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FATOU THEOREM OF p-HARMONIC FUNCTIONS ON TREES

By Robert Kaufman and Jang-Mei Wu1

University of Illinois

We study bounded p-harmonic functions u defined on a directed tree T
with branching order κ (1 < p <∞ and κ = 2�3� � � �). Denote by BV�u� the
set of paths on which u has finite variation and � �u� the set of paths on
which u has a finite limit. Then the infimum of dimBV�u� and the infimum
of dim� �u� are equal over all bounded p-harmonic functions on T (with
p and κ fixed); the infimum d�κ�p� is attained and is strictly between 0
and 1 expect when p = 2 or κ = 2.

1. Introduction. In this note, we study the asymptotic behavior of
p-harmonic functions on directed trees, in particular, the set of branches where
a function has bounded variation or finite limit.
Let κ > 1 be an integer and T a directed tree with regular κ-branching.

That is, T consists of the empty set φ and all finite sequences (b1� b2 · · · br) of
lengths r = 1�2�3� � � � � whose coordinates are chosen from �1�2� � � � � κ�. The
elements in T are called vertices. Each vertex v has κ successors, obtained
by adding another coordinate; these are abbreviated by �v�1�� � � � � �v� κ� and
have length one more than the length of v. A branch b of T is an infinite
sequence (b1� b2� � � � � br� � � �) with coordinates in �1�2� � � � � κ�. Then b can be
regarded as an infinite sequence of vertices �b1�� �b1� b2�� � � � � �b1� b2 · · · br�� � � � �
each followed by an immediate successor. Metric concepts can be introduced
into the set of branches as follows. The distance between two branches b =
�b1� b2� � � � � br� � � �� and b′ = �b′1� b′2� � � � � b′r� � � �� is κ−N+1 where N is the first
index n such that bn �= b′n. The set of branches then has diameter 1. Hausdorff
measure and Hausdorff dimension are defined using this metric.
The p-Laplacian (1 < p <∞) of a vector �x1� � � � � xκ
 in �κ is defined to be

κ−1
∑
xj�xj�p−2

and a vector is called p-harmonic if the p-Laplacian is zero. When p = 2,
this is the familiar mean-value property; otherwise p-harmonic need not be
2-harmonic. Let u be a real function on T and v ∈ T; the gradient of u at v is
defined by its increments at v:〈

u�v�1� − u�v�� u�v�2� − u�v�� � � � � u�v� κ� − u�v�〉�
and the p-Laplacian of u at v is defined to be the p-Laplacian of the gradient
at v. Then u is said to be p-harmonic onT if its p-Laplacian is 0 at each vertex.
A real function u on T defines a sequence ur of functions on branches

b� ur�b� = u�b1� b2 · · · br�. The Fatou set � �u� is the set of branches b such that
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limur�b� exists and is finite, and BV�u� is the set of branches b such that∑ �ur+1�b� − ur�b�� < +∞. Clearly BV�u� ⊆ � �u�.

Theorem 1. Let T be a directed tree with regular κ-branching and Hκ�p

be the class of bounded p-harmonic �1 < p < ∞� functions on T. Then there
is a number d�κ�p� ∈ �0�1� (strictly less than 1 when p �= 2 and κ �= 2) such
that dimBV�u� ≥ d�κ�p� for all u ∈ Hκ�p and dim� �u� = d�κ�p� for some
u ∈Hκ�p� consequently,

min
Hκ�p

dim� �u� = min
Hκ�p

dimBV�u� = d�κ�p��

The critical dimension d�κ�p� takes the form logm�κ�p�/ log κ, with

m�κ�p� = min
{

κ∑
1

exj �
κ∑
1

xj�xj�p−2 = 0
}
�

Theorem 2. For each fixed p ∈ �1�∞�� limd�κ�p� = 1 as k → +∞.
However,

lim�inf pd�κ�p�� = 1
2 as κ→ ∞�

Our work is motivated by a recent paper of Cantón, Fernández, Pestana,
and Rodrı́guez [2], and an analogous question on the unit disk. The following
is proved in [2].

