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CONCENTRATION OF MEASURE INEQUALITIES FOR MARKOV
CHAINS AND �-MIXING PROCESSES

By Paul-Marie Samson

University of Toulouse

We prove concentration inequalities for some classes of Markov chains
and �-mixing processes, with constants independent of the size of the sam-
ple, that extend the inequalities for product measures of Talagrand. The
method is based on information inequalities put forward by Marton in case
of contracting Markov chains. Using a simple duality argument on entropy,
our results also include the family of logarithmic Sobolev inequalities for
convex functions. Applications to bounds on supremum of dependent em-
pirical processes complete this work.

1. Introduction. In a recent series of striking papers (see [15], [16], [17]),
Talagrand deeply analyzed the concentration of measure phenomenon in prod-
uct space, with applications to various areas of probability theory. A first result
at the origin of his investigation concerns deviation inequalities for product
measures P = µ1 ⊗ · · · ⊗µn on �0�1�n. Namely, for every convex function f on
�0�1�n, with Lipschitz constant �f�Lip ≤ 1, and for every t ≥ 0,

P	
f−M
 ≥ t� ≤ 4 exp
(
−t

2

4

)
�(1.1)

whereM is a median of f for P. This Gaussian-type bound may be considered
as an important generalization of the classical inequalities for sums of inde-
pendent random variables. The deviation inequality (1.1) is a consequence of
a concentration inequality on sets which takes the following form. To measure
the “distance” of a point x ∈ �n to a set A, consider the functional (see “convex
hull,” [15], Chapter 4),

fconv	A�x� = sup
α

inf
y∈A

(
n∑
i=1
αi1xi �=yi

)
�

where the supremum is over all vectors α = 	αi�1≤i≤n, αi ≥ 0,
∑n
i=1 α

2
i = 1.

If we let Aconv
t = �x ∈ �n� fconv	A�x� ≤ t�, Talagrand shows that for every

t ≥ √2 log	1/P	A��,

P
(
Aconv
t

) ≥ 1− exp

[
−1
2

(
t−

√
2 log

1
P	A�

)2]
�(1.2)

Besides the convex hull approximation, Talagrand considers two other approx-
imations on product spaces for which he proves similar concentration proper-
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ties. One of the main features of these inequalities is that they are independent
of the dimension of the product space, that is, of the size of the sample. We
will be mainly concerned with extensions of the convex hull approximation in
this work.

Recently, an alternate, simpler, approach to some of Talagrand’s inequalities
was suggested by Ledoux [7] on the basis of log-Sobolev inequalities. Introduce,
for every function g on �n, the entropy functional,

EntP
(
g2) = ∫ g2 log g2 dP−

∫
g2 dP log

∫
g2 dP�

Then, it can easily be shown that, for every product measure P on �0�1�n and
for every separately convex function f,

EntP
(
ef
) ≤ 1

2

∫

∇f
2 ef dP�

where ∇f denotes the usual gradient of f on �n and 
∇f
 its Euclidean length.
This inequality easily implies deviation inequalities of the type of (1.1). In-
deed, the preceding log-Sobolev inequality may be turned into a differential
inequality on the Laplace transform of convex Lipschitz functions, which then
yields tail estimates by Chebyshev’s inequality. This type of argument may be
pushed further to recover most of Talagrand’s deviation inequalities for func-
tions [7]. It however does not seem to succeed for deviations under the median
(or for concave functions).

A third approach to concentration for product measures was developed by
Marton [8] using inequalities from information theory. This method, which lies
at the level of measures rather than sets or functions and also uses entropic
inequalities, allows her to recover Talagrand’s convex hull concentration (1.2).
Dembo [3] further developed this line of reasoning to reach the other types
of approximations in product spaces introduced by Talagrand (see also [4]).
Besides describing a new method of proof, Marton’s approach is moreover well
suited to extensions to some dependent situations such as contracting Markov
chains.

