ϕn ↗ 1 and writes
∫
λUλϕ = lim

n→∞

∫
ϕnλUλϕ = lim

n→∞

∫
ϕλUλϕn =

∫
ϕ"

The last equality is a consequence of the fact that λUλ1 = 1. ✷

This lemma and Theorem 5.4 immediately lead to the next corollary.

Corollary 7.6. If ω ∈ L2
loc and f� �1�∞� → R+ is strictly positive, de-

creasing, and the next conditions are satisfied,

∫ ∞

1
f�t�dt <∞�

∫ ∞

1
f−1�t��ω�2�Xt�dt <∞ Po-almost surely,

then the following limit exists and is Po-almost surely finite:

lim
t↗∞

∫ t

1
ω ◦ dX"

Compared with Theorem 7.1, this corollary has a more general hypothesis.
However, the conclusion of the theorem is more precise.

8. The case of a divergence form operator in �
N. In this section we

suppose that E = R
N, N ≥ 2. First, we recall some well-known results of

Aronson and Nash and refer to [20] for an elegant, concise exposition on this
subject. Let a = �aij� be a measurable N×N matrix, ρ a measurable function
and b = �bk� a measurable vector field on R

N. Assume that the following
conditions hold:

1
λ
�ξ�2 ≤∑

i� j

aij�x�ξiξj ≤ λ�ξ�2� x� ξ ∈ R
N�(21)

1
λ
≤ ρ�x� ≤ λ� x ∈ R

N�(22)

�bk�x�� ≤ G� x ∈ R
N�k = 1 " " "N�(23)

with some constants λ ≥ 1, G ≥ 0. The operator

L = 1
ρ

∑
i�j

∂

∂xi
ρaij

∂

∂xj
+∑

k

bk
∂

∂xk

generates a Feller continuous conservative semigroup �Pt� which admits a
density pt�x�y�, with respect to the volume measure V�dx� = ρ�x�dx. This
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semigroup is strongly continuous on both L2�dV� and H = W
1�2
0 �RN�" The

density satisfies the estimates

1
C
e−ηtqt/θ�x− y� ≤ pt�x�y� ≤ Ceηtqtθ�x− y� �(24)

for each �t� x� y� ∈ �0�∞� × R
N × R

N, where qt�x� = �4πt�−N/2 exp−�x�2/4t
and C�θ ≥ 1, η ≥ 0 are constants which depend only on N�λ and G (see
II.3.8. of [20]). As a function of �t� x� y� the density pt�x�y� is locally Hőlder
continuous. More precisely, the following estimate holds:

�pt�x�y� − pt′ �x′� y′�� ≤ C

(√�t− s� ∨ �x− x′� ∨ �y− y′�
δ

)α

(25)

for all �t� x� y�� �s� z� y� ∈ �δ�1/δ�×R
N×R

N� with constants C and α dependent
only on N�λ�G and δ > 0. This estimate is presented in Appendix B. If b is
identically zero, then the semigroup is symmetric and the above estimates
(24) hold with η = 0.

Now we are going to prove an estimate for the gradient of the density, which
turns out to be suitable for the local treatment of stochastic integrals of forms.

Theorem 8.1. Let f ∈ � 1�0�1� be a function such that f ≥ 0,

γ �= lim sup
s→0

f�s�� log s� <∞

and ∫ 1

0
�f′�s� log s�ds <∞"

Then there exists a constant M which depends only on N�λ and G such that
the function pl�y� = pl�x0� y� satisfies

∫ t

0
f�l�

∫ �∇pl�2
pl

dVdl

≤M

[
γ + f�t��� log t� + 1� +

∫ t

0
�f′�l���� log l� + 1�dl+

∫ t

0
f�l�dl

]
�

for each fixed x0 ∈ R
N and t ∈ �0�1�.

