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SIZE OF THE LARGEST CLUSTER UNDER ZERO-RANGE
INVARIANT MEASURES1

By Intae Jeon, Peter March and Boris Pittel

Ohio State University

We study the finite zero-range process with occupancy-dependent rate
function g�·�. Under the invariant measure, which can be written explic-
itly in terms of g, particles are distributed over sites and we regard all
particles at a fixed site as a cluster. In the density one case, that is, equal
numbers of particles and sites, we determine asymptotically the size of the
largest cluster, as the number of particles tends to infinity, and determine
its dependence on the rate function.

0. Introduction. An ordered partition of m with n parts is any nonneg-
ative integer solution η of the equation

η1 + η2 + · · · + ηn = m�

One may think of the distribution of m balls over n urns as typical of a variety
of problems in probability theory leading to random ordered partitions, or
random allocations, as they are sometimes called. We are interested in the
asymptotic behavior as n�m → ∞ of ordered partitions when they are chosen
at random according to the probability distribution

ν�η� = �−1
n∏

i=1
g!�ηi�−1�(0.1)

Here g�k� is a given positive function, g!�k� = g�k�g�k − 1� · · ·g�1�, with
g!�0� = 1, is the generalized factorial function and � is the appropriate nor-
malizing constant.

Here is one way distributions like this arise naturally. Consider nMarkovian
particles with transition matrix Pi�j moving around on finite number m of
sites, subject to the following interaction. If there are k particles at a given site
then the waiting time for the (chronologically) first of these particles to move
is exponential of rate g�k� independent of the disposition of all other parti-
cles. This gives an informal description of the finite zero-range Markov process
Z�t� = �Z1�t��Z2�t�� � � � �Zn�t��, whose state space is the set of ordered par-
titions. If Pi�j is symmetric and irreducible then, as Spitzer [42] discovered,
the corresponding zero-range process has ν as its unique invariant probability
measure. (See also 	18�27�7
). Thus we can consider ν as the stationary distri-
bution of the n-tuple Z = �Z1�Z2� � � � �Zn�, Zj being the random occupancy
of site j.
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Let us pause to make two convenient normalizations. First, ν is invariant
under a change of scale g → λg, so we may and shall assume that g�1� = 1.
Second, for simplicity we will consider the case n = m, so the density of
particles is one. The results and their proofs for the more general casem = γn,
the density γ being fixed, are quite similar.

Notice that if g�k� = k then the particles are independent so we can use this
case as a benchmark. Accordingly, when g�k� is superlinear, particles tend to
leave highly occupied sites much more quickly than in the independent case
so that one expects ν to be concentrated on configurations having parts of
comparable size. However, if g�k� is sublinear then particles tend to linger
at highly occupied sites so that one expects ν to be concentrated on lumpy
configurations in which most sites are sparsely occupied and just a few sites
contain most of the particles. Our goal is to verify this picture by describing the
limiting behavior of the occupancy vector Z under the stationary distribution
ν, by focusing on Z∗

n = max�Z1�Z2� � � � �Zn
, the population size of the most
occupied site. Thinking of all particles at a given site as a cluster, we are
interested, then, in the asymptotic behavior of the largest cluster.

The starting point for our study was the one-parameter family of rate
functions

g�k� = k−α� −∞ < α < ∞�

Evidently α = −1 corresponds to the benchmark case of independent particles
and if α = 0 then ν reduces to the uniform distribution over ordered partitions.
Our family of rate functions contains these two canonical examples as well as
the superlinear case, α < −1, the sublinear case, α > −1 and the interesting
situation α > 0, in which the rate function tends to zero.

Theorem 1. Let g�k� = k−α.

(a) If α > 1 then n−Z∗
n converges to 0 in probability.

(b) If α = 1 then n − Z∗
n converges weakly to a Poisson distribution of

parameter 1.
(c) If 0 < α < 1 then �n−Z∗

n�/n1−α converges to 1 in probability.
(d) If α = 0 then Z∗

n/ log n converges to log 2 in probability.
(e) If α < 0 then Z∗

n log log n/ log n converges to −1/α in probability.

This result demonstrates two striking transitions. The first one, occurring
at α = 1, we call the condensation transition, since if α > 1 then all particles
condense into a single giant cluster. The giant cluster sheds a finite number
of particles when α = 1 and for 0 < α < 1 the number of “outcasts” is of the
order n1−α. The second transition, which we call the gelation transition, occurs
at α = 0 since Z∗

n/n → 0 or 1 accordingly as α ≤ 0 or α > 0. This situation
is reminiscent of the emergence of a giant component in random graphs; see
[5]. This phenomenon can also be viewed as conceptually close to the sol–
gel transition in colloid physics. There, under certain conditions, a cluster of
size proportional to the system size (the gel) emerges from a suspension of
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sticky particles (the sol). See [43] or [17]. An earlier, less complete version of
Theorem 1 has been proved by one of the authors in his thesis [19].

Our interest in the zero-range process was kindled by the desire to find new,
tractable situations in which particles coagulate or aggregate together in such
a way that one cluster comes to have a fixed fraction of all available particles.
There is a large scientific literature on phenomena of this type, (e.g., [8, 12,
15, 16, 17, 26, 39, 41, 42, 44, 45], among others. See the survey paper [1].)
There is an accompanying mathematical literature centering mainly on the
Smoluchowski, or coagulation–fragmentation equations (e.g., [1, 2, 10, 19, 20,
28, 29, 30]) and on models based on random graphs, (e.g., [35, 36, 37, 6]).

While the zero-range process has been studied quite extensively at least for
increasing rate functions, the case of decreasing g, and especially g tending
to zero, has not received as much attention. This could be because in these
cases the infinite particle system may be difficult or impossible to construct.
Nevertheless, the sequence of finite systems and the corresponding sequence
of invariant measures is quite explicit and reveals some rather interesting
features. There is another, combinatorial, attraction as well. Because ν has
a product structure, it assigns equal probability to configurations which are
permutations of one another, which means ν descends to a probability measure
on partitions of n.

Emboldened by the case g�k� = k−α, we turned to the general problem of
identifying classes of rates g�·� for which the largest cluster contains either
almost all n particles, or o�n� particles. We also wanted to determine an inter-
mediate class of rates for which the largest cluster is asymptotic to cn, with
c ∈ �0�1�. As Theorem 1 demonstrates, this cannot happen for g�k� = k−α,
�−∞ < α < ∞�.

To make formulations of the results we obtained more comprehensible and
coherent, we need to touch briefly on one of the tools we use. Colloquially it is
known as the conditioning device, and it has been used for analysis of random
partitions by [40, 25, 24, 22, 13, 3, 33, 34], among others. In fact, the approach
has its roots in statistical mechanics (cf. [23]).

Consider a one-parameter family of i.i.d. integer valued random variables
X1�X2� � � � �Xn with common distribution

P�X = k
 = G−1�x� xk

g!�k� � G�x� = ∑
k′

xk′

g!�k′� �(0.2)

where, depending on the rate function g, either k� k′ ∈ � or k� k′ ≤ n. We
call these the untruncated and truncated cases, respectively. It is an easy
calculation that, independent of x,

�Z1�Z2� � � � �Zn�
�≡�X1�X2� � � � �Xn�X1 +X2 + · · · +Xn = n��

In other words, the occupancy numbersZ1� � � � �Zn are distributed likeX1� � � � �
Xn, conditioned to have a fixed sum. How to best choose x? Intuitively, the
larger P�∑j Xj = n
 is, the less “intrusive” is the conditioning; thus to choose
x to maximize the probability in question is quite natural. Presumably, this
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choice makes the expected value of X as close as possible to 1, the particle
density.

Here is how it works out in a simple case. When g�k� increases (e.g., g�k� =
k−α, α ≤ 0), the series G�x� has a positive radius of convergence R and, in
addition,

lim
x↑R

xG′�x�
G�x� = ∞� G�x� def= ∑

k≥0
xk/g!�k��

A standard argument shows that EX = xG′�x�/G�x� increases with x. Thus
the untruncated X, with x chosen to make EX = 1, is a reasonable choice
in this case. Since x < R, the distribution of X has an exponential tail and
a standard local limit theorem shows that Pr�∑j Xj = n
 is of order n−1/2.
Thus the probability of the conditioning event is under control and we are led
to a result for “large rates.”

Theorem 2. Suppose R > 0 and limx↑R xG′�x�/G�x� > 1. Then there exists
a unique x̄ such that EX = 1. Let m = m�n� be such that

lim
n→∞nP�X ≥ m
 = λ ∈ �0�∞��

Then m�n� → ∞, m�n� = O�log n� and Z∗
n/m�n� → 1, in probability.