The main purpose of this work is to extend Marton’s information theoretic
approach to larger classes of dependent sequences such as Doeblin recurrent
Markov chains [13] and �-mixing processes [5]. �-mixing coefficients have
been recently introduced by Marton to control dependence and prove concen-
tration inequalitites with the Hamming distance for dependent sequences (see
[10]). Let, for example, 	Xi�i∈� be a Markov chain or a �-mixing process. De-
note by P the law on �n of a sample X of size n taken from 	Xi�i∈�. We will
introduce a matrix � of dimension n, with coefficients that will measure the
dependence between the random variables 	X1� � � � �Xn� of the sample X. In
the interesting cases, the operator norm ��� of the matrix � will be bounded
independently of the size of the sample. This condition is satisfied for con-
tracting Markov chains (see [8]), but also for more useful processes. Examples
include uniformly ergodic Markov chains (see [13]) satisfying the so-called
Doeblin condition (see Proposition 1). Other examples are the �-mixing pro-
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cesses for which the sequence of �-mixing coefficients is summable, for exam-
ple, �-mixing processes with a geometric decay of their �-mixing coefficients
(see [5]). All these examples are described at the beginning of Section 2.

Let now P denote the law of the sampleX on �n. For every probability mea-
sures Q and R on �n, let � 	Q�R� denote the set of all probability measures
on �n ⊗ �n with marginals Q and R. Define

d2	Q�R� = inf
�∈� 	Q�R�

sup
α

∫∫ n∑
i=1
αi	y�1xi �=yi d�	x�y��

where the supα is over all vectors of positive functions α = 	α1� � � � � αn�, with∫ n∑
i=1
α2i 	y�dR	y� ≤ 1�

As a main result, we show in Theorem 1 below that, for every probability
measure Q on �n with Radon–Nikodym derivative dQ/dP with respect to the
measure P,

d2	Q�P� ≤ ���
√
2 EntP

(
dQ

dP

)
�

Furthermore,

d2	P�Q� ≤ ���
√
2 EntP

(
dQ

dP

)
�

Such Pinsker type inequalities have already been investigated by Marton for
contracting Markov chains [8], and then by Dembo in the independent case
[3]. Recently, Marton also obtained related bounds with a parameter readily
comparable to ��� [11]. Following these works, we could easily derive concen-
tration in the form of (1.2) [and thus (1.1)] from these information inequalities.
We however take a somewhat different route related to exponential integra-
bility and log-Sobolev inequalities. Actually, to get concentration inequalities
around the mean with the best constant (see Corollary 3), we adapt a duality
argument by Bobkov and Götze [2] dealing with the equivalence between ex-
ponential inequalities on the Laplace transform and information inequalities.
Let P denote the law of a sample 	X1� � � � �Xn� of bounded random variables
0 ≤Xi ≤ 1. We will obtain deviation inequalities which include Berstein-type
inequalities. Namely, for every Lipschitz convex function f on �0�1�n, with
Lipschitz constant �f�Lip ≤ 1 and every t ≥ 0,

P	
f− EP	f�
 ≥ t� ≤ 2 exp
(
− t2

2���2
)
�(1.3)

Following this approach, we get in the same way some new log-Sobolev
inequalities (see Corollary 1). From these inequalities, we could also obtain
deviation inequalities such as (1.3) by the log-Sobolev method suggested by
Ledoux. Nevertheless, we get a worse constant 8���2 instead of 2���2 in (1.3).
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Let us note that the constant 2���2 is optimal as can be seen from the central
limit theorem in the independent case 	��� = 1�.

In Section 3, we present some applications of Theorem 1 to empirical pro-
cesses, in particular to tail estimates for the supremum of empirical processes.
Let S be a measurable space and letX = 	X1� � � � �Xn� be a sample of random
variables on a probability space 	��� ��� taking values in S. For example,X
could be taken out of a sequence 	Xi�i∈� which is a uniformly ergodic Markov
chain or a �-mixing process. Let � be a countable family of bounded measur-
able functions g on S, 
g
 ≤ C. Let Z denote the random variable

Z = sup
g∈�

∣∣∣∣∣ n∑
i=1
g	Xi�

∣∣∣∣∣�
In the independent case, Talagrand proved sharp bounds on the tail of Z
around its mean that extend the classical real-valued setting (see Theorem 1.4,
[17]). More precisely, he showed that for every t ≥ 0,