Proof. For σ ∈ �0�1� and x0 ∈ R
N, set

+σ =
{
φ = 1

τ

∫ τ

0
P∗

lψdl � / � ψ ∈ �c�RN�� ψ ≥ 0�

∫
ψdV = 1� suppψ ⊂ B√

σ�x0�� τ ∈ �0� σ�
}
"

Take ε ≥ 0 and φ ∈ +σ and define

Fl = f�l�P∗
lφ log�P∗

lφ+ ε�"
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By Lemma 8.2, one concludes that Fl ∈ L1�RN�. Applying the Leibnitz–
Newton formula on an interval �s� t� ⊂ �σ�1� and then integrating with respect
to V one gets

f�t�
∫
P∗

tφ log�P∗
tφ+ ε�dV− f�s�

∫
P∗

sφ log�P∗
sφ+ ε�dV

=
∫ t

s
f′�l�

∫
P∗

lφ log�P∗
lφ+ ε�dVdl

+
∫ t

s
f�l�

∫
�L∗P∗

lφ� log�P∗
lφ+ ε�dVdl

+
∫ t

s
f�l�

∫ P∗
lφ

P∗
lφ+ ε

L∗P∗
lφdVdl"

We are now going to analyze each term of this relation. The function L∗P∗
lφ

is absolutely integrable because it equals

�∗� L∗P∗
lφ = 1

τ
P∗

l �P∗
τψ− ψ��

if φ is expressed as �1/τ� ∫ τ
0 P∗

lψdl and ψ satisfies the conditions in the above
definition of +σ" Since

∫
L∗P∗

lφdV = 0 and log�P∗
lφ + ε� − log ε ∈ H, the

second term of the right-hand side of the equality can be written as

−
∫ t

s
f�l�

∫ �∇P∗
lφ�2

P∗
lφ+ ε

dVdl+
∫ t

s
f�l�

∫ P∗
lφ

P∗
lφ+ ε

b�P∗
lφ�dVdl"

The first term in this expression converges, as ε� s and σ tend to zero, to
the left side of the estimate we have to prove. So, in order to obtain the de-
sired estimate we are going to let ε → 0 and bound the other terms in the
above equality. The left terms as well as the first on the right of the relation
are bounded by Lemma 8.2. Let us look at the last term in the above rela-
tion. Letting ε → 0, on account of the expression of L∗P∗

lφ, what we have to
estimate is ∫ 1

τ

∫ t

s
f�l��P∗

l+τψ−P∗
lψ�dldV

=
∫ 1
τ

[∫ t+τ

t
f�l�P∗

lψdl−
∫ s+τ

s
f�l�P∗

lψdl

+
∫ t

s
�f�l� − f�l+ τ��P∗

l+τψdl

]
dV"

Since
∫
P∗

lψdV ≤ 1, the absolute value of this expression is dominated by

1
τ

∫ t+τ

t
f�l�dl+

∫ t+τ

s
�f′�l��dl"

Further we have to bound the following term:∣∣∣∣
∫ t

s
f�l�

∫
b�P∗

lφ�dVdl

∣∣∣∣ ≤ G
√
Nλ

2

∫ t

s
f�l�

(
δ
∫ �∇P∗

lφ�2
P∗

lφ
dV+ 1

δ

∫
P∗

lφdV

)
dl"
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Choosing δ = 1/G
√
Nλ and concluding all the above calculations, as ε → 0

one gets

1
2

∫ t

s
f�l�

∫ �∇P∗
lφ�2

P∗
lφ

dVdl

≤M

[
f�t��� log t� + 1� + f�s��� log s� + 1� +

∫ t

s
�f′�l���� log l� + 1�dl

]

+ 1
τ

∫ t+τ

t
f�l�dl+

∫ t+τ

s
�f′�l��dl+ NλG2

2

∫ t

s
f�l�dl"

Now, with s and t fixed, we choose two sequences σn → 0 and �φn�, with
φn ∈ +σn and pass to the limit, taking into account Lemma 8.3. Finally the
estimate of the statement is obtained letting s→ 0. ✷

Lemma 8.2. There exists a constant M =M�N�λ�G� such that∫
P∗

tφ� logP∗
tφ�dV ≤M�� log t� + 1��

for any φ ∈ +σ and 0 < σ ≤ t ≤ 1"

Proof. If 0 < u ≤ σ ≤ t, one deduces from (24) that

pt+u�x�y� ≤ 2N/2Cq2θt�x− y��
and hence, with ψ corresponding to φ and using the notation �Qu� for the
semigroup with density qu�x− y�,