Theorem A. Let T be a directed tree with regular κ-branching. Then for
each p ∈ �1�∞�� there exists a number φ�κ�p� > 0 such that 1 ≥ dimBV�u� ≥
φ�κ�p� for every bounded p-harmonic function u on T� furthermore, there
exists a bounded p-harmonic function u so that BV�u� has zero 1-dimensional
measure and φ�κ�2� = 1.

Because the Hausdorff dimension of the entire tree is one and BV�u� ⊆
� �u�, Theorem A is sharp in the case p = 2, and gives

min
Hκ�2

dim� �u� = min
Hκ�2

dimBV�u� = 1

in Theorem 1.
The problem for p-harmonic functions on the unit disk D is much deeper.

Rudin [7] proved in 1955 that there exists a bounded harmonic function u onD
such that �BV�u�� = 0� and Bourgain [1] proved in 1993 that dimBV�u� = 1
for all bounded harmonic functions on D. When p �= 2, Wolff [9, 10] and
Lewis [4] gave examples of bounded p-harmonic functions on D for which
�� �u�� = 0. Results on lower bound for dim� �u� are given in [5], [3] and
[6]. The precise values of inf dim� �u� and inf dimBV�u� over all bounded
p-harmonic functions on the unit disk remain unknown.
Our strategy for proving Theorem 1 is as follows. To obtain a lower bound

on dim� �u�, u being fixed, we find a probability measure λ on the set of
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branches so that (u1� u2� u3 · · ·) is a martingale with respect to λ and that λ
has the most symmetry. The symmetry is measured by the notion of entropy
and estimated by Lagrange multipliers. The multiplicative property of entropy
is then used to calculate the Hausdorff dimension of an exceptional set of com-
binatoric nature. A small variation yields the same lower bound for dimBV�u�.
The bounded p-harmonic function which realizes the infimum of dim� �u� is a
stochastic process modelled on [2], incorporating the device of moving barriers
and the idea of stopping times to show that large oscillations take place except
on a small set. To make the Hausdorff dimension as small as possible, we mini-
mize the partition function

∑κ
1 e

xj over all p-harmonic vectors �x1� x2� � � � � xκ
,
a concept adapted from [8].
The link between the upper bound and lower bound, accounting for the

equality between the two extrema, is furnished by the identity (to be explained
later)

sup

{
−

κ∑
1

λj log λj� λj ≥ 0� ∑
λj = 1� ∑

λjxj = 0
}

= inf
{
log

κ∑
1

etxj � t ∈ �

}
�

We are grateful to Cantón, Fernández, Pestana and Rodrı́guez for an
advance copy of their paper; many ideas in their work are freely adapted here.

2. Examples. Theorem 1 follows from Theorem A when p = 2 or κ = 2,
because all p-harmonic functions are 2-harmonic when κ = 2.
Suppose that κ > 2, p ∈ �1�2�∪�2�∞� and T is a directed tree with regular

κ-branching.
We consider a probability measure P on the set of branches through the

mapping g�b� = ∑∞
1 κ

−r�br − 1� onto [0,1]. The P-measure of a set E is the
Lebesgue measure of g�E�; this is the infinite product of uniform distributions
on each factor �1�2�3� � � � � κ� and is the 1-dimensional Hausdorff measure of
E under the metric mentioned earlier.
Let �x1� x2� � � � � xκ
 be a p-harmonic vector with negative sum, that is,∑
xj�xj�p−2 = 0 and

∑
xj < 0. It defines a random variable in the usual

way with P�X = xj� = κ−1 for 1 ≤ j ≤ κ. Let φ�t� = E�etX� and note that
φ�0� = 1 and φ′�0� = E�X� < 0. Since φ�t� is convex and X has values of
both signs, φ�t� attains a minimum β�X� < 1 at some t�X�.
Let Sr be the sumX1+X2+· · ·+Xr of independent identically distributed

random variables with the same law as X. Then for any c,

P�Sr > c� = P�exp�Srt�X�� > exp�ct�X���
≤ exp�−ct�X��E�exp�Srt�X��� ≤ exp�−ct�X��β�X�r�
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Proposition. For each random variableX chosen above, there is a bounded
p-harmonic function u on T such that

dim� �u� ≤ 1+ logβ�X�/ log κ < 1�

We arrive at the example in Theorem 1 by a special choice of X in the
proposition.
Let m�κ�p� be the minimum of