�	
Z− Ɛ	Z�
 ≥ t� ≤K exp
(
− 1
K

t

C
log
(
1+ Ct

Ɛ	�2�
))
�(1.4)

where K is a numerical constant and

�2 = sup
g∈�

n∑
i=1
g2	Xi��

If one is only interested in bounds on �	Z ≥ t + Ɛ	Z�� above the mean, the
log-Sobolev method of [1] provides an efficient way to prove inequalities such
as (1.4) with a simplicity that contrasts with the argument of [17]. Sharp
constants in Ledoux’s method have been recently obtained by Massart [12].
For us, it will be more convenient to deduce deviation inequalities for empirical
processes from the information inequalities of Theorem 1. The method we will
use is still linked to the equivalence between exponential integrability and
information inequalities. However, we will only prove the Gaussian bound for
small t’s in (1.4), and we do not succeed in proving the Poissonian bound for
large t’s in this context of dependence. Our results are of some interest when
the functions g of � are nonnegative (see Theorem 2). Nethertheless, in the
case of arbitrary bounded functions, we could expect some improvement of the
deviation inequalities of Theorem 3 (this point is developed in the Section 3).

2. Information inequalities for processes and Log-Sobolev inequal-
ities. In this section, we present the central result of this work. On some
probability space 	��� ���, consider a sample X = 	X1� � � � �Xn� of real-
valued random variables.

As described in the introduction, the case of independentXi’s, or of a prod-
uct measure P, has been extensively investigated in recent years. We are
interested here in a sample X of random variables which are not necessarily
independent. For example, the random variables X1� � � � �Xn of the sample X
are taken out of a sequence 	Xi�i∈� which is a Markov chain.
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To measure the dependence between the random variables X1� � � � �Xn, we
define a triangular matrix � = 	γji �1≤i� j≤n. For i ≥ j,

γ
j
i =

{
0� if i > j,

1� if i = j.

For 1 ≤ i < j ≤ n, let Xj
i represent the vector 	Xi� � � � �Xj�, and let

� 	Xn
j
Xi−1

1 = yi−11 � Xi = xi�

denote the law of Xn
j conditionally to Xi−1

1 = yi−11 and Xi = xi. For every
1 ≤ i < j ≤ n and for xi� y1� � � � � yi in �, let

aj	yi−11 � xi� yi� = ∥∥� 	Xn
j
Xi−1

1 = yi−11 � Xi = xi�
−� 	Xn

j
Xi−1
1 = yi−11 � Xi = yi�

∥∥
TV�

where � · �TV denotes the total variation of a signed measure. Set then(
γ
j
i

)2 = sup
	xi� yi�∈�2

sup
yi−11 ∈�i−1

aj	yi−11 � xi� yi��(2.1)

To avoid the strong condition imposed by the supremum in the definition of
γ
j
i , we consider another possible definition for the coefficients of the triangular
matrix �. For every 1 ≤ i < j ≤ n, let

ãj
(
yi1
) = ∥∥� 	Xn

j
Xi
1 = yi1� −� 	Xn

j�
∥∥
TV

and (
γ̃
j
i

)2 = 2 ess sup
yi1∈�i�� 	xi1�

ãj	yi1��(2.2)

where ess supyi1∈�i�� 	xi1� is the essential supremum with respect to the mea-
sure � 	Xi

1�. By definition, for every measurable function a on a probability
space 	E�	 � µ�,

ess sup
y∈E�µ

a	y� = inf�α ∈ �+ ∪ �∞�� µ	a	y� > α� = 0��

Now, consider ���, the usual operator norm of the matrix � with respect to
the Euclidean topology. ��� appears in all the results we present in our paper.
Roughly speaking, it measures the “L2-dependence” of the random variables
X1� � � � �Xn.