The precise role played by λ is laid out below in Theorem 2.1. Needless
to say, the asymptotic behavior of m�n� is, in the main, independent of λ.
Theorem 2 applies to g�k� = k−α, α ≤ 0, and we recover parts (d) and (e) of
Theorem 1, by finding that

m�n� =

�1+ o�1�� log2 n� if α = 0,

log n

−α log log n
�1+ o�1��� if α < 0.

The last relation comes from∑
k≥m

x̄k

�k!�−α
= �1+ o�1�� x̄m

�m!�−α
� m → ∞�

and the Stirling formula for m!.
An interesting situation arises if limx↑R xG′�x�/G�x� ≤ 1. Then R < ∞ and

the series for G and G′ both converge at x = R, but kRk/g!�k� and Rk/g!�k�
approach 0 slower than any exponential. Choosing x = R in (0.2), we see that
X cannot have an exponential tail. Now there are many ways this can occur.
In this paper, for simplicity, we confine ourselves to the case of a polynomial
tail, with P�X = j
 being of order j−β. We consider the case

g�j� = R

(
1+ β

j
+O

(
j−�1+δ�))� δ > 0�

Since EX ≤ 1 < ∞, we must have β > 2� Again, we must estimate P�X1+
X2 + · · · + Xn = n
 but standard local limit theorems no longer apply. Sub-
stantial new effort is required and the extra condition β > 3 allows us to
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bring an estimate of Nagaev to bear on the problem. We are led to a result
for “moderate rates.” Here g has the specific form above, β > 3 and we choose
x = R.

Theorem 3. (a) If EX = 1, then, in probability, Z∗
n/n

�β−1�−1 is bounded
from both zero and infinity. (b) If EX < 1, then Z∗

n/n converges to 1 − EX

in probability. In addition, the second largest cluster is o�n1/2 log2 n� in
probability.

Theorems 2 and 3 demonstrate a double jump phenomenon, analogous to
that discovered by Erdős and Rényi [11] in 1960 in their pioneering study of
evolving random graphs. Namely, depending on the value limx↑R xG′/G, the
largest cluster size is either of order n, or n1/�β−1�, or log n. Similar behavior
was found in random graph models of polymerization (c.f. [35, 36, 37]).

The attentive reader has certainly noticed by now that had we considered
the more general case of γn particles, we would have had to compare the
above limit with γ, the density of particles, instead of 1 to decide which one
of the three modes holds. The following picture seems to emerge here. For
any density γ, choose the parameter x so that the expectation of X is as
close as possible to γ. If x is inside the radius of convergence of G then the
maximum occupancy over all sites behaves roughly like the maximum of i.i.d.
random variables Xj, with expectation γ. Otherwise, the gelation transition
occurs when this best possible expectation falls below γ, and then one of the
remaining sites becomes a dumping ground for the huge number of particles
“rejected” by the rest of the sites.

Finally, consider the case R = 0 which occurs when the rate function tends
to zero. A special case is g�k� = k−α �α > 0�, which featured in Theorem 1. We
need to exercise some control over the way g vanishes. Specifically, we assume
that g�k� admits a smooth interpolation g�x�� x ∈ 	1�∞�, such that:

1. g�x� ↓ 0, as x ↑ ∞.
2. r�x� �= −d�logg�x��/d log x, the logarithmic rate of 1/g�x� is bounded and

nonincreasing on 	1�∞�.
3. The logarithmic rate s�x� = d log r�x�/d log x of r�x� tends to zero as

x → ∞.
4. limx→∞	r�x� log1/2 x− log log x
 = ∞.

Notes. (i) Condition 2 is similar to the condition of the representation
theorem for slowly varying functions. (See [4], Theorem 1.3.1.)

(ii) Given r�x�, we can write

g�x� = g�1� exp
{
−

∫ x

1

r�t�
t

dt

}
�

(iii) For example, if g�k� = k−α, then r�x� ≡ α and the conditions are
obviously met. We emphasize that conditions 1–3 can perhaps be somewhat
relaxed, at the price of more complicated proofs and weaker results. How-
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ever, the last condition, which says basically that r�x� cannot go to zero too
fast, seems much harder to nudge. It is easy to see that condition (4) excludes
rates that vanish slower than exp�−c log1/2 x�, such as g�k� = a log−b k� b > 0.

A common feature in existing studies of random partitions is that truncation
is not needed for the conditioning device to work. However if g�k� ↓ 0, the
series

∑
k≥0 xk/g!�k� converges for x = 0 only. So, breaking with tradition, we

restrict the sum to the range �0�1� � � � � n
 and let x = xn → 0 at a properly
chosen rate. As before, we need good asymptotic estimates of P�∑j Xj = n
,
especially from below.

No such limit theorems are available in case of the vanishing rates, and so
a fairly large portion of our effort goes into the proof that the probability in
question is at least exp�−cng�n�r�n��. For g�k� = k−α, 0 < α < 1, the bound
becomes exp�−c′nβ�, β ∈ �0�1�, which is much smaller than for increasing
rates. Considering how much smaller the probability is here, it came as a
surprise to us that the conditioning device, with a twist, was indispensable
for vanishing rates as well.

Here is our main result for vanishing rates. It illustrates the condensation
transition identified in Theorem 1.

Theorem 4. Under conditions 1–4, �n−Z∗
n�/ng�n� converges to 1 in proba-

bility. Thus, with high probability, the giant cluster absorbs all but
ng�n��1+ o�1�� particles. Furthermore:

(a) If r�∞� = 1, then ng�n� ≤ 1, and n−Z∗
n is asymptotically Poisson with

parameter ng�n�; more precisely, for fixed k and n → ∞:

P�Z∗
n = n− k
 = �1+ o�1�� exp�−ng�n���ng�n��

k

k!
�

(b) If r�∞� > 1, then n−Z∗
n converges to 0 in probability.

Parts (a), (b) and (c) of Theorem 1 follow directly from Theorem 4. To be sure,
it was this earlier result that led us to a conjecture “Z∗

n ≈ n−ng�n� for g�k� ↓ 0
sufficiently fast.” Structurally, the proof of Theorem 4 is close to the original
argument, the main new question being quantification of “sufficiently fast.”
The answer turned out to be condition 4. It describes, however incompletely,
a boundary in “rate space,” separating classes of rate functions under which
random ordered partitions behave rather differently. For further discussion of
the condensation transition, see [21].

The rest of the paper is organized as follows. In Section 1 we prove, for
completeness, Spitzer’s formula (0, 1) for the stationary distribution ν and
show, for the monotone rate g�·�, that ν�η� is monotone with respect to the
“dominance order” on unordered partitions. It Section 2 we prove Theorems 2
and 3, and in Section 3 we prove Theorem 4. We conclude, in Section 4, with
a list of open problems and questions.
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1. Preliminaries. For any positive integers m and n, let #m
n denote the

set of ordered partitions of m with n parts, that is the set of nonnegative
integer solutions of

η1 + η2 + · · · + ηn = m�

Let g!�k� = g�k�g�k − 1� · · ·g�1� with the convention that g!�0� = g�0� = 1.
We include for the reader’s convenience a proof of the fact that ν is the unique
invariant measure of the finite zero-range process on #m

n [42].

Lemma 1.1 (Spitzer [42]). Let Pi�j be a symmetric, irreducible transition
matrix and let g be a positive rate function. For any η ∈ #m

n , let

µ�η� =
n∏

i=1
g!�η�i��−1

and set

ν�η� = 1
�µ�η� where � = ∑

η∈#m
n

µ�η��

Then ν is the reversible invariant measure for the finite zero-range process
corresponding to Pi�j and g.

Proof. The zero-range process is generated by the operator

Lnf�η� =
n∑

i=1

n∑
j=1

[
f�ηi�j� − f�η�]Pi�jg�ηi��

Here, if η�i� = 0 then ηi�j = η and if η�i� > 0 then

ηi�j�k� = η�k� + δj�k − δi� k�

where δ is the Kronecker symbol. It suffices to show that the detailed balance
condition holds. Indeed,

g�η�i��Pijν�η�
g�ηi�j�j��Pjiν�ηi�j� = g�η�i��∏n

k=1 1/g!�η�k��
g�η�j� + 1�∏n

k=1 1/g!�ηi�j�k��

= g�η�i��g!�η�i� − 1�g!�η�j� + 1�
g�η�j� + 1�g!�η�i��g!�η�j��

= 1� ✷

Let S�n� be the permutation group of n letters. For any σn ∈ S�n�, and for
any η = �η�1�� � � � � η�n�� ∈ #m

n , let σnη = �η�σn�1��, η�σn�2��� � � � � η�σn�n���.

