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Let B be a Banach space and � any family of bounded linear func-
tionals on B of norm at most one. For x ∈ B set �x� = sup�∈� ��x� (� · �
is at least a seminorm on B). We give probability estimates for the tail
probability of S∗

n = max1≤k≤n �
∑k
j=1 Xj� where 	Xi
ni=1 are independent

symmetric Banach space valued random elements. Our method is based
on approximating the probability that S∗

n exceeds a threshold defined in
terms of

∑k
j=1 Y

�j�, where Y�r� denotes the rth largest term of 	�Xi�
ni=1.
Using these tail estimates, essentially all the known results concerning
the order of magnitude or finiteness of quantities such as E
��Sn�� and
E
�S∗

n� follow (for any fixed 1 ≤ n ≤ ∞). Included in this paper are uni-
form � p bounds of S∗

n which are within a factor of 4 for all p ≥ 1 and
within a factor of 2 in the limit as p→ ∞.

1. Introduction. Let X1�X2� � � � be independent symmetric random ele-
ments taking values in a Banach space �B� � · ��. Suppose that �Xj�∞ ≤ 1
for all j ≥ 1. Let Sn = ∑n

j=1Xj and S∗
n = max1≤k≤n �

∑k
j=1Xj�. Hoffmann-

Jørgensen (1974) introduced a technique by which one can prove that

P�S∗
n ≥ 2a+ 1� ≤ 2P2�S∗

n ≥ a��
If this technique is iterated one may show that, for any integer k ≥ 1,

P�S∗
n ≥ ka+ k− 1� ≤ 2k−1Pk�S∗

n ≥ a��
As a means of establishing that tail probabilities of S∗

n decrease at least geo-
metrically fast if the summands are uniformly bounded symmetric indepen-
dent variates, his approach is both elegant and sufficient. Needless to say,
questions have since arisen which require more precise information on the
rate of decay of this tail probability.

Exponential bounds using martingale methods were introduced by Yurinskii
(1974) and further developed by de Acosta (1980); de Acosta’s bounds require
knowledge of the order of magnitude of

∑n
j=1E�Xj�2. It is possible that

Talagrand (1988, 1989) introduced his isoperimetric methods to repair this
deficiency.

In this paper we return to Hoffmann-Jørgensen’s approach in the attempt
to find accurate and yet straightforward tail probability estimates. His idea
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can continue to bear fruit since it has not yet incorporated the fact that as the
sums reach higher and higher levels, more and more summands have been
used, and so ever fewer remain to assist in future growth. By keeping track of
the probabilities of a large family of events whose interactions collaborate to
produce an S∗

n which exceeds a threshold, we can reconfigure that information
to upper-bound the probability of exceeding higher thresholds.

We establish the following theorem.

Theorem 1.1. LetX1�X2� � � � �Xn be independent random elements taking
values in a Banach space �B� � · �� and suppose that P�S∗

n ≥ 1� ≡ λ < 1, where

S∗
n = max

1≤k≤n
�X1 + · · · +Xk��

Let Y�1� = max1≤j≤n �Xj� and let

τ1 = 1st 1 ≤ j ≤ n: �Xj� = Y�1��

Having defined �Y�1�� τ1�� �Y�2�� τ2�� � � � � �Y�k−1�� τk−1�, let
Y�k� = max

1≤j≤n�j�∈	τ1�����τk−1

�Xj�

and

τk = 1st: 1 ≤ j ≤ n�j �∈ 	τ1� � � � � τk−1
 and �Xτk
� = Y�k��

Then

(a) If the Xj are nonnegative,

P

(
Sn ≥ k+

k−1∑
j=1

Y�j�
)
≤ 1
k!

[
n�1 − �1 − λ�1/n�]k ≤ 1

k!

(
ln

1
1 − λ

)k
�(1.1)

(b) If the Xj are symmetric,

P

(
S∗
n ≥ k+

k−1∑
j=1

Y�j�
)
≤ 1

2k!