Our main emphasis will be to describe cases for which ��� may be bounded
independently of n, the size of the sample (as is of course the case when the
Xi’s are independent, for which � = Id, and ��� = 1). Let us describe a few
examples of interest.
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A first class of examples concerns Markov chains. Assume X1� � � � �Xn is a
Markov chain. By the Markov property, the coefficients γji or γ̃

j
i take a simpler

form. Namely, for 1 ≤ i < j ≤ n,(
γ
j
i

)2 = sup
	xi� yi�∈�2

�� 	Xj
Xi = xi� −� 	Xj
Xi = yi��TV(2.3)

and (
γ̃
j
i

)2 = 2 ess sup
yi∈��� 	Xi�

∥∥� 	Xj
Xi = yi� −� 	Xj�
∥∥
TV�

There are many examples of Markov chains for which ��� is bounded inde-
pendently of the dimension n. Let us briefly present two of them.

We first mention the Doeblin recurrent Markov chains presented, for ex-
ample, in [5] (see page 88). Let X1� � � � �Xn be a homogeneous Markov chain
with transition kernel K	· 
 ·� 	for every 2 ≤ i ≤ n� � 	Xi
Xi−1 = xi−1� =
K	· 
xi−1��. Let µ be some nonnegative measure with nonzero mass µ0. The
next statement is due to Ueno and Davidov (see [5], page 88).

Proposition 1. If there exists some integer r such that for all x1 in � and
all measurable sets A,

Kr	A
x1� ≤ µ	A��
then, for every integer k and for every x1� y1 in �,∥∥Kk	· 
x1� −Kk	· 
y1�

∥∥
TV ≤ 2ρk/r�(2.4)

where ρ = 1− µ0.

Markov chains for which the k-step transition kernels Kk satisfy (2.4) are
called uniformly ergodic in [13] (see Chapter 16). In this book, there are sev-
eral conditions equivalent to (2.4), in particular the so-called Doeblin condition
(cf. [13], Theorem 16.0.2). The above proposition simply follows from Theorem
16.2.4 in [13]. In [5], Doukhan gives the analogue of Proposition 1 for nonho-
mogeneous Markov chains (cf. page 88).

If the Markov chain satisfies Proposition 1, it may be shown that

��� ≤
√
2

1− ρ1/2r �(2.5)

Indeed, according to the definition (2.3) of γji , for 1 ≤ i < j ≤ n,(
γ
j
i

)2 = sup
	xi� yi�∈�2

∥∥Kj−i	· 
xi� −Kj−i	· 
yi�
∥∥
TV

Therefore, by (2.4), for 1 ≤ i < j ≤ n,

γ
j
i ≤

√
2
(
ρ1/2r

)j−i
�(2.6)
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Consequently,

��� ≤
√
2
∥∥∥∥Id+

n−1∑
k=1

	ρ1/2r�kNk

∥∥∥∥�
where Nk = (

n
	k�
ij

)
1≤i� j≤n represents the nilpotent matrix of order k defined

by

n
	k�
ij =

{
1� if j− i = k,
0� otherwise.

Since for each 1 ≤ k ≤ n, �Nk� ≤ 1, it follows from the triangular inequality
that

��� ≤
√
2
n−1∑
k=1

	ρ1/2r�k�

Finally, the geometric sum on the right-hand side is bounded independently
of n, since ρ < 1. We thus obtain (2.5).

A second class of Markov chains is called “contracting” Markov chains in
[8]. These Markov chains are not necessary homogeneous. As we already men-
tioned in the introduction, Marton obtains a concentration inequality for those
Markov chains. This result is equivalent to our deviation inequality (2.20) in
Corollary 4 applied to this particular case of Markov chains. Let Ki denote
the transition kernel at the step i. In other words, Ki	· 
xi−1� denotes the
law of Xi given Xi−1 = xi−1. The chain will be called contracting if for every
i = 1� � � � � n,

αi = sup
	xi−1� yi−1�∈�2

∥∥Ki	· 
yi−1� −Ki	· 
xi−1�
∥∥
TV < 1�(2.7)