P∗
tφ�x� ≤ 2N/2CQ2θtψ�x�"

Now, let us examine the function u → u log u. It is decreasing on �0� e−1�,
increasing on �e−1�∞� and its minimum at e−1 is −e−1. This shows that

�∗∗� u� log u� ≤ v�� log v� + 1��
whenever 0 < u ≤ v. Therefore, what we have to estimate is∫

Q2θtψ� logQ2θtψ�dx"

If �x−x0� ≥ 2
√
σ and �y−x0� ≤

√
σ , one has 2�x−y� ≥ �x−x0�, which implies

q2θt�x− y� ≤ 2Nq8θt�x− x0�"
Since suppψ ⊂ B√

σ�x0�, one deduces for �x− x0� ≥ 2
√
σ ,

Q2θtψ�x� ≤ 2Nq8θt�x− x0�"
On the other hand, for �x− x0� ≤ 2

√
σ obviously,

Q2θtψ�x� ≤ �8πθt�−N/2

holds. By using again the inequality �∗∗�, it remains to bound the integral∫
q8θt�x�� log q8θt�x− x0��dx
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on the complement of the ball B2
√
σ�x0�, which follows by a direct computation.

The integral over this ball is easily bounded because σ ≤ t. ✷

Lemma 8.3. Let x0 ∈ RN and +σ be as in the proof of Theorem 7.1. Take a
sequence σn → 0 and φn ∈ +σn for each n ∈N. Then

lim
n→∞

∫ t

s

∫
�∇�P∗

lφn − pl��2 dVdl = 0�

for any 0 < s < t <∞.

Proof. Because of continuity of the density pl�·� x�� it follows that
P∗

lφn�x� → pl�x�, for each x ∈ RN. On the other hand, the upper estimate in
(24) implies convergence in L2. This holds uniformly for l ∈ �s� t� because

�P∗
lφn − pl�2 = �P∗

l−s�P∗
sφn − ps��2 ≤ C�P∗

sφn − ps�2 → 0"

Then, by the same argument as in the proof of Lemma 2.2, one has for h ∈ L2,
∫ t

s

∫
�∇P∗

l h�2 dVdl ≤
∫
�P∗

sh�2 dV+
∫
�P∗

th�2 dV+ G2
∫ t

s

∫
�P∗

l h�2 dVdl"

This inequality, applied to h = P∗
s/2φn − ps/2 on the interval �s/2� t − s/2�,

concludes the proof of the lemma. ✷

As we have mentioned, if b ≡ 0, the semigroup is symmetric and the esti-
mates (24) hold with η = 0. This fact enables one to prove a result similar to
Theorem 8.1 concerning the behavior of ∇pt for large t. The next theorem is
one such result. The key point is that Lemma 8.2 extends to t ∈ �σ�∞�. (In
fact, all the reasoning used to prove Theorem 8.1 extends even to the case of
a general manifold E, except for the estimate contained in Lemma 8.2)

Theorem 8.4. Assume that b ≡ 0 and let f ∈ � 1
+��1�∞�� be such that

γ = lim sup
t→∞

f�t� log t <∞�
∫ ∞

1
�f′�t�� log t dt <∞"

Then the following relation holds:

∫ ∞

t
f�l�

∫ �∇pl�2
pl

dVdl ≤M

[
γ + f�t��log t+ 1� +

∫ ∞

t
�f′�l���log l+ 1�dl

]
�

with pl = pl�x0� y�� x0 fixed arbitrary in RN, t ≥ 1 and the constant M de-
pending only on N and λ.