∑κ
1 e

xj over all p-harmonic vectors and
observe that the minimum is attained because xj < log κ as soon as the sum
is less than κ and that only vectors with negative sum are of interest. Fix such
an extremal �a1� a2� � � � � aκ
, that is,

∑
aj�aj�p−2 = 0,

∑
aj < 0 and∑

eaj =m�κ�p��
Let X be the random variable derived from �a1� � � � � aκ
. Then P�X = aj� =
κ−1 and E�etX� = κ−1

∑
etaj attains its minimum κ−1m�κ�p� at t = 1; fur-

thermore, ∑
aje

aj = 0�
In view of the proposition, there is a bounded p-harmonic function u on T
such that

dim� �u� ≤ logm�κ�p�/ log κ�
This gives the example in Theorem 1.

Proof. We follow the stopping time argument in [2] with some modifica-
tions designed to yield an exceptional set of dimension less than 1 rather than
P-measure zero.
We define sequences �nk�∞1 , �αk�∞1 and �hk�∞1 by the formulas n1 = 0, α1 = 1

4 ,
h1 = 1 and nk = �4k�!, αk = �k3nk�−1 and hk = hk−1 + �k− 1�−2 for k ≥ 2. We
choose a > 0 so small that �aX� < 1 and write Z = aX.
The definition of the p-harmonic function u on T begins at time n1 = 0

with u�φ� = 0 and continues in succession for time r = 0�1�2� � � � with the
following rules. (Time at a vertex v is its length.) At time r < n2 and at a
vertex v, if �u�v�� < h1, u has increments whose distribution is determined
by variable α1Z so that u is p-harmonic at v; if �u�v�� ≥ h1, u stops and
takes the value u�v� at all successors �v�1�� �v�2� · · · �v� κ� of v. This defines
u up to and including time r = n2 and �u� < h1 + α1 = 5

4 < h2.
At time t = n2, if u�v� ≥ 0, then u evolves with increments whose distribu-

tion is α2Z on branches containing v; if u�v� < 0, then u evolves according to
−α2Z on branches containing v. As before u stops if �u�v�� ≥ h2 at some time
r < n3. Continue in the obvious fashion for nk ≤ r < nk+1, k = 3�4� � � � � Since
hk + αk < hk+1 and �Z� < 1, we see that at time nk+1, �u� < hk+1. Therefore u
is bounded on the tree T.
Next we prove that dim� �u� ≤ 1 + logβ�κ�p�/ log κ. Before embarking

on this, we explain the reason for rapidly increasing numbers nk and rapidly
decreasing αk. Along certain branches u increases at every vertex where a
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choice is allowed; these branches belong toBV�u�. Clearly these branches have
P-measure 0, but more work is needed to estimate the dimension of this set
and other sets as well. Denote byMk the first time after nk at which �u� ≥ hk is
possible. ClearlyMk ≥ nk+α−1

k �hk−hk−1−αk−1� ≥ nk+k3nk��k−1�−2−k−3� ≥
�k+ 1�nk for k ≥ 2, and thus Mk + nk ∼=Mk for large k. This is necessary in
estimating Hausdorff dimension.
We shall prove that except on a set of branches of dimension at most 1 +

logβ�κ�p�/ log κ�u eventually exits every barrier �u� = hk in time interval
�nk + 1� nk+1� with alternating signs; thus on these branches, lim supu > 1
and lim inf u < −1 as r → ∞. Denote by σk the sign appearing in the law
chosen at time nk, that is, +1 for αkZ and −1 for −αkZ. Now E�Z� < 0, and
thus the process drifts downward when σk = +1, and upward when σk = −1.
Let Bk be the set of branches on which σkunk+1 > −hk. [Recall that ur�b� =
u�b1� b2� � � � � br��] Then