In this case, ��� may also be bounded independently of the dimension n as

��� ≤ 1
1− α1/2 �(2.8)

where

α = max
1≤i≤n

αi�

To prove inequality (2.8), we first show that for every 1 ≤ i < j ≤ n,
(
γ
j
i

)2 ≤
j∏

l=i+1
αl ≤ αj−i�(2.9)

Then, replacing β1/2r by α1/2 in (2.6), the conclusion follows as in the previous
example. The proof of (2.9) below is of particular interest since we will mention
there a recurring argument throughout this paper. For every 2 ≤ i ≤ n, define

bi	xi−1� yi−1� = ∥∥Ki	· 
yi−1� −Ki	· 
xi−1�
∥∥
TV
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and, for every 1 ≤ i < j ≤ n,
a
j
i 	xi� yi� = ∥∥� 	Xj
Xi = xi� −� 	Xj
Xi = yi�

∥∥
TV�

We thus have, for every 1 ≤ i < j ≤ n,
γ
j
i = sup

	xi� yi�∈�2
a
j
i 	xi� yi��

and for every 2 ≤ i ≤ n,
αi = sup

	xi−1� yi−1�∈�2
bi	xi−1� yi−1��

For every real-valued function v and for every probability measure K on �,
we denote

Kv =
∫
vdK�

According to this notation, for every 1 ≤ i < j ≤ n,
� 	Xj
Xi = xi� =Ki+1	·
xi� · · ·Kj	·
·��

Set

Ki+1	·
xi� · · ·Kj	·
·� =Kj
i+1	·
xi��

We want to bound uniformly aji 	xi� yi�. First, note that
a
j
i 	xi� yi�

=
∥∥∥∥∫ Kj

i+2	·
xi+1�Ki+1	dxi+1
xi� −
∫
K
j
i+2	·
yi+1�Ki+1	dyi+1
yi�

∥∥∥∥
TV
�

Define a coupling probability measure on �2��	·� ·
xi� yi�, whose marginals
are Ki+1	·
xi� and Ki+1	· 
yi�. Then,

a
j
i 	xi� yi� =

∥∥∥∥∫∫ Kj
i+2	·
xi+1� −Kj

i+2	·
yi+1��	dxi+1� dyi+1
xi� yi�
∥∥∥∥
TV
�

By convexity of the total variation norm � · �TV,

a
j
i 	xi� yi� ≤

∫∫ ∥∥∥Kj
i+2	·
xi+1� −Kj

i+2	·
yi+1�
∥∥∥
TV
�	dxi+1� dyi+1
xi� yi��

From the definition of γji+1, it follows that

a
j
i 	xi� yi� ≤ 	γji+1�2

∫∫
1xi+1 �=yi+1�	dxi+1� dyi+1
xi� yi��

Recall now the “coupling” definition of the variational distance between two
measures of probability R and Q on �,

�Q−R�TV = min
�∈� 	Q�R�

∫
1x �=y�	dx�dy��
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where � 	Q�R� is the set of all probability measures on �2 whose marginals
are Q and R. Thanks to this definition, we choose the coupling probability
measure �	·� · 
xi� yi� in � 	Ki+1	·
xi��Ki+1	· 
yi�� such that

bi+1	xi� yi� =
∫∫

1xi+1 �=yi+1�	dxi+1� dyi+1
xi� yi��

Consequently,

a
j
i 	xi� yi� ≤ (γji+1)2bi+1	xi� yi��

Thus, we obtain the following recurrence inequality, for every 1 ≤ i < j ≤ n,(
γ
j
i

)2 ≤ (γji+1)2αi+1�
Note that

(
γ
j
j−1
)2 = αj for every 2 ≤ j ≤ n. By induction over i, the preceding

recurrence inequality immediately yields (2.9).
The second class of examples concerns �-mixing processes. For this class

of examples, we refer to [5]. Consider X as a sample taken from a �-mixing
random sequence 	Xi�i∈�. We briefly recall what is meant by this terminology.
For any set C of integer, C ⊂ �, letXC = �Xi� i ∈ C�, denote the C-marginals
of the random process. 
C is the σ-algebra generated by XC, and 
C
 is the
cardinal of C when C is finite. Moreover the usual distance between subsets
A and B of � will be denoted d	A�B�. To measure the �-dependence between
two σ-algebras 
A and 
B, definite