Lemma 1.2. For any η ∈ #m
n and σ ∈ S�n�, let ν be the invariant measure

corresponding to g. Then ν�η� = ν�ση�.
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For the proof, evidently ν�ση� and ν�η� differ only in the order of multipli-
cation of their factors.

On certain subsets of the state space we can find the configuration of max-
imum probability. Let

Ak =
{
η ∈ #m

n � max
1≤i≤n

η�i� ≥ k
}
�

so that #m
n \Ak+1 is the set of configurations in which no site has more than

k particles.

Lemma 1.3. Let m = lk + r, 0 ≤ r < k, and let η∗ = �k� k� � � � � k� r�
0�0� � � � �0�, where the k’s are repeated l times. Let g be a rate function with
corresponding invariant measure ν on #m

n . Then η∗ ∈ #m
n \ Ak+1 and for any

η ∈ #m
n \Ak+1:

(a) ν�η∗� ≥ ν�η�, if g is decreasing.
(b) ν�η∗� ≤ ν�η�, if g is increasing.

Proof. Let us suppose g is decreasing and prove (a); the proof of item
(b) is similar. For the purpose of comparing probabilities, we may suppose by
Lemma 2 that the entries of any configuration are ordered in decreasing order:

η�1� ≥ η�2� ≥ · · · ≥ η�n��
First, let us compare probabilities of η and ηi�j where i > j so that a particle
from a less occupied site has been moved to a site of higher occupancy. Then

ν�η�
ν�ηi�j� = g!�ηi�j�1�� · · ·g!�ηi�j�n��

g!�η�1�� · · ·g!�η�n��

= g!�ηi�j�i��g!�ηi�j�j��
g!�η�i��g!�η�j��

= g!�η�i� − 1�g!�η�j� + 1�
g!�η�i��g!�η�j��

= g!�η�i� + 1�
g�η�i��

≤ 1�

where the last inequality is true since g is decreasing. Second, for any η∗ ∈
#m

n \Ak+1, there exists a sequence of transpositions of the form

η → η1 → η2 → · · · → ηs = η∗�

where for each 1 ≤ r ≤ s − 1, ηr+1 = η
i�j
r for some i > j. By the comparison

above,

ν�η∗� = ν�ηs� ≥ ν�η�� ✷
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Let us consider the equation

x1 + x2 + · · · + xn = m�

It is well known that the number of nonnegative solutions is
(
n+m−1
n−1

)
and the

number of positive solutions is
(
m−1
n−1

)
; [38]. The following lemma records these

facts in useful form.

Lemma 1.4. Let #̃m
n = �η ∈ #m

n � η�i� ≥ 1 for all i
. Then:

(a) �#̃m
n � = (

m−1
n−1

)
.

(b) �#m
n � = (

n+m−1
n−1

) = (
n+m−1

m

)
.

From now on, to make things a bit simpler, we will consider only the case
n = m, and we will drop m from the notation. Thus #m

n = #n, etc.

2. Large and moderate rates. We prove Theorems 2.1 and 2.2, which
are more detailed versions of Theorems 2 and 3 in the introduction. Consider
the case when R, the radius of convergence of G�x� = ∑

j≥0 xj/g!�j�, is posi-
tive. Assume first that

lim
x↑R

ρ�x� > 1� ρ�x� def= xG′�x�
G�x� �

Since by Cauchy’s inequality,

ρ′�x� = 1
xG2�x�

((∑
j

xjj2/g!�j�
)(∑

j′
xj′

/g!�j′�
)
−

(∑
j

jxj/g!�j�
)2)

> 0�

there exists a unique x̄ < R such that ρ�x̄� = 1. Introduce the random variable
X with distribution

pj = P�X = j
 = G�x̄�−1 x̄j

g!�j� � j ≥ 0�

Since x̄ < R, there exists c ∈ �0�1� such that pj+1/pj ≤ c for all large enough
j’s. Consequently pj = O�cj� as j → ∞, that is, the tail of X is exponentially
thin, and also

∑
j≥µ pj is of order pµ exactly, as µ → ∞. In particular, EXk <

∞ for every k ∈ �, and, of course, EX = 1 by the definition of x̄.

Theorem 2.1. Suppose m = m�n� is such that

lim
n→∞nP�X ≥ m
 = λ ∈ �0�∞��

Let �n stand for the total number of clusters of size at least m. Then m�n� → ∞,
m�n� = O�log n�, �n converges in distribution to a Poisson with parameter λ,
and Z∗

n/m�n� converges to 1 in probability.
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Proof. We begin by observing that m = O�log n�, since pj = O�cj�. Intro-
duce X∗

n = max1≤j≤n Xj, and let X�m�
1 � � � � �X

�m�
n be the independent copies of

X�m�, which is X conditioned on �X < m
. In addition, let q�m� = P�X ≥ m
.
According to ([25], Lemma 2, page 10) we have

P�Z∗
n < m
 = P�X∗

n < m

P
{∑n

j=1X
�m�
j = n

}
P
{∑n

j=1Xj = n
} �(2.1)

By the local limit theorem ([9], [14]),

P

{
n∑

j=1
Xj = ν

}
= 1+ o�1�√

2πσ2�X�n exp
{
−�ν − nEX�2

2nσ2�X�
}
�

uniformly for �ν − nEX� = O�n1/2�. A careful study of the proof reveals that
the analogous formula holds for X

�m�
1 � � � � �X

�m�
n uniformly for m > 0. This is

so because the effect of conditioning on the event �X ≤ m
 can be estimated
uniformly using remainder terms in expansions of E

(
exp�iuX�m��), notably

E��u� · �X�m��3∧�X�m��2�; see [9]. Furthermore, σ2�X�m�� → σ2�X�, as m → ∞,
and

n− nEX�m� = n
E�X� X ≥ m
 −P�X ≥ m


P�X < m

≤ 2nE�X� X ≥ m

= O�nq�m�m�
= O�log n��

So n− nEX�m� = o�n1/2�, and we have

P

{
n∑

j=1
X

�m�
j = n

}
= 1+ o�1�√

2πnσ2�X�m��
exp

{
−�n− nEX�m��2

2nσ2�X�m��
}

= 1+ o�1�√
2πnσ2�X� �

Therefore [see (2.1)], by the definition of m = m�n�,
P�Z∗

n < m
 = �1+ o�1��P�X∗
n < m


= �1+ o�1���1−P�X ≥ m
�n

→ e−λ�

(2.2)

Thus P��n = 0
 → e−λ, and it remains to show that

P��n = k
 → e−λλk/k!

for every fixed k ≥ 1. To this end we notice first that nq�m1� → 0 for m1 =
	�1 + ε�m
 and a fixed ε > 0. So P�Z∗

n < m1
 → 1 as n → ∞; that is,
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P��n = �̃n
 → 1, where �̃n is the total number of clusters with size between
m and m1−1. Thus, by [5] Chapter 1, we need to show only that the binomial
moments of �̃n converge to those of the Poisson of parameter λ.

Now �̃n = ∑n
j=1 Ij, with Ij being the indicator of the event �Zj ∈ 	m�m1�
.

Hence, as in (2.1),

E

(
c̃n
k

)
=

(
n
k

) ∑
m≤l1�����lk≤m1−1

∏k
t=1pl1

·P{∑n
j=k+1Xj = n−∑k

s=1 ls
}

P
{∑n

j=1Xj = n
} �

To see why this formula holds, note that
(
n
k

)
is the number of ways to select k

sites from m while the numerator is the probability that the Xj’s associated
with the selected sites have values in 	m�m1 − 1
, and that

∑n
j=1Xj = n.

Here, since none of lj� �j ≤ k�, exceeds m1,

n−
k∑

s=1
ls = n− k+O�km1� = n− k+O�log n��

So, uniformly for l1� � � � � lk < m1, the probability in the numerator is asymp-
totic to the probability in the denominator. Therefore

E

(
�̃n

k

)
= �1+ o�1��

(
n
∑m1−1

l=m pl

)k

k!

= �1+ o�1���nqm�k
k!