From Theorems 5.2 and 8.1 one deduces a result concerning the limit at
zero of stochastic integrals of forms. It is contained in Corollary 5.3. Similarly,
by Theorems 5.4 and 8.4 one obtains the following result.
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Corollary 8.5. Assume that b ≡ 0 and ω ∈ L2
9oc�RN� satisfies the following

condition: ∫ ∞

1
f−1�s��ω�2�Xs�ds <∞�

P0-almost surely, with a function f ∈ C1��1�∞�� such that f > 0,
lim supt→∞ f�t� ln t < ∞,

∫∞
1 �f′�9�� ln 9d9 < ∞. Then the following limit

exists and is P0-almost surely finite:

lim
t→∞

∫ t

1
ω ◦ dX"

APPENDIX A

Proof of Theorem 2.1. The method of our proof consists in obtaining
first locally the properties stated in the theorem and then deducing the global
assertions. Let �U�R� be a chart on E such that conditions (i) and (ii) are
satisfied on it. To simplify the notation, we identify the set U with its image so
that we look at U also as a subset of R

N and extend the functions gij� g
ij� ρ� bi

in R
N and assume that conditions (i) and (ii) are uniformly satisfied on R

N and
the extension of b is uniformly bounded. Let g′

ij� g
′ij� ρ′� b′i be these extensions

and define in R
N the operator

L′ =∑
ij

1
ρ′

∂

∂xi
ρ′g′ij ∂

∂xj
+∑

i

b′i
∂

∂xi
"

As mentioned in Section 8, the semigroup generated by L′ in L2�RN�dV′�
admits a density p′

t�x�y� which satisfies estimates (24) and (25). In particular,
the semigroup �P′

t� generated by L′, has strong Feller property and generates
a diffusion process in R

N. On the other hand, the weak solutions of L′ produce
a harmonic space in the sense of Brelot (see [7]; Theorems 8.20 and 8.30 are
particularly useful in checking the axioms). It turns out that the notions of
balayage in the sense of the harmonic space and of the process coincide. For
example, if N ≥ 3, one checks that the potential kernel

G′f�x� =
∫
E

∫ ∞

0
pt�x�y�f�y�dtV�dy�

transforms each function f ∈ �c�RN�, f ≥ 0 into a potential with respect to the
harmonic space. In general, if D ∈ R

N is a bounded open set and f ∈ �c�D�,
f ≥ 0, then the function u which solves the problem

L′u = −f in D�

u = 0 on ∂D�

is a potential in D. This is observed first for open sets with smooth boundary
and then follows for general D by approximation from inside. Therefore, we
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have

u�x� = Ex

[∫ T

0
f�Xs�ds

]
� x ∈ D�

where T = TDc . The part of the diffusion X in Dadmits a density which we
denote by pD

t , density that is related to p′
t by the equation

pD
t �x�y� = p′

t�x�y� −Ex�p′
t−T�XT�y�$ T < t�� x� y ∈ D"

The main point is that if D ⊂ U, then the function pD is uniquely determined
by L viewed as an operator in D and is independent of the extension L′. (The
function pD is in fact the fundamental solution of L− ∂t with zero boundary
conditions on ∂D") From the above formula one sees that pD is continuous
on �0�∞�×D×D and also satisfies the inequality pD

t �x�y� ≤ p′
t�x�y�. This,

together with the estimate (24), implies that pD
t may be extended for t ∈

�−∞�0� with the value 0, obtaining a lower semicontinuous function on R ×
D×D which is continuous outside the set ��0� x� u� � x ∈ D�.

Concluding, we deduce that the part of X on U is a diffusion on U generated
by L and if U′ is another chart domain satisfying (i) and (ii), the two processes
on U and U′ produce by restriction on U ∩ U′ processes having the same
transition function. Then, by a result of Courrège–Priouret [4], one gets a
diffusion on E such that its part on each chart domain U as above has the
transition function expressed with the density pU as pU

t �x�y�V�dy�, x� y ∈ U.
The transition function of the global process X given by this result is uniquely
determined. In fact, this transition function corresponds to the semigroup �Pt�
generated by L. To see this, one should use the fact that locally the process
X is associated to the harmonic space produced by L on E and deduce that
for each relatively compact open set D ⊂ E, the function

u�x� = Ex

[∫ T

0
e−dtf�Xt�dt

]
� x ∈ D�

with T = TDc is the solution of the problem

�L− α�u = −f in D�

u = 0 on ∂D"