�	
A�
B� = sup
{∣∣∣∣�	V� − �	U ∩V�

�	U�

∣∣∣∣� U ∈ 
A��	U� �= 0�V ∈ 
B

}
�

and for every integer k, u, v in �∗,

�k	u� v� = sup��	
A�
B��d	A�B� ≥ k� 
A
 ≤ u� 
B
 ≤ v��
We could observe that for each integer u and v, �k	u� v� is nonincreasing with
respect to k. The process 	Xi�i∈� is said to be �-mixing, if for any integer, u, v,

lim
k→∞

�k	u� v� = 0�

Note also that for every integer k, �k	u� v� is nondecreasing with respect to
u and v. We thus consider

sup
u∈�∗

sup
v∈�∗

�k	u� v� = �k�

Now let us present the relation between the coefficients �k and the coefficients
γ̃
j
i . We know that for all measures Q and R on a measurable space 	E�	 �,
the variational distance can be defined as,

�Q−R�TV = sup
F∈	


Q	F� −R	F�
�

Recall the definition of the coefficient ãj	yi1�, for every 1 ≤ i < j ≤ n,
ãj	yi1� = ∥∥� 	Xn

j
Xi
1 = yi1� −� 	Xn

j�
∥∥
TV�
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According to this definition, we see that

ess sup
yi1∈�i�� 	Xi

1�
ãj	yi1� = �	
A	i��
B	j���

where A	i� = �1� � � � � i� and B	j� = �j� � � � � n�. Note that
d	A	i��B	j�� = j− i�

Consequently, form the definition (2.2) of the coefficient γ̃ji , it follows that(
γ̃
j
i

)2 ≤ 2�j−i�

Now, assume 	Xi�i∈� is a �-mixing process for which the sequence 	�k� admits
a geometrical decay; that is, for every k,

�k ≤ Cβk�
where C is some constant and β is a real number with 0 ≤ β < 1. In this case,
as for the previous examples, ��� may also be bounded independently of n as

��� ≤
√
2C

1− β1/2 �

More generally, we easily see that if 	Xi�i∈� is a �-mixing process for which
the sequence 	�k� satisfies

∞∑
k=1

√
�k <∞�

then ��� may be bounded independently of the size n of the sample X as

��� ≤
∞∑
k=1

√
�k�

There are probably other examples of samples X for which ��� may be
bounded independently of n, but there are not developed in this paper. We
now present the central theorem of this paper.

This theorem is an improvement of the theorem by Marton [8]. For every
measure of probability Q and R on �n, let � 	Q�R� denote the set of all
probability measures on �n × �n with marginals Q and R. Define

d2	Q�R� = inf
�∈� 	Q�R�

sup
α

∫∫ n∑
i=1
αi	y�1xi �=yi d�	x�y��(2.10)

where supα is over all vectors of positive functions α = 	α1� � � � � αn�, with∫ n∑
i=1
α2i 	y�dR	y� ≤ 1�

This definition is due to Marton. Let us note that Marton rather uses the
normalized distance d̄2 = d2/

√
n. It is clear that d2	Q�R� is not symmetric

and that d2	Q�Q� = 0. Marton proved that d2 satisfies a triangular inequality
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(see [9]). Therefore, d2	Q�R� is quite a distance between the measures Q and
R. Another expression for the distance d2	Q�R� is the following (see [8]):

d2	Q�R� = inf
�∈� 	Q�R�

(∫ n∑
i=1
Pr2	Xi �= yi
Yi = yi�dR	y�

)1/2
�

where 	X�Y� denotes a pair of random variables taking values in �n × �n,
and with law �.

Let X = 	X1� � � � �Xn� be a sample of random variables taking values in
�n. For example,X is one of the previous examples. Let � be its corresponding
matrix of mixing coefficients defined in (2.1) or (2.2). As defined previously, P
denotes the law of the sample X.