� �u� ⊆ lim supBk�

On the set Bk, one of several large deviations occurs; we estimate the probabil-
ity of each large deviation and then are in a position to estimate the dimension
of � �u�.
In �nk� nk+1�, let τ be the first time �u� ≥ hk if it happens and τ = nk+1

otherwise; let w be the process beginning with the same law as u at time nk
and continuing to nk+1 with no stopping. Thus ur = wτ∧r.
On b ∈ Bk, if τ = nk+1 then �wnk+1 � < 3, and if τ < nk+1 then σk�wτ −

wnk
� > 0; we have seen that τ ≥ knk when k ≥ 2.
We examine first the event �wnk+1 � < 3. Now wnk+1−wnk

has the distribution
of a sum σkαka�X1 + · · · +XJ� where J = nk+1 − nk and X

′
js are i.i.d. with

the same law as X. Since �wnk+1 � < 3, we have �SJ� < 6a−1α−1
k with SJ =

X1+X2+· · ·+XJ. Suppose that σk = 1. (The case σk = −1 follows by the same
method with changing of signs.) Since E�X� < 0 and ck ≡ 6a−1α−1

k = o�J�, it
follows from the comments before the proposition that the event �wnk+1 � < 3
has probability at most

P��SJ� < ck� ≤ P�SJ > −ck� ≤ β�X�J exp�ckt�X�� = β�X�J�1+o�1���
Next we consider those branches b ∈ Bk on which σku ≥ hk at some τ <

nk+1. At the first time τ, we have σk�wτ −wnk
� > 0 and τ ≥ Mk ≥ �k + 1�nk.

For each r ∈ ��k + 1�nk� nk+1�, the event σk�wr −wnk
� > 0 has probability at

most β�X�r−nk by an argument similar to that in the last paragraph.
Let �r be the class of subsets of branches defined by the first r coordinates.

This is a finite field whose atoms are sometimes called cylinders of rank r.
Now �r contains κr cylinders of P-measure κ−r each and the same diameter.
Suppose that �Ar� is a sequence of sets with Ar ∈ �r and P�Ar� ≤ ρr+o�r� for
some ρ in �0�1�. Then Ar is a union of atoms of �r, their number is at most
κrρr+o�r� and dim�lim supAr� ≤ 1+ log ρ/ log κ.
Therefore Bk is contained in

⋃nk+1
r=�k+1�nk Ar, where Ank+1 consists of at most

β�X��nk+1−nk��1+o�1��κnk+1 atoms in �nk+1 , and Ar consists of at most β�X�r−nkκr
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atoms in �r when �k + 1�nk ≤ r < nk+1. From the discussion above, we
conclude that

dim� �u� ≤ 1+ logβ�X�/ log κ�
By a small variation of the method, we can prove a stronger result: except

on a set of dimension 1 + logβ�X�/ log κ, lim sup �u�br+1� − u�br�� > 0. To
obtain a function u with this property we introduce a p-harmonic vectorX0 =
�a1� � � � � aκ
, such that 0 < �aj� < 1/16. We adjust the formula for u as follows,
when �αk� < 1/2. At the first time σ in the interval �nk� nk+1� at which �u� ≤
1/8, if this occurs, uσ+1−uσ has the distribution ofX0; at all other times, the
formula is as before. If this new rule is invoked at a time σ , then �uσ+1� < 5/8,
so the analysis proceeds substantially as before. ✷

3. Entropies and dimensions. We recall that the entropy of a probabil-
ity measure λ on �1�2� � � � � κ� is

H�λ� = −∑
λj log λj�

where λj = λ��j��. See [8] for basic properties.