Taking an increasing sequence �Dn� of relatively compact open sets such that⋃
n Dn = E, one deduces that the function

u�x� = Ex

[∫ ∞

0
e−αtf�Xt�dt

]
� x ∈ E

is in H and satisfies the equation �L−α�u = f for, say, f ∈ �c�E�. This implies

u =
∫ ∞

0
e−αtPtfdt�

which in turn, by uniqueness of the Laplace transform, leads to

Ptf�x� = Ex�f�Xt�� for V-a.e. x ∈ E"
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In order to go further and obtain the density pt�x�y� on E, we are going to
use some potential theoretic facts on the space–time set R×E endowed with
the structure of the harmonic space (in the sense of Constantinescu-Cornea
[3]) associated to the space–time process. This is a process on R×E which has
two independent components: the first is the uniform motion to the left and
the second is the process X in E. This means that this process is the diffusion
generated by the operator L − ∂t. For the chart domain U we may use the
density pU

t �x�y� to define the Green function corresponding to L′ in R×U by
putting

qU�s� x� t� y� = pU
s−t�x�y�� �s� x�� �t� y� ∈ R×U�

where pU is the above-mentioned extension so that one gets the value 0 when
s ≤ t. The function qU is lower semicontinuous on R×U×R×U and continuous
outside the diagonal. For each fixed �t� y� ∈ R×U the function qU�·� ·� t� y� is
a potential in R × U with support at �t� y�. This potential can be rised to a
potential q�·� ·� t� y� in R×E uniquely determined by the following conditions:

1. q�·� ·� t� y� has support at the point �t� y�.
2. the following relation holds for any �s� x� ∈ R×U:

q�s� x� t� y� = qU�s� x� t� y� +Ex�q�s−T�xT� t� y���
where T = TUc is the hitting time of Uc.

The second term in the right-hand side of this relation, as a function of
�s� x� represents the balayage of the potential q�·� ·� t� y� on the set R × Uc.
This function is obtained from qU�·� ·� t� y� by a formula which shows that the
association qU → q is continuous (see Theorem 3.1′ on page 32 of [19]).

This way one obtains the Green function corresponding to L− ∂t in R×E,
which is lower semicontinuous on �R ×E� × �R ×E� and continuous outside
the diagonal. In other words, q represents the density of the potential kernel
of the space–time process, which can be expressed by the following relation:

Ex

[∫ ∞

0
ϕ�s− u�Xu�du

]
=

∫ ∫
R×E

q�s� x� t� y�ϕ�t� y�dtV�dy��

for any ϕ ∈ �c�R × E� and �s� x� ∈ R × E. From this relation, one easily
deduces that q�s� x� t� y� = q�s + u�x� t + u�y�, u ∈ R and then that the
function pt�x�y� = q�t� x�0� y� represents the density of the semigroup �Pt�.
Since q�·� ·�0� y� is a potential with support at �0� y� one deduces that this
function vanishes on �−∞�0� × E. Taking also into account the maximum
principle in the form

sup
{
q�s� x�0� y� � �s� x� ∈ R×E\�−ε� ε� ×U

}
= sup

{
q�s� x� o� y� � �s� x� ∈ ∂�−ε� ε� ×U

}
�

we get relations (i) and (ii) of the statement. ✷
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APPENDIX B

Continuity of the semigroup density in �
N. In what follows, we as-

sume that E = R
N and will show that the density pt�x�y� of the semigroup is

locally Hölder continuous by proving the estimate (25). Since the arguments
of the proof involve the operator L as well as its adjoint L∗, we start in a
general setting and consider an operator of the form

�u =
1
ρ

∂

∂xi
ρaij

∂u

∂xj
+ bk

∂u

∂xk
− 1
ρ

∂

∂xk
�ρb̃ku� + cu"

All the coefficients ρ� aij� bk� b̃k� c are assumed to be bounded with bounded
derivatives of all orders. Moreover conditions (21), (22) and (23) are supposed
to be satisfied with some constants λ and G, the field b̃ is assumed to be
bounded by (23) and � c � to be bounded by the same constant G. As in the
preceding sections, we denote V�dx� = ρ�x�dx and

$ = 1
ρ

∂

∂xi
ρaij

∂

∂xj
"