Theorem 1. For every probability measuresQ on �n with Radon–Nikodym
derivative dQ/dP with respect to the measure P,

d2	Q�P� ≤ ���
√
2 EntP

(
dQ

dP

)
�(2.11)

Furthermore,

d2	P�Q� ≤ ���
√
2 EntP

(
dQ

dP

)
�(2.12)

As a consequence of this main result, we present a few corollaries of inter-
est. X = 	X1� � � � �Xn� is a sample of bounded random variables. It will be
convenient to assume that each Xi takes values in [0, 1]. The results easily
extend to arbitrary bounded random variables as for inequality (2.22). The
support of P is also on �0�1�n. We just have to change the definition of the co-
efficients of the matrix �, replacing the set � by the set [0, 1] in (2.1) and (2.2).

The first corollary concerns log-Sobolev inequalities for the measure P and
convex or concave smooth functions on �0�1�n. As already mentioned in the
introduction, this corollary extends Theorem 1.2 of [7] which concerns log-
Sobolev inequalities for product measures on �0�1�n and for separately convex
smooth functions.

Corollary 1. For any smooth convex function f� �0�1�n → �,

EntP
(
ef
) ≤ 2���2

∫

∇f
2ef dP�(2.13)

For any smooth concave function f� �0�1�n → �,

EntP
(
ef
) ≤ 2���2

∫

∇f
2 dP

∫
ef dP(2.14)

(where ∇f is the usual gradient of f on �n and 
∇f
 denotes its Euclidean
length).
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Theorem 1 yields lower bounds for the informational divergence between
measures. Conversely, we bound the entropy of functions in Corollary 1. We
could say that the log-Sobolev inequalities (2.13) and (2.14) are the dual ex-
pressions of the information inequalities (2.11) and (2.12).

Proof. On the basis of Theorem 1, the proof of Corollary 1 is quite simple.
Our aim is to bound efficiently EntP	ef� with the usual gradient of f. By
Jensen’s inequality, for any function f,

EntP	ef�
EP	ef�

≤
∫
f	y� ef	y�

EP	ef�
dP	y� −

∫
f	x�dP	x��

Let Pf be the probability measure on �0�1�n whose density is ef/EP	ef� with
respect to the measure P. Let � be a probability measure on �n × �n with
marginals P and Pf. Then

EntP	ef�
EP	ef�

≤
∫∫
f	y� − f	x�d�	x�y��

Let f be a convex function on �0�1�n. For every x and y in �0�1�n, we can
bound f	y� − f	x� independently of ∇f	x�. More precisely,

f	y1� � � � � yn� − f	x1� � � � � xn� ≤
n∑
j=1


∂jf	y1� � � � � yn�
 
yj − xj
�

For every yj� xj in [0, 1], 
yj − xj
 ≤ 1yj �=xj , so that

f	y1� � � � � yn� − f	x1� � � � � xn� ≤
n∑
j=1


∂jf	y1� � � � � yn�
1yj �=xj �(2.15)

Let us recall that � 	P�Pf� denotes the set of all probability measures on
�n × �n with marginals P and Pf. Therefore, for every probability measure
� in � 	P�Pf�,

EntP	ef�
EP	ef�

≤
n∑
j=1

∫∫ ∣∣∂jf	y�∣∣1yj �=xj�	x�y��

Similarly, if f is a concave function on �0�1�n, for every x and y in �0�1�n, we
can bound f	y� − f	x� independently of ∇f	y�.

f	y1� � � � � yn� − f	x1� � � � � xn� ≤
n∑
j=1

∣∣∂jf	x1� � � � � xn�∣∣1yj �=xj �(2.16)

Therefore, we get in this case

EntP	ef�
EP	ef�

≤
n∑
j=1

∫∫ ∣∣∂jf	x�∣∣1yj �=xj��	x�y��
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According to the definitions of d2	P�Pf� and d2	Pf�P�, by the Cauchy–
Schwarz inequality, for every convex function f on �0�1�n,