Lemma 1. Let �x1 · · ·xκ
 be a p-harmonic vector. Then there is a probability
measure µ on �1� � � � � κ� such that

(i)
∑
µjxj = 0�

(ii) H�µ� ≥ logm�κ�p��
(iii) minµj ≥ c�κ�p� > 0�

Proof. The lemma is obvious if
∑
xj = 0; in this case we choose all

µj = κ−1. We can suppose that
∑
xj < 0, and recall that φ�t� = ∑

etxj

attains a minimum at some value τ > 0. Then φ�τ� ≥ m�κ�p� and φ′�τ� =∑
xj exp�τxj� = 0. Define µj = exp�τxj�/φ�τ� and observe that

∑
µj = 1,∑

µjxj = 0 and H�µ� = logφ�τ� ≥ logm�κ�p�. To prove (iii), we use first the
trivial facts φ�τ� ≤ φ�0� = κ and τxj ≤ log κ for all j. Since �x1� � � � � xκ
 is
p-harmonic, �τxj� ≤ �κ− 1�1/�p−1� log κ. Therefore µj ≥ c�κ�p� > 0.
Our choice of µ ensures

H�µ� = inf
t
log

∑
exp�txj��

and H�µ� maximizes H�λ� subject to the constraint ∑
λjxj = 0, a fact

which can be seen by Lagrange multipliers; this proves the identity in the
Introduction. ✷

Lemma 2. Let �x1� � � � � xκ
 be a p-harmonic vector and η > 0. Then there
is a probability measure ν on �1�2� � � � � κ� such that�

(i)
∑
νjxj ≥ 0;

(ii) H�ν� ≥ logm�κ�p� − η;
(iii) min νj ≥ 1

2c�κ�p�;
(iv)

∑
νj�xj� ≤ c′�κ�p�η�∑ νjxj�
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Proof. By arguments similar to those used in Lemma 1, we see that
max �xj� ≤ �κ − 1�1/�p−1�max xj. For simplicity we can assume x1 = max xj.
We set ν = sµ+ �1− s�δ1, where 0 < s < 1, µ is the measure in Lemma 1 and
δ1 is the unit mass at 1. Since x1 ≥ 0, we have∑

νjxj = �1− s�x1 ≥ �1− s��κ− 1�−1/�p−1� ∑ νj�xj��
By the continuity of H, there exists s ∈ � 12 �1� depending only on κ and η and
not on µ such that H�ν� ≥H�µ� − η ≥ logm�κ�p� − η. Using this value of s,
we obtain (iv) with c′ = �κ− 1�1/�p−1��1− s�−1, and (iii) because s > 1

2 . ✷

Let b be a branch and r ≥ 1. Denote by Cr�b� the cylinder of rank r con-
sisting of branches whose first r coordinates are �b1� b2� � � � � br�, by Cr any of
the κr cylinders of rank r and by C0 = B the collection of all branches.
For completeness, we record two lemmas on a dimension associated with a

measure, which have been discovered and used by many authors in various
forms, as early as Besicovitch and Eggleston.
Let λ be a probability measure on B, and suppose for simplicity that all

cylinders have positive measure. Let

L�b� = lim inf − log λ�Cr�b��/r log κ�

Lemma 3. If L ≥ α > 0 on a set S ⊆ B and S has dimension less than α
then it has zero λ-measure. Conversely, the infimum of dimS over all sets of
positive λ-measure is the essential infimum of L�

Proof. Suppose that dimS < α′ < α and Si is the set of branches b in
S with λr�Cr�b�� ≤ κ−rα

′
for all r ≥ i. Since L ≥ α on S, S = ∪Si. The

λ-measure of a cylinder Cr meeting Si is at most κ−rα
′
and the diameter of

Cr is κ−r whenever r ≥ i. Since dimSi < α′ we have λ�Si� = 0; therefore
λ�S� = 0. For the converse, note that the set on which L ≤ β has Hausdorff
dimension at most β by a Vitali-type argument. ✷

Recall that the conditional entropy on a cylinder Cr is

H�λ � Cr� = − ∑
Cr+1⊆Cr

λ�Cr+1�
λ�Cr�

log
λ�Cr+1�
λ�Cr�

�

Lemma 4. Let λ be a probability measure on B satisfying λ�Cr+1� > δλ�Cr�
for some δ > 0, whenever Cr+1 ⊆ Cr, and

h = inf H�λ � Cr� over all cylinders�
Then λ is zero on any subset of dimension less than h/ log κ.