[
2n�1 − �1 − λ�1/n�]k ≤ 2k−1

k!

(
ln

1
1 − λ

)k
�(1.2)

Remark 1.1. The idea of using quantities such as Y�j� as part of the excee-
dence level is due (we believe) to Talagrand (1989). Montgomery-Smith (1990)
made independent use of a related idea.

Remark 1.2. These results apply not only to norms, but to the supremum
of any fixed family of bounded linear functionals on B. Thus, on the real line,
letting � = 	λ1� λ0
 where λ1�x� ≡ x and λ0�x� ≡ 0, and setting �x� ≡
maxi=0�1 λi�x� = x+, the results apply to max1≤k≤n S

+
k .
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2. Proof of Theorem 1.1. For each 0 ≤ i < j ≤ n let S∗
�i� j� =

maxi<k≤j �Xi+1 + · · · +Xk� and

Aij = {
S∗

�i� j−1� < 1� S∗
�i� j� ≥ 1

}
�

For i = 0 let S∗
�0� j� = S∗

j and A0j = Aj. Let T0 = 0. Having defined
T0�T1�T2� � � � �Ti, let

Ti+1 =
{

1st j ∈ �Ti� n�:ATi j
occurs,

∞� if no such j exists.

Then let Ln + 1 = 1st 1 ≤ i ≤ n+ 1:Ti = ∞. By set inclusion,

P

(
S∗
n ≥ k+

k−1∑
j=1

Y�j�
)
≤ P�Ln ≥ k��(2.1)

For 0 ≤ i < j ≤ n, let qij = P�Aij�, and put qij = 0 for j ≤ i. The �n+1�×�n+1�
matrix Q = �qij� contains all the information necessary to compute the exact
distribution of Ln. In fact, P�Ln ≥ k� equals the sum of the zeroth (top) row
entries in the matrix Qk.

Computing P�Ln ≥ k� directly from its probabilistic definition,

P�Ln ≥ k�=P�Tk ≤ n� = ∑
1≤i1<···<ik≤n

P�T1 = i1� � � � �Tk = ik�

= ∑
i≤i1<···<ik≤n

q0i1qi1i2 � � � qik−1ik
�by independence��

(2.2)

To upperbound P�Ln ≥ k� economically, we need to find some means of
replacing the �n�n+1�/2� unknowns qij which comprise it by quantities more
obviously restricted by our single constraint

∑n
j=1 q0j = λ.

To this end we record the following relationships between the ith row sums
of the initial segments of the qij and the corresponding interval row sum for
rows 0 ≤ i0 < i. Let

γ =
{

1� in nonnegative case,

2� in symmetric case.

Then, for any 0 ≤ i0 < i < j ≤ n,

j∑
m=i+1

qim ≤ γ

1 − λi0i

j∑
m=i+1

qi0m�

(or equivalently)

P�S∗
�i� j� ≥ 1� ≤ γ

1 − λi0i
P�S∗

�i0� i� < 1� S∗
�i0� j� ≥ 1��

(2.3)

where λi0i = qi01 + · · · + qi0i�= qi0i0+1 + · · · + qi0i�.
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We only need to prove (2.3) for i0 = 0. Fix any 0 ≤ i < j ≤ n, let λ0i = λi
and let

τ =
{

1st m ∈ �i� j�:S∗
�i�m� ≥ 1,

∞� if no such m ≤ j exists.

Set S�i� j� =
∑

i<k≤j Xk and Sj = S�0� j�. In the nonnegative case,

�1 − λi�P�S∗
�i� j� ≥ 1�

= P�S∗
i < 1�

j∑
k=i+1

P�τ = k�

=
j∑

k=i+1

P�0 ≤ Si < 1� τ = k� �by independence and since Si = S∗
i ≥ 0�

= P�0 ≤ Si < 1� τ <∞� ≤ P�0 ≤ Si < 1� Sj ≥ 1� = P�S∗
i < 1� S∗

j ≥ 1�
which proves the nonnegative part of (2.3).