→ λk

k!
�

(2.3)

Hence �̃n converges in distribution to a Poisson �λ�. It remains to show that
P�Z∗

n ≥ �1− ε�m�n�
 → 1 for every ε ∈ �0�1�. Fix a positive integer a. Using
the properties of the distribution �pj
, it is easy to show that

b1c
−aλ ≤ lim inf

n→∞ nq�m�n� − a� ≤ lim inf
n→∞ nq�m�n� − a� ≤ b2c

−aλ�

here b1, b2 do not depend on a. Let �̂n denote the number of clusters of size
m�n� − a at least. For every subsequence �nl
 such that there exists

λ′ �= lim
n→∞nlq�m�nl�� − a��

we see that λ′ ∈ 	b1c−aλ� b2c
−aλ
 and that �̂nl

is asymptotically Poisson �λ′�. So
lim
nl→∞P�Z∗

nl
≥ m�nl� − a
 = lim

nl→∞P��̂nl
> 0


= 1− e−λ′

≥ 1− exp�−b1c
−aλ��

Therefore, for every fixed a < 0,

lim inf
n→∞ P�Z∗

n ≥ m�n� − a
 ≥ 1− exp�−b1c
−aλ��
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Since m�n� − a > �1− ε�m�n� for large enough n, we get then

lim inf
n→∞ P�Z∗

n ≥ �1− ε�m�n�
 ≥ 1− exp�−b1c
−aλ��

and letting a → ∞ completes the proof. ✷

Now suppose that limx↑R ρ�x� ≤ 1. Then necessarily R < ∞, and the series
for G�x� and G′�x� both converge at x = R. Define the random variable X by

pj = P�X = j
 def= �G�R��−1 Rj

g!�j� � j ≥ 0�

We know that ρ = ρ�R� ≤ 1 and of course, ρ = EX. Observe also that, unlike
in the case of unbounded rates, the tail of X cannot be exponentially thin,
since then R would not be the radius of convergence.

We consider the family of rate functions

g�j� = a

(
1+ β

j
+O

(
j−�1+δ�))� a� δ > 0�

Evidently R = a, and both G�R� and G′�R� < ∞ if β > 2, in which case pj is
of order j−β exactly.

Theorem 2.2. Let g be as above and suppose β > 3.

(a) If ρ < 1 then Z∗
n/n converges to 1 − ρ in probability and, furthermore,

the size of the second largest cluster is o�n1/2 log2 n� in probability.
(b) Suppose ρ = 1 and let λ ∈ �0�∞� be given. Then there exists m = m�n� λ�

such that

lim
n→∞nP�X ≥ m
 = λ

and m�n� λ� is exactly of order n�β−1�−1 . Let �n denote the number of clusters of
size at least m. Then �n converges in distribution to a Poisson with parameter λ.

Consequently, in probability, Z∗
n/n

�β−1�−1 is bounded away from both 0 and ∞,

hence Z∗
n is of order n�β−1�−1 exactly.

Proof. (a) Pick 0 < ε < min�ρ−1�1 − ρ�� 1
 and introduce ν± = n −
�1∓ ε��n− 1�ρ, so that

ν−/n → �1− ρ� − ερ� ν+/n → �1− ρ� + ερ�

The proof of (a) is broken up into a number of steps which combine to show that
ν− ≤ Z∗

n ≤ ν+ with probability tending to 1. First, we show that P�X1 + · · · +
Xn
 vanishes at most like a power of n and then, using this fact, that P�Z∗

n ≥
ν+
 tends to zero. Next, we show that for a properly chosen σ , P�	nσ 
 ≤ Z∗

n ≤
ν−
 and P�Z∗

n ≥ 	nσ 

 vanish as well. There is a twist. By allowing ε in the
definition of ν− to depend correctly on n we can tease out of the proof an
estimate of the size of the second largest cluster.
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Step 1. Introducing X̃ = max1≤k≤n−1 Xk, we have

P

{
n∑

j=1
Xj = n

}
≥ nP

{
n∑

j=1
Xj = n�Xn > X̃

}

≥ n
∑

��m/�n−1�ρ�−1�≤ε

P

{
n−1∑
j=1

Xj = m�X̃ < n−m�Xn = n−m

}

≥ cnP�X = n
 ∑
��m/�n−1�ρ�−1�≤ε

P

{
n−1∑
j=1

Xj = m�X̃ ≤ ν−

}
�

since P�X = n−m
 = O�P�X = n
� uniformly for the range ofm in question.
Consequently,

P

{
n∑

j=1
Xj = n

}
≥ cnP�X = n
�P�X ≤ ν−
�n−1

× ∑
��m/�n−1�ρ�−1�≤ε

P

{
n−1∑
j=1

X
�ν−�
j = m

}
�

(2.4)

whereX
�ν−�
1 � � � � �X

�ν−�
n−1 are independent copies ofX

�ν−�, which isX conditioned
on the event �X ≤ ν−
. Observe that, for a fixed t ∈ �,

E exp
(
itX�ν−�/�n− 1�) = E exp�itX/�n− 1��(1+O�n−�β−1��)

so that

E exp

(
it

n− 1

n−1∑
j=1

X
�ν−�
j

)
= (

1+O�n−�β−2��)E exp

(
it

n− 1

n−1∑
j=1

Xj

)
�

and the last expression converges to eitρ. Hence,

�n− 1�−1
n−1∑
j=1

X
�ν−�
j → ρ

in probability, and the last probability in (2.4) tends to 1. In addition, we see
that

�P�X ≤ ν−
�n−1 = �1−P�X > ν−
�n−1 → 1�

because P�X > ν−
 = O�ν1−β
− � = o�n−1�. Thus we have proved that

P

{
n∑

j=1
Xj = n

}
≥ cnP�X = n
 ≥ c′n1−β�(2.5)

Step 2. Clearly h�θ� �= Ee−θX exists and is continuously differentiable for
all θ > 0. So, using the Chernoff-type inequality

[
i.e., the Markov inequality
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P�Y > y
 ≤ y−1EY for Y = exp�−θ
∑n−1

j=1 Xj� and y = exp�−θ�n − ν+��
]
, we

have

P

{
n∑

j=1
Xj = n�X∗

n ≥ ν+

}
≤ nP

{
n−1∑
j=1

Xj ≤ n− ν+

}
≤ n exp

[�n− 1��log h�θ� + θρ�1− ε��]� θ > 0�

Since h′�0� = −EX = −ρ, using the bound for θ > 0 chosen sufficiently
small, we see that the above probability is exponentially small. Consequently,
by (2.5),

P�Z∗
n ≥ ν+
 = P�∑n

j=1Xj = n�X∗
n ≥ ν+


P�∑n
j=1Xj = n
 → 0�(2.6)

as n → ∞.

Step 3. Pick σ ∈ ��β + 3�/2β�1� and define l = 	nσ 
. Also, let a > 0 be
fixed, set ε = an−1/2 log n and let ν− = n− �1+ ε��n− 1�ρ. Then

P

{
n∑

j=1
Xj = n� l ≤ X∗

n ≤ ν−

}
≤ c′nP�X = l
P

{
n−1∑
j=1

Xj ≥ n− ν−

}
�

Now,

n− ν− = �n− 1�ρ+ x� x �= �n− 1�ερ�
and we have

x

log x
≥ �2aρ+ o�1��√n ≥ √

n�

provided a > 1/2ρ. Using a theorem due to A. V. Nagaev ([31], Chapter 8,
Section 4) we obtain

P

{
n−1∑
j=1

Xj ≥ n− ν−

}
= O�nP�X ≥ x
��

Therefore,

P

{
n∑

j=1
Xj = n� l ≤ X∗

n ≤ ν−

}
= O

(
n−�βσ+�β−1�/2�+2)

= o

(
P

{
n∑

j=1
Xj = n

})
�

since P�∑n
j=1Xj = n
 is of order n−�β−1� at least, and σ > �β+ 3�/2β. Hence

Z∗
n  ∈ 	l� ν−
 with probability approaching 1.
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Step 4. Next,

P

{
n∑

j=1
Xj = n�X∗

n ≤ l

}
≤ P

{
n∑

j=1
X

�l�
j = n

}

≤ P

{
n∑

j=1
X

�l�
j ≥ n

}
�

hereX�l� isX conditioned on �X ≤ l
. The last probability is bounded above by
exp

(
n
(
logE exp

(
θX�l�)− θ

)) ∀ θ > 0�

(The moment generating function exists since the range of X�l� is bounded
from above.) For θ of order n−σ ′

, where σ ′ ∈ �σ�1�, we have
exp�θX�l�� = 1+ θX�l� +O

(�θX�l��2)
= 1+ (

1+O
(
n−�σ ′−σ�))θX�l��

Hence

E exp�θX�l�� = 1+ (
1+O�n−�σ ′−σ��)θEX�l��

whereEX�l� → ρ < 1. Therefore the above probability is of order exp�−e∗nθ� =
exp�−c∗n1−σ ′ �, which is subexponentially small, o�P�∑n

j=1Xj = n
� that is.
Therefore with probability approaching 1, Z∗

N ≥ l.
Summarizing Steps 1 through 4, we conclude that Z∗

n ∈ 	ν−� ν+
 with prob-
ability approaching 1.