Proof. For each r ≥ 0, define on B a function

fr�b� = − log λ�Cr+1�b��
λ�Cr�b��

−H�λ � Cr�b���
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Note that fr is constant on each Cr+1 and has mean value 0 with respect to
λ on each Cr. The functions f0� f1� f2� � � � therefore are orthogonal in L2�λ�.
Since λ�Cr+1� > δλ�Cr� whenever Cr+1 ⊆ Cr, the sequence �fr�∞0 is uni-
formly bounded and therefore has partial sums f1+f2+ · · ·+fr = o�r� λ-a.e.
Consequently, − log λ�Cr�b�� ≥ rh + o�r� λ-a.e. The conclusion follows from
Lemma 3. ✷

4. Lower estimates in Theorem 1. Let u be a bounded p-harmonic
function on T.
By applying Lemma 1 to the gradient of u at each vertex, we may find a

probability measure µ on B such that u is a martingale with respect to µ,
and hence converges µ-almost surely. The size of the support of µ then gives
a lower bound for dim� �u�.
More care is needed in finding a lower bound for dimBV�u�; in fact, u is a

submartingale with respect to the measure λ below. Recall that the variation
of u on a branch b is

var�u� b� =
∞∑
1

�ur�b� − ur−1�b���

where ur�b� = u�b1� b2� � � � � br� and u0�b� = u�φ�.
For each η > 0, we shall define a probability measure λ on B such that

λ�Cr+1� ≥ δλ�Cr� for some δ > 0, whenever Cr+1 ⊆ Cr,∫
B
var�u� b�dλ < +∞

and the conditional entropy

H�λ�Cr� > logm�κ�p� − η

for all cylinders. The set BV�u� = �b� var�u� b� < +∞� then has λ-measure
one and its Hausdorff dimension is at least �logm�κ�p� − η�/ log κ for any
η > 0; hence at least logm�κ�p�/ log κ. This completes the lower estimates in
Theorem 1.
It remains to construct λ; we follow [2] in all but minor details and define

λ inductively. Of course λ�C0� = 1. Assume that λ has been defined on all
cylinders of rank less than or equal to r. Let Cr be a cylinder of rank r
represented by (b1� b2� � � � � br). The gradient �x1� x2� � � � � xκ
 of u at the ver-
tex v = �b1� b2� � � � � br� forms a p-harmonic vector. Let ν be the probability
measure on �1�2� � � � � κ� associated with the present �x1� x2� � � � � xκ
 defined
in Lemma 2, and define λ on the κ cylinders Cr+1 of rank r + 1 contained
in Cr by

λ�Cr+1� = νjλ�Cr�
if Cr+1 is represented by (b1� b2� � � � � br� j). This way we define λ on all cylin-
ders of rank r+ 1 and then on B, by σ-additivity.
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Properties of ν in Lemma 2 yield that there exists δ = δ�κ�p� > 0, λ�Cr+1� >
δλ�Cr� whenever Cr+1 ⊆ Cr,

H�λ � Cr� > logm�κ�p� − η

and ∫
Cr

�ur+1 − ur�dλ ≤ C′�κ�p�η�
∫
Cr

ur+1 − ur dλ�

The fact
∫
B var�u� b�dλ < +∞ follows by first summing over all Cr of rank r,

and then over r. This completes the proof of Theorem 1. ✷

5. The critical dimension and Theorem 2. Some information about
m�κ�p� can be obtained by Lagrange multipliers. At an extremum �a1� � � � � aκ
,
we have

eaj = :�aj�p−2� j = 1�2� � � � � κ�

When 2 < p < ∞, for a fixed : > 0, the equation ea = :�a�p−2 has only one
negative solution, but has one or two positive solutions depending on whether
: = �e/�p − 2��p−2 or not. In the case of two positive solutions, they are
separated by p − 2. When 1 < p < 2, the roles of positive and negative are
reversed. It appears to be difficult to determine whether �a1� � � � � aκ� assumes
two or three distinct values at the minimum