As for the symmetric case, first observe that for any x�y in B,

max	�x+ y�� �x− y�
 ≥ �x��(2.4)

Then(
1 − λi

2

)
P�S∗

�i� j� ≥ 1�

= 1
2
P�S∗

i < 1�
j∑

k=i+1

P�τ = k�

= 1
2

j∑
k=i+1

P�S∗
i < 1� τ = k� �by independence�

= 1
2

j∑
k=i+1

P�S∗
i < 1� τ = k� 	��Sk −Si� +Si� ≥ �Sk −Si�


∪	��Sk −Si� −Si� ≥ �Sk −Si�
� �by (2.4)�

≤ 1
2

j∑
k=i+1

P�S∗
i < 1� τ = k� ��Sk −Si� +Si� ≥ �Sk −Si��

+1
2

j∑
k=i+1

P
(
S∗
i < 1� τ = k� ��Sk −Si� −Si� ≥ �Sk −Si�

)

=
j∑

k=i+1

P�S∗
i < 1� τ = k� ��Sk −Si� +Si� ≥ �Sk −Si�� �by symmetry�

≤
j∑

k=i+1

P�S∗
i < 1� �Sk� ≥ 1� τ = k� ≤ P�S∗

i < 1� S∗
j ≥ 1��

which proves (2.3) in the symmetric case.
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Put qm ≡ q0m. Upper-bounding,

P�Ln ≥ k�
= ∑

1≤i1<i2<···<ik−1

q0i1qi1i2 · · ·qik−2ik−1

∑
ik−1<ik≤n

qik−1ik

≤ ∑
1<i1<i2<···<ik−1

q1i1qi1i2 · · ·qik−2ik−1
γ

∑
ik−1<ik≤n

qik
1 − λik−1

[by (2.3)]

≤ γ
∑

1<i1<i2<···<ik−1

q0i1qi1i2 · · ·qik−2ik−1

∑
ik−1<ik≤n

qik
1−λik−1

(since λj increases)�

Similarly if we freeze all ij, for 1 ≤ j ≤ k except for j = k− 1, the crucial
factor which must be upper-bounded is∑

	ik−1� ik−2<ik−1<ik

qik−2ik−1

≤ γ
∑

	ik−1� ik−2<ik−1<ik


qik−1

1 − λik−2

≤ γ
∑

	ik−1� ik−2<ik−1<ik


qik−1

1 − λik−1−1
�

Iterating this we obtain

P�Ln ≥ k� ≤ γk−1 ∑
1≤i1<i2<···<ik≤n

qi1

k∏
j=2

qij
1 − λij−1

≤ γk−1

k!

∑
1≤i1� i2� ���� ik≤n

n∏
j=1

qij
1−λij−1

(2.5)
= γk−1

k!

( n∑
i=1

qi
1−λi−1

)k
�since λ0 = 0�

= γk−1

k!

( n∑
i=1

λi − λi−1

1 − λi−1

)k
≡ γk−1

k!

(
g�λ1� � � � � λn�

)k
�

By the continuity of g�·� and compactness, there exists 0 ≤ λ∗1 ≤ · · · ≤ λ∗n ≤ λ
such that

g�λ∗1� � � � � λ∗n� = sup
0≤y1≤···≤yn≤λ

g�y1� � � � � yn��(2.6)

Clearly, λ∗n = λ. To identify λ∗1� � � � � λ
∗
n−1 fix any 1 ≤ j0 < n. Then

g�λ∗1� � � � � λ∗n� =
∑

	i:1≤i≤n� i�∈	j0� j0+1



λ∗i − λ∗i−1

1 − λ∗i−1

+ sup
λ∗j0−1≤y≤λ∗j0+1

(
y− λ∗j0−1

1 − λ∗j0−1
+ λ∗j0+1 − y

1 − y

)

≡ gj0
�λ∗1� � � � � λ∗n� + sup

λ∗j0−1≤y≤λ∗j0+1

h
(
λ∗j0−1� λ

∗
j0+1� y

)
�

(2.7)