Step 5. Let Z∗∗
n denote the size of the second largest cluster. Fix δ > 0.

On the event �Z∗
n ≥ ν−�Z∗∗

n ≥ δn1/2 log2 n
 the total size of all clusters, other
than the two largest ones, is at most �n− 2�ρ̃, where ρ̃ = ρ− δn−1/2�log2 n�/2.
As in Step 2,

P

{
n−2∑
j=1

Xj ≤ �n− 2�ρ̃
}
= �O exp�−n1/2���

and we obtain

P
{
Z∗

n ≥ ν−�Z
∗∗
n ≥ δn1/2 log2 n

} → 0�

Since P�Z∗
n < ν−
 → 0 as well, we see

Z∗∗
n = op

(
n1/2 log2 n

)
�

(b) The proof of this part mimics, to a large extent, the proof of Theorem 2.1.
We begin with introducingm = m�n� such that limn→∞ nP�X ≥ m
 = λ, λ > 0
being fixed. Since P�X ≥ µ
 is asymptotic, within a constant factor, to µ1−β

as µ → ∞, m = m�n� is asymptotic to �n/λ��β−1�−1 . Then we select m1 = na,
where a ∈ (�β−1�−1�1). Clearly nP�X ≥ m1
 = O�n1−a�β−1�� → 0, so that �n,
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the number of clusters of size at least m, coincides, with probability approach-
ing 1, with �̃n, the number of clusters of size from the interval 	m�m1 − 1
.
Since m1 = o�n�, the computation of E

(�̄n

k

)
proceeds exactly as that for �̃n in

the proof of Theorem 2.1. So �̃n is asymptotically Poisson with parameter λ,
and then so is �n. In particular,

P�Z∗
n < m�n�
 = P��n = 0
 → e−λ� n → ∞�

Since m�n� ∼ c�n/λ��β−1�−1 , we can translate the last result into

lim
n→∞P

{
Z∗

n < xn�β−1�−1
}
= exp

[
−
( c

x

)β−1]
�

Consequently, with high probability, Z∗
n is of order n�β−1�−1 exactly. ✷

3. Vanishing rates. Consider, finally, the case g�k� ↓ 0. Concerning g
we assume:

1. g�x� is defined for x ∈ 	0�∞�, g�x� ≡ 1 for x ∈ 	0�1
, g�x� ↓ 0 as x ↑ ∞,
g�x� twice continuously differentiable for x > 1.

2. r�x� = −xg′�x�/g�x� is bounded and decreasing on 	1�∞�.
3. s�x� = xr′�x�/r�x� tends to 0 as x → ∞.
4. limx→∞	r�x� log1/2 x− log log x
 = ∞.

Remarks. Before getting down to brass tacks, let’s make a few remarks
about these four conditions.

(a) Let f�x� = 1/g�x�. Then r�x� and s�x� are the derivatives of log f�x�
and log r�x� with respect to log x. Evidently,

f�x� = exp
{∫ x

1

r�t�
t

dt

}
and so condition 2 implies that f�x� = O�xc�, for some c > 0. Thus, g�x� ≥
c′x−c. It is just as easy to see that

g�x� = x−r�∞�+o�1��

so that, roughly speaking, if r�∞� > 0 then g behaves like a power function.
(b) It follows from 4 that log f�x� # log1/2 x, whence r�x� log f�x� → ∞.

Consequently, we see that g�x� = o�r�x��.
(c) We will need the average logarithmic rate of f�x�, defined by

r̄�x� = 1
x

∫ x

1
r�y�dy�
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For x > 1, we have r̄�x� = r�x� + o�r�x��. To see it, note that

r̄�x� = 1
x

[
xr�x� − r�1� −

∫ x

1
yr′�y�dy

]

= r�x� − r�1�
x

− r̄�x�
∫ x
1 r�y�s�y�dy∫ x

1 r�y�dy

= r�x�
(
1− r�1�

xr�x�
)
+ o�r̄�x���

since by 3 limx→∞ s�x� = 0 and, by 4,
∫∞
0 r�y�dy = ∞. Therefore, again

using 4,

r�x� = r̄�x� + o�r̄�x�� ⇒ r̄�x� = r�x� + o�r�x���(3.1)

As for condition 4, we have believed that it would have been sufficient to
require only that limx→∞ r�x� log1/2 x = ∞. However, thanks to the thoughtful
questions made by a referee, we have realized that we need 4, which is a bit
stronger.

Now, the centerpiece of Theorem 4 as stated in the introduction is the
following.

Theorem 3.1. Under the assumptions above, �n−Z∗
n�/ng�n� converges to

1 in probability.

The proof of Theorem 3.1 and the rest of Theorem 4 consists of a step-by-
step identification of the parts of �0�1�2� � � � � n
 that, taken together, form the
set of unlikely values of Z∗

n. Needless to say, this set is going to be{
j� ��n− j�/ng�n� − 1� > ε

}
� ε > 0�

First we show that Z∗
n is extremely unlikely to be small compared to n,

and the magnitude of Z∗
n is measured intrinsically, by the value of g�Z∗

n�, the
current disintegration rate of the largest cluster.

Lemma 3.1. If βn ∈ �0�1� is such that �1− βn� log f�n� → ∞, then

P
{
g�Z∗

n� ≥ g�n�βn
} = exp

(−�1− βn�n log f�n� +O�n�)�
Proof. Let k be the largest integer such that g�k� ≥ g�n�βn , that is f�k� ≤

f�n�βn . Introduce the configuration

η1 = �k� k� � � � � k� r�0�0� � � � �0��
where k is repeated l times, and let η2 = �n�0�0� � � � �0�. By Lemma 1.3,

P�Z = η1
 ≥ P�Z = η
 for all η ∈ �η� Z∗ ≤ k
�
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Thus,

P
{
g
(
Z∗

n

) ≥ g�n�βn
} = P�Z∗

n ≤ k

≤ P�Z = η1
��Z∗ ≤ k
�

≤ P�Z = η1

P�Z = η2


�#n�

≤ g!�n�
�g!�k��l+1 4

n�

since, by Lemma 1.4, �#n� =
(2n−1

n

)
. For an integer m,

g!�m� = exp
[
−

m∑
j=1

log f�j�
]

= exp
[
−m log f�m� +

∫ m

0
r�y�dy+O�log f�m��

]
= exp	−m log f�m� +O�m�
�

since by Remark 1, log f�m� = O�logm�. Therefore,
g!�n�

�g!�k��l+1 = exp	−n log f�n� +O�n�

�exp	−k log f�k� +O�k�
�l+1

= exp	−n log f�n� + n log f�k� +O�n�

= exp	−�1− βn�n log f�n� +O�n�
� ✷

Our next, much bigger, step is to show that it is also unlikely for Z∗
n to have

any value between max�j� g�j� ≥ g�n�βn
 and n− cng�n�, if c is sufficiently
large. For this purpose we turn again to the conditioning device. Since now
the radius of convergence of

∑
j x

j/g!�j� is zero, we are forced to consider
X ≤ n and x = xn → 0, the latter being necessary to avoid a hopelessly small
value of P�∑i Xi = n
. By analogy with the proofs in Section 2, it would
seem natural to choose xn so as to make EX close to 1, the particle density.
Since P�X = n
/P�X = 0
 = xn/g!�n�, the requirement EX ∼ 1 leads to xn

being of order g�n�. However, with this choice, the resulting variance of X is
unbounded which, essentially, means that we will have to boundP�∑i Xi = n

from below without being able to apply a local limit theorem. If that is the case,
we may just as well forget about EX ∼ 1 and pick an xn of order g�n� which
does allow us to find a working bound for that probability in a reasonably
direct way.