∑
eaj , not to mention the exact

values.
To obtain upper bounds for d�κ�p�, we consider a specific p-harmonic vec-

tor �y�−1�−1� � � � �−1
 for p > 2 or �−y�1�1� � � � �1
 for 1 < p < 2 with
0 < y = �κ − 1�1/�p−1�. The corresponding random variable Y has E�Y� < 0.
When p > 2,

β�Y� = min
t
κ−1ety + �1− κ−1� e−t

is attained at some t satisfying yety = �κ − 1� e−t. Calculation shows that
for large κ, (i) 1 + logβ�Y�/ log κ ≤ 1 − δ�c� when p > c log κ, and (ii) 1 +
logβ�Y�/ log κ ≤ 1/2+�log 2/ log κ��1+ε� when p�log κ�−2 is sufficiently large.
Since m�κ�p� ≤ κβ�Y�, these estimates give upper bounds for d�κ�p�.
(A) If p > c log κ for some c > 0, we have d�κ�p� ≤ 1 − δ�c� for large κ.

Conversely, in order that d�κ�p� ≤ 1− δ with some δ > 0 and κ large, p must
be at least c�δ� log κ.
To see the second statement, we suppose that m�κ�p� ≤ κ1−δ < κ/4; there-

fore p > 2 (since m�κ�p� ≥ κ/4 when p < 2 as we shall see in (B). In
the extremal p-harmonic vector �a1� a2� � � � � aκ
, at least half of the coordi-
nates are negative and have a common value a satisfying ea < 2κ−δ < 1

2 or
a < log 2 − δ log κ; all positive coordinates a′ satisfy 0 < a′ < log κ so that
a′ < 2�a�/δ. The Lagrange equation for extremals yields ea�a�2−p = ea

′ �a′�2−p.
Since p > 2, we find that �p−2� log�2δ−1� > −a > δ log κ− log 2. We conclude
that p > c�δ� log κ.
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(B) For p ∈ �1� q� we have m�κ�p� > c�q�κ for some c�q� ∈ �0�1�, thus

d�κ�p� ≥ 1+ log c�q�/ log κ

and c�2� = 1
4 .

Suppose that m�κ�p� < κ/4, so the number of positive coordinates is at
most κ/4. At the extremal �a1� � � � � aκ
, there are at least κ/2 coordinates less
than − log 2. Since ∑

aj�aj�p−2 = 0, the sum
∑′ ap−1j over the positive coor-

dinates is at least κ
2 �log 2�p−1. The positive coordinates assume at most two

values. One of them, call it x, occurs r times and contributes at least half of the
sum

∑′ ap−1j . Hence rxp−1 > �κ/4��log 2�p−1 or x > �log 2��κ/4r�1/�q−1�. Using
calculus, we obtain a positive lower bound c�q� for �r/κ�ex. Thus m�κ�p� >
rex > c�q�κ. Calculation also shows that we may choose c�2� = 1

4 ; we recall
that the positive coordinates are equal when 1 < p < 2.
(C) As κ→ ∞,

1
2
+ log 2
log κ

�1− o�1�� ≤ inf
p
d�κ�p� ≤ 1

2
+ log 2
log κ

�1+ o�1���

The upper bound has been proved earlier using Y. The lower bound follows
from (B) and the paragraph below.
We claim that m�κ�p� ≥ 2�κ − 1�1/2 when p > 2 and κ > 15. Otherwise

m�κ�p� < 2�κ − 1�1/2 < κ/2. Then the number of positive coordinates in
�a1� � � � � aκ
 is less than κ/2; call this number r. Consequently, the maximum
value A of aj’s exceeds −a, a being the common value for all negative coor-
dinates. Then m�κ�p� = ∑

eaj ≥ ea�κ − r� + eA + �r − 1� ≥ r − 1 + 2�κ −
r�1/2 ≥ 2�κ − 1�1/2. Therefore, m�κ�p� < 2�κ − 1�1/2 does not happen and
d�κ�p� ≥ �log κ�−1�log 2+ 1

2 log�κ− 1��.
Theorem 2 follows from (B) and (C). ✷
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