Since, for 0 ≤ a ≤ b < 1,

h�a� b� y� = y− a

1 − a
− 1 − b

1 − y
+ 1
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is clearly concave in y, it assumes a maximum at y = 1 − √�1 − a��1 − b�.
Hence

1 − λ∗j0
=

√(
1 − λ∗j0−1

)(
1 − λ∗j0+1

)
�

which indeed places λ∗j0
between λ∗j0−1 and λ∗j0+1. Equivalently, we have just

learned that

rj0
≡ 1 − λ∗j0

1 − λ∗j0−1
= 1 − λ∗j0+1

1 − λ∗j0

≡ rj0+1(2.8)

for 1 ≤ j0 ≤ n. Therefore, rj is some constant r∗. Since λ∗0 = 0,

1 − λ∗j =
j∏
i=1

1 − λ∗i
1 − λ∗i−1

= �r∗�j

for 1 ≤ j ≤ n. Putting j = n we obtain

r∗ = �1 − λ�1/n�(2.9)

Hence,

g
(
λ∗1� � � � � λ

∗
n

) = n∑
i=1

�r∗�i−1 − �r∗�i
�r∗�i−1

= n�1 − r∗� = n
(
1 − �1 − λ�1/n)�

By the r.h.s. of (2.6), it is obvious that g�λ∗1� � � � � λ∗n� is nondecreasing in n.
Letting n→ ∞ we may conclude that

n
(
1 − �1 − λ�1/n) ≤ − ln�1 − λ�� ✷

We would like to formally compare probability bounds for random variables
having independent nonnegative summands with those having independent
symmetric summands which take values in an arbitrary Banach space. For
real-valued random variables it is harder for sums of symmetric variates to
exceed higher and higher levels than for sums of nonnegative variates. One
expects that the same feature carries over to Banach spaces. If so, any uni-
versal upper bound of the l.h.s. of (1.1) should also upper-bound the l.h.s. of
(1.2) despite the fact that these inequalities are to hold relative to the value
of λ. In particular, this leads us to suspect that (1.2) holds without the factor
of 2k−1 in its r.h.s. Paradoxically, all we can establish (see Theorem 2.1 below)
is the reverse bound, namely, that the upper bounds in the nonnegative case
cannot in general exceed those for the symmetric case in Banach space.

Let

�+
k �λ� = sup sup

n≥1
P

(
Sn ≥ k+

k−1∑
j=1

Y�j�
)
�(2.10)

where the leftmost supremum is taken over all independent nonnegative ran-
dom variables X1� � � � �Xn such that P�Sn ≥ 1� ≤ λ and

�k�λ� = sup
�B� �·��

sup sup
n≥1

P

(
S∗
n ≥ k+

k−1∑
j=1

Y�j�
)
�(2.11)
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where the middle supremum is taken over all independent symmetric random
elementsX1� � � � �Xn taking values in the Banach space �B� �·�� and satisfying
P�S∗

n ≥ 1� ≤ λ. We conjecture that

�+
k �λ� = �+

k �λ� for k ≥ 1�(2.12)

Somewhat suprisingly, all we can prove is the reverse of the inequality that
seems most natural.

Theorem 2.1. Under the above conditions,

�+
k �λ� ≤ �k�λ� for all 0 < λ < 1 and k ≥ 1�(2.13)

Proof. For k = 1 there is nothing to prove. Hence we assume that k ≥ 2.
Our proof is trivial. To obtain a contradiction, suppose there exists an n ≥
1� k ≥ 2�0 < λ < 1� ε > 0, and independent nonnegative random variables
X1� � � � �Xn such that P�∑n

j=1Xj ≥ 1� ≤ λ and P�∑n
j=1Xj ≥ k+∑k−1

j=1 Y
�j�� ≥

ε + �k�λ�. Let 	εjk
 be i.i.d. Rademacher random variables, independent of
	Xj
. Let Xj = �Xjεj1�Xjεj2�Xjεj3� � � ��. The 	Xj
 are independent sym-
metric random elements taking values in the Banach space l∞. With proba-
bility 1, �S∗