To that end, we define xn as the root of the equation

xn

g!�n� = g�n�3�(3.2)

Thus

xn = (
g�n�)3/n(g!�n�)1/n�
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Since − logg�n� = log f�n� = O�log n�, the first factor is 1 + O�n−1 log n�.
Besides, from the proof of Lemma 3.1, we have(

g!�n�)1/n = exp
(
− log f�n� + 1

n

∫ n

0
r�y�dy+O�n−1 log n�

)
= �1+O�n−1 log n��g�n�er̄�n��

Thus

xn = �1+O�n−1 log n��g�n�er̄�n��(3.3)

So xn is indeed of order g�n�.
To proceed, we need to have a close look at the sequence �qt
 = �xt/g!�t�


which when normalized will give the probability distribution ofX. Calculating
as before, but with more precision, we have for every 1 ≤ t ≤ n,(

g!�n�)t/n
g!�t� = exp

(
− t

n

n∑
j=0

log f�j� +
t∑

j=0
log f�j�

)

= exp
(
−t log f�n� + t

n

∫ n

0
r�y�dy+ t log f�t�

−
∫ t

0
r�y�dy+O�log n�

)
= exp

(
−t

[
log

(
e−r̄�n�f�n�)− log

(
e−r̄�t�f�t�)]+O�log n�

)
�

Now an easy computation shows that, for x ∈ 	1� n
,

x
�d/dx�(e−r̄�x�f�x�)

e−r̄�x�f�x� = r̄�x� ≥ x− 1
x

r�x� ≥ x− 1
x

r�n��

since r�x� decreases. Therefore,(
g!�n�)t/n
g!�t� ≤ exp�−tr�n�(log�ne1/n� − log�te1/t�)+O�log n��

= exp
(−tr�n��log n− log t� +O�log n�)�

so that

qt =
xt

g!�t� ≤ nc

(
t

n

)tr�n�
�(3.4)

Another inequality we will need is

r�x2� log
x2
x1

≤ log
f�x2�
f�x1�

≤ r�x1� log
x2
x1

� 1 ≤ x1 ≤ x2�(3.5)

which follows from the definition and monotonicity of r�x� on 	1�∞�.
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Finally, to avoid cumbersome expressions in our inequalities we will use
below the shorthand

An
p=Bn� An

p≤Bn� An

p≥Bn

for, respectively,

nd1Bn ≤ An ≤ nd2Bn� ndAn ≤ Bn and An ≥ ndBn�

where d, di are suitable constants of any sign. (p stands for “polynomially.”)

Lemma 3.2. Let Mn = ∑n
t=0 qt, so that pt = P�X = t
 = qt/Mn. Then

Mn = 1+ xn +O
(
g�n�2)

and

Mn
n

p= exp
[
ner̄�n�g�n��1+O�g�n���

]
�

Proof. Let tn = 	εnn
 and τn = 	�1−εn�n
, and εn = c1 log n/�nr�n��, with
c1 > 0 being fixed. Using the unimodality of qt and the bound (3.4), together

with g�n� p≥1, and r�n� # log−1/2 n, we see that∑
tn≤t≤τn

qt = O�nmax�qtn
� qτn

�� = O�nqτn
� = O�nc−c1+1� = O�g2�n���

where the last estimate holds if c1 is chosen sufficiently large. [The reason
we are content with the obviously weak bound O�g2�n�� will become clear
shortly.] It remains to consider the tail values of t.

Let t ≤ tn. The ratio qt/qt−1 = xn/g�t� increases for t ≥ 1, and by (3.3),
(3.5) and (3.1),

xn

g�tn�
= exp

(
r̄�n� − log

f�n�
f�tn�

+O�n−1 log n�
)

≤ exp
(
r̄�n� − �1/2+ o�1��r̄�n� log n

tn
+O�n−1 log n�

)
≤ e−r�n��

(3.6)

the last inequality being rather crude, but sufficient. Indeed, since g�n� =
O�r�n�� [even o�r�n��
,

tn∑
t=3

qt ≤
q3

1− e−r�n� = O

(
g�n�3
r�n�

)
= O

(
g�n�2)

and ∑
t≤tn

qt =
2∑

t=0
qt +O�g�n�2� = 1+ xn +O�g�n�2��(3.7)
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Let’s turn to t ≥ τn. The ratio xn/g�t� attains its minimum at τn, and analo-
gously to (3.6),

xn

g�τn�
≥ exp

(
r̄�n� − 2r̄�n� log n

τn

)
≥ exp�r�n�/2��(3.8)

According to (3.2), qn = g�n�3. So, as in the case of small t’s,
n∑

t=τn

qt = O

(
qn

r�n�
)
= O

(
g�n�3
r�n�

)
= O�g�n�2��

Combining (3.7), the last relation, and (3.3), completes the proof for the esti-
mate of Mn. The estimate for Mn

n follows from

Mn
n = �1+ xn +O�g�n�2��n = exp

[
n log�1+ xn +O�g�n�2��]�

(3.3) and the fact that log�1+ z� = z+O�z2� as z → 0. ✷

Now we can estimate the probability of the conditioning event �∑i Xi = n

from below.

Lemma 3.3. We have

P

{∑
i

Xi = n

}
p≥ exp

[
−�er�n� − 1�ng�n��1+ o�1��

]
�(3.9)

Proof. Given k, 0 ≤ k < n, let

nk = �n− k�1�1� � � � �1�0�0� � � � �0��
where the 1’s are repeated k times and the 0’s n− k− 1 times. Let

Bk = �η ∈ #n� η = σnηk for some σn ∈ S�n�
�
Evidently, for k<n−1, there are exactly n

(
n−1
k

)
configurations inBk. Therefore,

P

{∑
i

Xi = n

}
≥ max

0≤k<n−1
P�X1 = ηk�1�� � � � �Xn = ηk�n�
 · �Bk�

= max
0≤k<n−1

n

(
n− 1
k

)
qk
1qn−k

Mn
n

p≥ max
0≤k<n−1

(
n
k

)
qk
1qn−k

Mn
n

= xn
n

Mn
n

max
0≤k<n−1

(
n
k

)
1

g!�n− k� �

(3.10)

Here, by (3.3) and Lemma 3.2,

xn
n

Mn
n

p= exp
(
n log�g�n�er̄�n�� − ner̄�n�g�n� +O�ng�n�2�)

= exp
(
n logg�n� − nr̄�n� − ner̄�n�g�n� +O�ng�n�2�)�(3.11)
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Next, using the Stirling formula ν! ∼ �2πν�1/2�ν/e�ν, �ν → ∞�, and its corollary
ν! ≤ c�ν+1�1/2�ν/e�ν, �∀ ν ≥ 0�, we obtain, again neglecting polynomial factors,
that (

n
k

)
g!�n− k�

p≥ exp
(
k log

n

k
+ �n− k� log n

n− k

− �n− k� log f�n− k� −
∫ n−k

0
r�y�dy

)
�

The exponent attains its maximum at k = κ such that

log
n

κ
− log

n

n− κ
− log f�n− κ� = 0�(3.12)

and it is easy to show that κ is asymptotic to n/f�n� = ng�n�. More precisely

κ = ng�n��1− �r�n� − 1�g�n� +O�g�n�2���(3.13)

By (3.12), the maximum value equals

n log
n

κ
−

∫ n−κ

0
r�y�dy�

Here, by (3.13),

n log
n

κ
= −n logg�n� − n�r�n� − 1�g�n� +O�ng�n�2�

and

−
∫ n−κ

0
r�y�dy = −

∫ n

0
r�y�dy+

∫ n

n−κ
r�y�dy

= −nr̄�n� + nr�n�g�n� +O�nr�n�g�n�2��
The estimate for the integral from n − κ to n comes from condition 3 and it
implies that, uniformly in y ∈ 	n− κ�n
.

r�y� = r�n��1+O�κ/n�� = r�n��1+O�g�n���
So the maximum is

− n logg�n� + ng�n� − nr̄�n� +O�ng�n�2�(3.14)

at least. Combining this with (3.10) and (3.11) completes the proof. ✷

We are in a position now to prove a preliminary upper bound for the prob-
ability that Z∗

n assumes a “midrange” value.

Lemma 3.4. (a) If

αn = min
{
1
2
�
(

r�n�
log f�n�

)1/2}
�

then

lim
n→∞αn log f�n� = ∞� lim sup

n→∞
αn

r�n� = 0�(3.15)



1184 I. JEON, P. MARCH AND B. PITTEL

(b) Set βn = 1− αn and k = max�j� g�j� ≥ g�n�βn
. If δn = o�f�n�� then
for every ρ ∈ �0�1�,

P
{
k < Z∗

n ≤ n− δng�n�n
}

p≤ exp
[
�er�n� − 1− δnr�n��ng�n� +O�nr�n��δng�n��2�

]
+ exp�−nρ��

The following corollary is a direct consequence.