We also write B = bk�∂/∂xk�, B̃ = b̃k�∂/∂xk� so that the formal adjoint of
B̃ is expressed as B̃∗u = −�1/ρ��∂/∂xk��ρb̃ku� and thus one may write � =
$ + B + B̃∗ + c. One immediately sees that the adjoint of � is of the same
type: � ∗ = $ + B∗ + B̃ + c. It is known that the semigroup generated by �
admits a density pt�x�y� which is in the class

⋃
n �

∞
b ��1/n�∞� × R

N × R
N�

and satisfies the estimate (24) (see [20]). Moreover, this density satisfies the
estimate (25). This follows from the next proposition applied to p•�·� y�, with
respect to ∂t−� and to p•�x� ·� with respect to ∂t−� ∗. The statement of this
proposition is given in terms of cylindrical sets of the form

Q�σ� ξ� r� = �σ − r2� o� × B̄r�ξ��
where σ ∈ R, ξ ∈ R

N, r ∈ R+. It is a variation of Nash’s theorem, which is
well known (see [8]). An elegant proof for the case B̃ ≡ 0 may be found in [20]
(Theorem II.2.12). However, for the reader’s ease, we include a short proof
here which reduces the result to that treated in [20].

Proposition B.1. For each δ > 0� there exist two constants α ∈ �0�1� and
C > 0, which depend only on N�λ�G and δ, such that any solution of ∂tu −
� u = 0, u ∈ � 1�2�Q�σ� ξ� r�� satisfies the estimate

� u�s� x� − u�t� y� �≤ C

( � s− t �1/2 ∨ � x− y �
r

)α

�u�Q�σ� ξ� r��

for any �s� x�� �t� y� ∈ Q�σ� ξ� δr�, σ ∈ R, ξ ∈ R
N, r ∈ �0�1/δ�"

Proof. We are going to show that the problem can be reduced to the case
B̃ ≡ 0. Take ξ ∈ R

N and set ζ = ξ + �3/δ�e1 with e1 = �1�0� " " " �0�. Then
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choose ϕ ∈ �∞
c �RN� so that suppϕ ⊂ B1/δ�ξ�, ϕ ≥ 0 and

∫
ϕdV = 1 and set

w�x� =
∫ ∞

0
e−τt

∫
R
N
pt�x�y�ϕ�y�V�dy�dt�

where τ = η+1, and η is the constant appearing in the estimate (24). Stright-
forward computations show that w has the following properties:

1. w ∈ �∞
b �RN� and �� − τ�w = −ϕ; in particular one has �� − τ�w = 0 on

B1/δ�ξ�.
2. There exist two constants 0 < m ≤ M < ∞ which depend only on N�λ�G

and δ so that

m ≤ w�x� ≤M

for any x ∈ B1/δ�ξ�.
Theorem 8.22 of [7] gives another constant C which depends only on N�λ�G

and δ so that

�∗� �w�x� −w�y� � ≤ C � x− y �α� x� y ∈ B1/δ�ξ�"
Now take arbitrary σ ∈ R, r ∈ �0�1/δ� and v ∈ � 1�2�Q�σ� ξ� r��. Then one has

�∂t −� ��eτtwv� = eτtw�∂t −L�v�
where L = $′ +B− B̃ and

$′ = 1
w2ρ

∂

∂xi
w2ρaij

∂

∂xj
"

Now, the main point is that the operator $′, defined on B1/δ�ξ�, is similar
to $ and the function ρ′ = w2ρ can be extended to R

N so that it satisfies an
estimate like (22) and with this extension $′ becomes like $ in R

N. Therefore,
one may apply Theorem II.2.12. of [20] with respect to L. If u is a solution of
�∂t −L�u = 0 in Q�σ� ξ� r�, then the function v = eτ�σ−t�u/w is a solution of
�∂t −L�v = 0, and according to the theorem mentioned in [20], the function v
satisfies the estimate from the statement. Then, taking into account relation
�∗�, one easily deduces that u = eτ�t−σ�wv should satisfy a similar inequality.

Finally, the estimate (24) for the density of the operator L of Section 8 (with
measurable coefficients) is obtained as in Theorem II.3.8 of [20] by approxi-
mation. ✷

APPENDIX C

Quasi-continuity. In this Appendix, we prove the following lemma.

Lemma C.1. If a function f is quasi-continuous with respect to the capacity
given by � , then the process f�Xt� is continuous.