n�∞ = ∑n
j=1Xj. Therefore,

P
(�S∗

n�∞ ≥ 1
) = P

( n∑
j=1

Xj ≥ 1
)
≤ λ�

Moreover, using the obvious definitions of Y�j� and Y
�j�

,

�k�λ� ≥ P

(
�S∗

n�∞ ≥ k+
k−1∑
j=1

Y
�j�
j

)
= P

( n∑
j=1

Xj ≥ k+
k−1∑
j=1

Y�j�
)
�

which gives a contradiction. ✷

3. Application to � p norms of sums of symmetric or nonnegative
variates. Theorem 1.1 shows that the maximum of normed partial sums
of independent, symmetric or nonnegative suitably truncated Banach space-
valued random elements has a rapidly decaying tail probability. Applying this
result leads to uniformly good � p bounds, as we now illustrate.

Theorem 3.1. Let X1�X2� � � � �Xn be independent symmetric random ele-
ments taking values in a Banach space �B� � · �� and set γ = 2; or else let
X1�X2� � � � �Xn be independent nonnegative real-valued random variates and
set γ = 1. Let S∗

n = max1≤k≤n �
∑k

j=1Xj�. Then, for any fixed 0 < p ≤ 1,

2−1−�γ−1�/p
[
max

{ 1
2�q′

p�p� exp�−2−p��tp�p
}]1/p

≤ �S∗
n�p ≤ v′p

(
gγ�p� + 2−p)1/p(3.1)
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and for any fixed p > 1,

v′p
21+1/p

≤ �S∗
n�p ≤ v′p

(
�gγ�p��1/p + 1

2
�1 +�2−p�p

)
≡ v′phγ�p��(3.2)

where �λ ∼ Poisson�λ�,

tp = sup
{
t ≥ 0:

n∑
j=1

E�Xj�pI��Xj� > t� ≥
(
t

2

)p}
�

q′
p = sup

{
q ≥ 0:P

(
max
1≤k≤n

∥∥∥∥
k∑

j=1

XjI��Xj� ≤ tp�
∥∥∥∥ > q

)
≥ 2−p−1

}
�

v′p = max	q′
p� tp


and

gγ�p� = 1 + 1
γ

∞∑
k=1

�2k+ 1�p − �2k− 1�p
k!

(−γ ln�1 − 2−p−1�)k�
Moreover,

1
2
≤ lim

p→∞ inf
�S∗

n�p
v′p

≤ lim
p→∞ sup

�S∗
n�p
v′p

≤ 2�(3.3)

Proof. Set

X′
j =XjI��Xj� ≤ tp�� X

′′
j =XjI��Xj� > tp��

S∗
n�1 = max

1≤k≤n

∥∥∥∥
k∑

j=1

X′
j

∥∥∥∥� S∗
n�2 = max

1≤k≤n

∥∥∥∥
k∑

j=1

X
′′
j

∥∥∥∥�
To avoid difficulties caused by atoms located at tp, introduce zero–one valued
random variables δ1� � � � � δn independent of each other and of 	Xi
 such that

n∑
j=1

E
∥∥X′′′

j

∥∥p =
(
tp

2

)p
�

where

X
′′′
j =XjI��Xj� > tp� + δjXjI��Xj� = tp��

This is possible since
n∑
j=1

E�Xj�pI��Xj� > tp� ≤
(
tp

2

)p
≤

n∑
j=1

E�Xj�pI��Xj� ≥ tp��

Let

γ∗ =
{

1� if p ≥ 1 or if the 	Xj
 are nonnegative and 0 < p < 1,

1
2 � if 0 < p < 1 and the 	Xj
 are symmetric.
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We claim that

E�S∗
n�p ≥ γ∗ max

{
E�S∗

n�1�p�E
∥∥∥∥

n∑
j=1

X
′′′
j

∥∥∥∥
p}
�(3.4)

Equation (3.4) follows trivially for the Xj which are nonnegative. Hence
assume that the Xj are symmetric. If p ≥ 1 the result follows by an appro-
priate conditional application of Jensen’s inequality. If 0 < p < 1, it follows
because certain variables are conditionally symmetric.