Corollary 3.5. If limn→∞ nr�n�g�n�/�log n� = ∞ and δ > limn→∞(
er�n� − 1

)
/r�n�, then

lim
n→∞P

{
Z∗

n > n− δng�n�} = 1�

Proof of Lemma 3.4. Part (a) follows from limn→∞ r�n� log f�n� = ∞,
implied by condition 4. Turning to (b), the probability is bounded above by

P�k < maxXi ≤ n− δnng�n�

P�∑i Xi = n
 ≤ nP�k < X1 ≤ n− δnng�n�


P�∑i Xi = n
 �

The numerator of the last fraction is of order

nmax
{
P�X1 = k
�P�X1 = 	n− δnng�n�



}
�

By (3.4), the second probability is of order

nc exp
(
−tr̄�n� log n

t

)∣∣∣∣
t=n−δnng�n�

= nc exp
(−δnng�n�r̄�n��1+O�δng�n���

)
�

Therefore, using Lemma 3.3,

nP�X1 = 	n− δnng�n�


P�∑i Xi = n


p≤ exp
((

er�n� − 1− δnr̄�n�
)
ng�n� +O�nr�n��δng�n��2�

)
�

Further, since f�k + 1� ≥ f�n�βn , we have [see (3.5) and the second relation
in (3.15)]

k+ 1 ≥ n exp
(
−αn�1+ o�1�� log f�n�

r�n�
)

≥ n exp�−o�log f�n���
→ ∞�
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So, combining this with f�k� ≤ f�n�βn , (3.3), (3.5) and the first relation in
(3.15), we have

P�X1 = k
 p= xk
n

g!�k�
= exp�−k�log f�n� − log f�k�� +O�k��
≤ exp�−kαn log f�n� +O�k��
≤ exp

(
−0�5nr�n�λ�n�e−λ�n�

)
�

where

λ�n� �= αn log f�n�
r�n� �

Here, by (3.15), both λ�n� → ∞ and λ�n�r�n� → ∞ and

λ�n� ≤ log f�n�√
r�n� log f�n� = o�log n��

So, for every a < 1 and sufficiently large n,

nr�n�λ�n�e−λ�n� ≥ na

and

nr�n�λ�n�e−λ�n�

nr�n�g�n� ≥ e−λ�n�

g�n�

= exp
[
log f�n�

(
1− αn

r�n�
)]

≥ log1/2 n�

Thus, given ρ < 1, there exists a number n�ρ� such that

nP�X1 = k

P�∑n

t=1Xt = n
 ≤ e−nρ

�

for all n ≥ n�ρ�. ✷

We use the last estimate to show next that, for r�∞� ≥ 1, the largest cluster
contains, with high probability, all but finitely many particles,

Lemma 3.6. If r�∞� ≥ 1, then the sequence �n−Z∗
n
 is tight; that is, n−Z∗

n

is bounded in probability.

Proof. Integrating the differential inequality

xf′�x�
f�x� = r�x� ≥ 1� f�1� = 1�
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we get f�x� ≥ x and g�x� ≤ x−1, �x ≥ 1�. Therefore, by Lemma 3.2, Mn =
1+O�n−1� and Mn

n = O�1�. Hence
P�X1 + · · · +Xn = n
 ≥ nP�X1 = n�Xj = 0�∀j ≥ 2


= n
xn
n/g!�n�
Mn

n

≥ cng�n�3� c ∈ �0�∞��

(3.16)

To proceed, notice that limx→∞ r�x� log f�x� = ∞. So we can use Lemma 3.4
with δn = c0 log n/�ng�n��, selecting c0 large enough to outpower the polyno-
mial factor implicit in the statement and also Lemma 3.1 to obtain

P�Z∗
n ≤ n− c0 log n
 = P�Z∗

n ≤ k
 +P�k < Z∗
n ≤ n− δng�n�n


≤ o�1� + exp�−�c0/2� log n�
= o�1��

Furthermore, for t > n−c0 log n, the ratio qt/qt−1 is at least exp�r�n�/2� ≥ e1/2;
see (3.8). Therefore, given an integer N,

P�n−Z∗
n ≥ N
 = P�Z∗

n ≤ n−N

= o�1� +P�n− c0 log n < Z∗

n ≤ n−N

[using (3.16)]

≤ o�1� + n

cng�n�3P�n− c0 log n < X1 ≤ n−N


≤ o�1� + 1
cg�n�3 · qn

e−N/2

1− e−1/2

= o�1� +O�e−N/2��
which completes the proof. ✷

Lemma 3.7. Suppose r�∞� > 1. Then P�Z∗
n = n
 → 1.

Proof. By Lemma 3.6, it suffices to show that for every fixed k ≥ 1,

lim
n→∞

P�Z∗
n = n− k


P�Z∗
n = n
 = 0�

The denominator equals �−1�n/g!�n��, and the numerator is bounded above
by

P�Z = �n− k� k�0� � � � �0�
n�#k
n−1� ≤ �−1(g!�n− k�g!�k�)−1�2n�k+1�

from Lemmas (1.3) and (1.4). Here, since k is fixed,

g!�n�
g!�n− k� ≤ exp

(�n− k� log f�n− k� − n log f�n� +O�1�)�
≤ exp

(−k log f�n� +O�1�)�
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According to the proof of Lemma 3.6, f�n� ≥ nr�∞�, so the ratio of the proba-
bilities in question is O�nk/nkr�∞�� = o�1�. ✷

Lemma 3.8. Suppose r�∞� = 1. Then n−Z∗
n is asymptotically Poisson with

parameter ng�n� ≤ 1; that is, for every fixed k ≥ 0,

P�Z∗
n = n− k
 = �1+ o�1�� exp�−ng�n���ng�n��

k

k!
�

Proof. Introduce Cn the total number of clusters, that is, the total number
of occupied sites. Clearly Cn ≤ n−Z∗

n + 1 and the equality means that all the
clusters, besides the largest one, are of size 1. For a fixed k,

P�Z∗
n = n− k�Cn = k+ 1
 = �−1n

(
n− 1
k

)
xn
n

g!�n− k�

= �1+ o�1�� nxn
n

�g!�n� �
�ng�n��k

k!
�

while, for l ≤ k,

P�Z∗
n = n− k�Cn = l
 = O

(
n

(
n− 1
l− 1

)
xn
n

�g!�n− k�
)

= O
(
n−�k+1−l�P�Z∗

n = n− k�Cn = k+ 1

)
�

Therefore, for every fixed k,

P�Z∗
n = n− k
 = �1+ o�1�� nxn

n

�g!�n�
�ng�n��k

k!

and, since n−Z∗
n is tight,

1 = �1+ o�1�� nxn
n

�g!�n�
∑
k≥0

�ng�n��k
k!

�

that is,

P�Z∗
n = n− k
 = �1+ o�1�� exp�−ng�n���ng�n��

k

k!
� ✷

So we have proved parts (a) and (b) of Theorem 4. The main assertion of the
theorem follows from a combination of the next (and last) two lemmas.

Lemma 3.9. Let r�∞� < 1 and suppose limn→∞	r�n� log1/2 n − log log n
 =
∞. Introduce the quantities

γ∗
n = 1

2
min

{
1�

(
r�n�

1− r�n�
)2}

� γn = γ∗
n − r�n� log−1/2 n
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and let εn = �ng�n��−γn . Then (a) γn = �1 + o�1��γ∗
n and limn→∞ εn = 0.

Furthermore, let kn = �1− εn�ng�n�. Then (b)

lim
n→∞P�Z∗

n > n− kn
 = 0�

or, more precisely, for every 0 < c < 1/2 there exists n�c� such that if n > n�c�
then

P�Z∗
n > n− kn
 ≤ exp

(−c�ng�n��1−2γn
)
�

Proof. Part (a) follows from the observation that g�n� = n−r�∞�+o�1� and
the conditions on r�∞� and r�n�.

(b) In a nutshell, we partition the event �Z∗
n > n− kn
 into the subevents

�Zn = j�Cn = l
 and determine a pair �j� l� that maximizes the contribution
to the overall probability bound.

To start, notice that for all j,∣∣�Z∗
n = j�Cn = l
∣∣ ≤ l

(
n
l

)(
n− j− 1

l− 2

)
� 1 ≤ l ≤ n− j+ 1�

with equality if j > n/2. Also notice that, from Lemma 1.3, the allocation

�j�n− j− l+ 2�

l−2︷ ︸︸ ︷
1� � � � �1�0� � � � �0� is a maximal element of �Z∗

n = j�Cn = l

for large j. So, denoting µ = �ν, �µ�#n� = ��, we have

µ�Z∗
n > n− kn
 ≤ ∑

j>n−kn

1≤l≤n−j+1

l

(
n
l

)(
n− j− 1

l− 2

)

× �g!�j�g!�n− j− l+ 2�
−1�
(3.17)

We’ll use Stirling’s formula for the usual factorials and the approximation

1
g!�m� = exp�h�m� +O�logm���

where

h�m� �= m log f�m� −
∫ m

0
r�z�dz�

Now, switching variables to k = n− j+ 1, and enlarging the range of l a bit,
we transform the estimate in (3.17) to

µ�Z∗
n > n− kn


p≤ ∑
0≤l≤k≤kn

exp
(
Hn�k� l�

)
�(3.18)

where

Hn�x�y� �= y log
n

y
+ �n− y� log n

n− y
+ y log

x

y
+ �x− y� log x

x− y

+h�n− x� + h�x− y��
Here we use the convention 0 log c/0 �= 0.