Proof. The property asserted in this lemma is clearly a local one, so that
it is enough to treat the case E = R

N. In this situation one can show that if
�An� is a decreasing sequence of open sets such that cap�An� → 0, then the
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sequence Tn = TAn
of first hitting times converges to infinity a.s. To see this

one should use the estimates (24). With γ > η, one constructs a γ-coexcessive
function which is strictly positive,

u�x� =
∫

R
N

∫ ∞

0
e−γtpt�y�x�V�dy�"

Then the semigroup e−γtPt is in duality with the semigroup u−1e−γtP∗
t �u·�

under the duality measure u · V. Since the second semigroup became sub-
Markovian, one may apply the duality theory of [2]. On the other hand, the
Green function of this pair is comparable [via (24)] with the Green function of
the symmetric semigroup e−γtQt. This leads to E•�e−γTn� → 0. ✷

APPENDIX D

The domain of L* in L1�dV�.

Lemma D.3. Let u ∈H∩L1 and h ∈ L1 be such that the following relation
is satisfied for each ϕ ∈ �∞

c :

−� �ϕ�u� + �bϕ�u� = �ϕ�h�"
Then u belongs to the domain in L1�dV� of the operator L∗ [or, in other words,
to the domain of the infinitesimal generator of the semigroup �P∗

t � considered
on the space L1�dV�, which is denoted by �L1�L∗�] and L∗u = h.

Proof. The relation in the hypothesis extends to any ϕ ∈ H ∩ L∞. In
particular, for a constant λ > 0 and ϕ ∈ �∞

c , we may write

−� �Uλϕ�u� + �bUλϕ�u� = �Uλϕ�h�"
From this equality we deduce

�ϕ�u� = � λ�Uλϕ�u� = �Uλϕ� λu− h� = �ϕ�U∗
λ�λu− h���

which implies u = U∗
λ�λu− h� in L1. ✷

From this lemma one immediately gets the following propositon.

Proposition D.4. If u ∈ � �L∗�∩L∞ and v ∈ � �$�∩L∞, then uv ∈ �L1�L∗�
and the following relation holds:

L∗�uv� = �L∗u�v+ u�$− b�v+ 2�∇u�∇v�"

In particular, one has the following result.

Proposition D.5. If u� v ∈ � �$� ∩L∞, then uv ∈ �L1�$� and

$uv = u$v+ v$u+ 2�∇u�∇v�"

Observe also that the above statements remain true if the condition on the
function v is replaced by v ∈ �L1�$� ∩H ∩L∞"
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[4] Courrège, Ph. and Priouret, P. (1965). Recollements de processus de Markov. Publ. Inst.

Statist. Univ. Paris 14 275–377.
[5] Fabes, E. and Stroock, D. (1986). A new proof of Moser’s parabolic Harnack inequality

using the old ideas of Nash. Arch. Rational Mech. Anal. 96 327–338.
[6] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov

Processes. de Gruyter, Berlin.
[7] Gilbarg, D. and Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second

Order. Springer, Berlin.
[8] Ladyzenskaya, O. A., Uraltseva, N. N. and Solonikov, V. A. (1867). Linear and Quasilin-

ear Equations of Parabolic Type. Nauka, Moskow. (In Russian.)
[9] Li, P. and Karp, L. (1998). The heat equation on complete Riemannian manifolds. Unpub-

lished manuscript.
[10] Li, P. and Yau, S. T. (1986). On the upper estimate of the heat kernel of a complete Rie-

mannian manifold. Acta Math. 156 153–201.
[11] Lyons, T. (1998). Random thoughts on reversible potential theory. Unpublished manuscript.
[12] Lyons, T. and Stoica, L. (1996). On the limit of stochastic integrals of differential forms.

Stochastics Monogr. 10. Gordon and Breach, Yverdon.
[13] Lyons, T. J. and Zhang, T. S. (1994). Decomposition of Dirichlet processes and its applica-

tion. Ann. Probab. 22 1–26.
[14] Lyons, T. J. and Zheng, W. (1988). A crossing estimate for the canonical process on a

Dirichlet space and a tightness result. Astérisque 157–158 249–271.
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