Lower-bounding the first term,

E�S∗
n�1�p ≥ E�q′

p�pI��S∗
n�1� ≥ q′

p� ≥ �q′
p�p2−p−1�

To lower-bound the other quantity, first reorder the indices if necessary, to
obtain

P��X′′′
n� �= 0� = max

1≤j≤n
P��X′′′

j� �= 0��

Then let

τ =
{

1st j ∈ �1� n�:X′′′
j �= 0,

∞� if no such j exists.

By construction of tp�
∑n

j=1P��X′′′
j� �= 0� ≤ 2−p and consequently,

E

∥∥∥∥
n∑
j=1

X
′′′
j

∥∥∥∥
p

≥ E�X′′′
τ �pI�τ ≤ n�

=
n∑
j=1

E�X′′′
j�pI�τ ≥ j� =

n∑
j=1

E�X′′′
j�pP�τ ≥ j�

≥ P�τ ≥ n�
n∑
j=1

E�X′′′
j�p = P�τ ≥ n�

(
tp

2

)p

≥
(

1 − 1
n2p

)n−1( tp
2

)p
[by Klass (1981)]

> exp�−2−p�
(
tp

2

)p
�

Hence the lower bounds in (3.1) and (3.2) hold.
The upper bounds are based on expressing �S∗

n� in terms of �S∗
n�1�p and

�S∗
n�2�p and then upper-bounding each of these two. For 0 < p ≤ 1, �x+y�p ≤

�x�p + �y�p. Hence,

E max
1≤k≤n

∥∥∥∥
k∑

j=1

Xj

∥∥∥∥
p

≤ E max
1≤k≤n

∥∥∥∥
k∑

j=1

X′
j

∥∥∥∥
p

+E max
1≤k≤n

∥∥∥∥
k∑

j=1

X
′′
j

∥∥∥∥
p

�
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Trivially,

E max
1≤k≤n

∥∥∥∥
k∑

j=1

X
′′
j

∥∥∥∥
p

≤
n∑
j=1

E�X′′
j�p ≤

(
tp

2

)p
�

For p > 1, by Minkowski’s inequality,

�S∗
n�p ≤ �S∗

n�1�p + �S∗
n�2�p�

By Lemmas 1.1 and 3.3 of Klass (1981) we have, for p > 1,

�S∗
n�2�pp ≤ E�1 +�2−p�p

n∑
j=1

E�X′′
j�p ≤ 2−pE

(
1 +�2−p

)p(
tp
)p
�

The upper bound of �S∗
n�1�p for all p > 0 is next on the agenda. Since, by

construction,

P�S∗
n�1 > q′

p� ≤ 2−p−1�

using (1.2) we conclude that

P
(
S∗
n�1 > �2k− 1�v′p

) ≤ P
(
S∗
n�1 > kq′

p + �k− 1�tp
) ≤ γk−1 1

k!

(
ln�1 − 2−p−1�)k�

Therefore,

E�S∗
n�1�p =

∫ ∞

0
P
(�S∗

n�1�p≥y
)
dy

≤
∫ �v′p�p

0
P
(
S∗
n�1≥y1/p)dy+ ∞∑

k=1

∫ ��2k+1�v′p�p

��2k−1�v′p�p
P
(
S∗
n�1≥y1/p)dy

≤ �v′p�p+�v′p�p
∞∑
k=1

[�2k+1�p−�2k−1�p]γk−1

k!

(−ln�1−2−p−1�)k

≤ �v′p�p
(

1+ 1
γ

∞∑
k=1

�2k+1�p−�2k−1�p
k!