SIZE OF THE LARGEST CLUSTER 1189

Our task is to characterize a point �xn� yn� such that

max
{
Hn�x�y�� 0 ≤ y ≤ x ≤ kn

} = Hn�xn� yn��
From (3.18), for y < x,

∂Hn�x�y�
∂x

= log
xf�x− y�

�x− y�f�n− x� �

∂Hn�x�y�
∂y

= log
�x− y��n− y�
y2f�x− y� �

(3.19)

These relations owe their relative simplicity to the product type form of the
original summands in (3.17). We notice that, for y < x in question, the sum
of the derivatives is

log
x�n− y�

y2f�n− x� ≥ O�kn/n� + log
n

knf�n�
≥ O�g�n�� + log�1− εn�−1

> 0�

since εn # g�n�, which follows from a stronger inequality ε2n # g�n� proved
below. Therefore, Hn�x�y� is strictly increasing with x along every straight
line x− y ≡ const, and

max
{
Hn�x�y�� 0 ≤ y ≤ x ≤ kn

} = max
{
Hn�kn� y�� y ≤ kn

}
�

so, in particular, xn = kn. Introduce

σn = max
{
0�

1− 2r�n�
�1− r�n��2

}
+ r�n� log−1/2 n�

So σn > 0, and it follows from

1− σn = min
{
1�

(
r�n�

1− r�n�
)2}

+ r�n� log−1/2 n�

and r2�n� log n → ∞ that �1 − σn� log n → ∞. Therefore, σn < 1 for n large
enough. Then, for y ≤ kn − �ng�n��σn , using g�n� ≤ n−r�n� we have

∂Hn�kn� y�
∂y

≥ O�1� + log
(
n�ng�n��σn�1−r�n��

�ng�n��2
)

= O�1� + log
(

n

�ng�n��2−σn�1−r�n��

)
≥ O�1� + �2r�n� − 1+ σn�1− r�n��2� log n

→ ∞�

by definition of σn and r�n� log1/2 n → ∞. So, whatever yn is, it must satisfy

kn − �ng�n��σn ≤ yn ≤ kn�
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It remains to sharply estimate Hn�kn� yn�. The dominating summands are

yn log
n

yn

= kn log
n

kn

+O
(�ng�n��σn log n

)
�

�n− yn� log
n

n− yn

= yn +O
(
y2
n/n� = kn +O��ng�n��σn

)
�

h�n− kn� = −�n− kn� logg�n� − nr̄�n� +O
(�ng�n��σn

)
�

by definition of σn, and condition (3). The sum of the three remaining terms
is O��ng�n��σn log n�. Thus,

Hn�kn� yn� = kn log
n

kn

+ kn − �n− kn� logg�n� − nr̄�n�

+O
(�ng�n��σn log n

)
�

(3.20)

Now, while proving Lemma 3.3, we actually demonstrated [see (3.14)] that

µ�#n
 ≥ exp�−n logg�n� + ng�n� − nr̄�n� +O�ng�n�2���(3.21)

These last two relations, combined with (3.18) and some simple algebra, lead
to

P�Z∗
n > n− kn
 = µ�Z∗

n > n− kn

µ�#n


p≤ exp�−� �εn�ng�n�+O��ng�n��σn log n+ng�n�2���
(3.22)

where

� �z� �= z− �1− z� log�1− z�−1� z ∈ �0�1��
Notice that � �z� ∼ z2/2, �z → 0�. Let us prove that −� �εn�ng�n� dominates
the remainder terms. Recalling the definitions of εn, σn and noting g�n� =
n−r�∞�+o�1�, we see that

ng�n�ε2n
�ng�n��σn log n

= �ng�n��1−2γn−σn

log n

= exp
[�log n��1− r�∞� + o�1���1− 2γn − σn�

]
log n

�

where (miraculously?)

1− 2γn − σn = r�n� log−1/2 n�
So the ratio in question approaches infinity as fast as exp�r�n� log1/2 n −
log log n�. Consequently, ng�n�ε2n # log n, which will be needed to neutral-
ize a polynomial factor implicit in (3.23). Likewise, by g�n� ≤ n−r�n�,

ng�n�ε2n
ng�n�2 = n−2γn

g�n�1+2γn
≥ exp

[�r�n� − 2γn�1− r�n�� log n
]
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and

r�n� − 2γn�1− r�n�� = max
{
2r�n� − 1�

�1− 2r�n��r�n�
1− r�n�

}
+ 2r�n��1− r�n�� log−1/2 n

≥ 2r�n��1− r�n�� log−1/2 n�
So the second ratio approaches infinity even faster, as exp�2r�n� log1/2 n�. We
conclude that

P�Z∗
n > n− kn
 ≤ exp�−c�ng�n��1−2γn� ∀ c < 1/2�

if n ≥ n�c�. This completes the proof. ✷

Lemma 3.10. Under the conditions and in the notation of Lemma 3.9,

lim
n→∞P�Z∗

n ≤ n− κn
 = 0�

where κn �= �1+εn�ng�n�, and more explicitly, the probability in question has
the same upper bound as the one in Lemma 3.9.

Proof. By Corollary 3.5, it suffices to show that

lim
n→∞P

{
n− κ̂n ≤ Z∗

n ≤ n− κn

} = 0�

where κ̂n �= δng�n�, and δ > �er�∞� −1�/�r�∞��� ��e0−1�/0 = 1� by definition).
Just as in the previous proof,

µ
{
n− κ̂n ≤ Z∗

n ≤ n− κn

} p≤ ∑
κn≤k<κ̂n

0≤l≤k

exp
(
Hn�k� l�

)
�

Given x ∈ 	κn� κ̂n
, and x− y ≥ �ng�n��σn , we can estimate [see (3.19)]

∂Hn�x�y�
∂y

≥ O�1� + log
�ng�n��σn�1−r�n��n

�ng�n��2
≥ O�1� + (

σn�1− r�n��2 + 2r�n� − 1
)
log n

→ ∞�

Hence, for fixed x, Hn�x�y� attains its maximum at a point y�x� such that
x− y�x� ≤ �ng�n��σn = o�x�. Therefore, analogously to (3.20),

max
{
Hn�x�y�� y ∈ 	0� x
} = Hn�x� +O

(�ng�n��σn log n
)
�(3.23)

where

Hn�x� �= x log
n

x
+ x− �n− x� logg�n� − nr̄�n��
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Now, Hn�x� is convex and attains its absolutemaximum at x0 = ng�n� < κn =
�1+ εn�ng�n�. Thus,

max
{
Hn�x�� x ∈ 	κn� κ̂n


} = Hn�κn�
and, using also (3.21) and (3.23), we arrive at

P�n− κ̂n ≤ Z∗
n ≤ n− κn


p≤ exp�−� �−εn�ng�n�
+O

(�ng�n��σn + ng�n�2�)
≤ exp

(−c�ng�n��1−2γn
) ∀ c < 1/2�

if n ≥ n�c�. ✷

Thus, under the condition limx→∞�r�x� log1/2 x−log log x� = ∞, the total num-
ber of particles in the remaining less populous sites has a distribution sharply
concentrated around ng�n�, with random fluctuations of order
εnng�n�, at most. If our derivation is any indication, and we think it is,
then r�∞� = 1/2 appears to be a certain threshold value for the magni-
tude of the random fluctuations. For r �= r�∞� < 1/2, their order is roughly
�ng�n��1−�r/�1−r��2/2, and it is �ng�n��1/2 for r > 1/2.

4. Open problems and questions.

1. We conjecture that under the conditions of Lemmas 3.9 and 3.10, n−Z∗
n is

asymptotically Gaussian with mean ng�n� and standard deviation o�ng�n��
(cf. [32]).

2. What happens if g�x� ↓ 0, but r�x� log1/2 x  → ∞? Is it possible that in
this case n −Z∗

n is not sharply concentrated around ng�n�? Are there the
rates in this class for which the limiting distribution has more than one
pronounced peak?

3. We have proved that, for ρ �= limx↑R xG′�x�/G�x� < 1, Z∗
n/n → 1 − ρ in

probability, if the tail of X corresponding to x = R is polynomially thin.
We conjecture that the conclusion is true for other tails as well, such as
pj ∼ exp

(−n1−β
)
, β ∈ �0�1�. The latter arises for example when g�k� ∼

R
(
1+ k−β

)
. The underlying difficulty is a lack of a local limit theorem for

“very large” deviations when the common distribution of the independent
summands does not satisfy Cramér’s condition.
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