(−γln�1−2−p−1�)k)

≡ �v′p�pgγ�p��
This completes the r.h.s. of (3.1) and (3.2). Finally, we consider p → ∞. To
approximate �gγ�p��1/p as p → ∞, observe that only the k = 1 term of the
series counts since for all p ≥ 1 the successive terms in

1 + 1
γ

∞∑
k=1

�2k+ 1�p − �2k− 1�p
k!

(−γ ln�1 − 2−p−1�)k
decrease by a factor bounded above by 5/6 for all k ≥ 1, and the k = 1 term
tends to ∞ as p→ ∞. Hence

lim
p→∞

(
gγ�p�

)1/p = 1�5�

Similarly,

lim
p→∞�1 +�2−p�p = 1

and so limp→∞ hγ�p� = 2. ✷
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Remark 3.1. By direct calculation h2�1� = 91/36 and

h2�2� =
√

29
8

+
√

1 + 512
49

ln
8
7
= 2�22081�

Computer calculations due to Jaimyoung Kwon also show that h2�p� ≤ h2�1�
for all p ≥ 1 and that h2�p� ≤ h2�2� for p ≥ 2. Clearly, we also have
h1�p� ≤ h2�p�.

Remark 3.2. Variants of our approximations could be created by slightly
changing the probability in the definition of q′

p or the factor in tp or by con-
structing somewhat different quantities altogether. For example, instead of q′

p

one could employ

q
′′
p = sup

{
q ≥ 0:P

(
max
1≤k≤n

�Sk� ≥ q
)
≥ 2−p−2

}
�

Alternatively, define

tp = sup
{
t ≥ 0:

n∑
j=1

P��Xj� > t� ≥ 2−p
}
�

and let

q′
p
= sup

{
q ≥ 0:P

(
max
1≤k≤n

∥∥∥∥
k∑

j=1

XjI��Xj� ≤ tp�
∥∥∥∥ ≥ q

)
≥ 2−p−1

}
�

Since
n∑
j=1

E�X′′
j�p ≤

n∑
j=1

E�Xj�pI
(�Xj� > tp

)

≤
n∑
j=1

E�tp�pI�tp < �Xj� ≤ tp� +
n∑
j=1

E�Xj�pI��Xj� > tp�

≤ �tp�p
n∑
j=1

P��Xj� > tp� +
(
tp

2

)p
≤ 2

(
tp

2

)p
�

one could use max
{
q′
p
� tp

}
to approximate �S∗

n�p.

Remark 3.3. Previously, the magnitude of �Sn�p has been compared to
quantities such as

mn�1 ≡ max
{
�Sn�1�

∣∣∣ max
1≤k≤n

�Xk�
∣∣∣
p

}
�

It was shown that

c�p� ≤ �Sn�p
mn�1

≤ C�p��
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where c�p� is about 1 for all p ≥ 1 and C�p� is about p/�1+ lnp�. It appeared
that the norm of Sn could not be approximated uniformly in p ≥ 1.

In the real-valued case Latała (1997) suprisingly demonstrated the exis-
tence of a constructable constant qp satisfying

n∑
j=1

lnE
(

1 + Xj

qp

)p
= p

such that

e− 1
2e2

≤ �Sn�p
�qp�p

≤ e

for p ≥ 1 and Xj ≥ 0 or for p ≥ 2 and Xj symmetric. By interpreting
qp as deriving from the maximum of two effects, we have been able to find
an alternative v′p to qp which not only applies to the real-valued case, but
extends to Banach space. Theorem 3.1 compares v′p with �S∗

n�p. To relate
this to Latała’s work, note that �Sn�p = �S∗

n�p in the nonnegative case and
�Sn�p ≤ �S∗

n�p ≤ 21/p�Sn�p in the symmetric case. Thus, for p ≥ 1, our results
translate into

v′p
21+2/p

≤ �Sn�p ≤ hγ�p�v′p�
Latała also showed that his results even extend to 0 < p < 1, as do ours. The
proportional improvement we obtained tends to ∞ as p→ 0. We must admit,
however, that our quantity q′

p from which v′p derives is not necessarily very
computable, except perhaps in the real-valued or even Hilbert space case.
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