EntP	ef�
EP	ef�

≤ d2
(
P�Pf

)(∫ n∑
j=1

∣∣∂jf	y�∣∣2 dPf	y�
)1/2

�

Similarly, for every concave function f on �0�1�n,

EntP	ef�
EP	ef�

≤ d2
(
Pf�P

)(∫ n∑
j=1

∣∣∂jf	x�∣∣2 dP	x�
)1/2

�

Apply then the results of Theorem 1 to d2	P�Pf� and d2	Pf�P�. Since
dPf

dP
= ef

EP	ef�
�

we get, for every convex function f on �0�1�n,

EntP	ef�
EP	ef�

≤ ���
(
2
EntP	ef�
EP	ef�

)1/2(∫

∇f
2 ef

EP	ef�
dP

)1/2
�

Similarly, for every concave function f on �0�1�n,

EntP	ef�
EP	ef�

≤ ���
(
2
EntP	ef�
EP	ef�

)1/2(∫

∇f
2 dP

)1/2
�

The proof is thus complete. ✷

A direct application of Corollary 1 is Poincaré or spectral gap inequalities
for convex or concave functions. Let f be a convex function. For any ε positive,
apply (2.13) of Theorem.1, to εf. A Taylor’s expansion of the second order in
ε in (2.13) yields the following corollary.

Corollary 2. For any smooth convex real function f on �0�1�n,∫
f2 dP−

(∫
fdP

)2
≤ 2���2

∫

∇f
2 dP�(2.17)

Note that this inequality has been proved with a better constant in the
independent case 	��� = 1� in [1] and [7].

We now present new concentration inequalities. Obviously, using the clas-
sical method developed by Ledoux (see also [7]), we easily derive deviation
inequalities from the log-Sobolev inequalities (2.13) and (2.14). However, we
get the constant 8 instead of the better constant 2 in the deviation inequali-
ties (2.18) and (2.19). The way to obtain the optimal constant 2 is to adapt a
proof by Bobkov and Götze [2] to the information inequalities of Theorem 1.
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Corollary 3. For any smooth convex function f on �0� 1�n satisfying

∇f
 ≤ 1 P-almost everywhere, for every t ≥ 0,

P	f ≥ EP	f� + t� ≤ exp
(
− t2

2���2
)
�(2.18)

For any smooth concave function f on �0�1�n satisfying ∫ 
∇f
2 dP ≤ 1, for
every t ≥ 0,

P	f ≥ EP	f� + t� ≤ exp
(
− t2

2���2
)
�(2.19)

These deviation inequalities are of particular interest if ���is bounded in-
dependently of the size n of the sample X. Let us note that for the same
exponential deviation inequality (2.19) or (2.18), the condition on the gradi-
ent is stronger for convex functions than for concave functions. This is rather
intuitive on the graph of a concave function and its mean. Equation (2.19)
thus improves some aspects of the results in [6], recalled further in this paper
[see (2.21)]. On the other hand, we do not deal with separately convex func-
tions as in [7]. It might be of interest to find the information inequalities that
would cover this class of functions.

Corollary 3 yields a concentration inequality for convex (or concave) Lip-
schitz functions. Let f be a convex Lipschitz function on �n with Lipschitz
constant

�f�Lip ≤ 1�

Let Pεf be the convolution product of f with a Gaussian kernel, for every ε
positive, for every x in �n,

Pεf	x� =
∫
f	y� exp

(
−
x− y
2

2ε

)
dλ	y�√
2πε

= E	f	x+ √
εB���

where λ is the Lebesgue measure on �n, and B denotes a Gaussian variable
on �n whose law is N	0� I�. Clearly Pεf is a convex function on �n. Since
�f�Lip ≤ 1, for every x in �n,


Pεf	x� − f	x�
 ≤
√
εE 
B
�

Therefore, for every x in �n, Pεf	x� converges to f	x� as ε tends to 0. More-
over, by Rademacher’s theorem,


∇f
 ≤ 1 λ-almost everywhere�

Consequently,


∇Pεf
 ≤ 1 everywhere�

since

∇Pεf	x� = E	∇f	x+ √
εB���
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We then apply (2.18) to Pεf and (2.19) to −Pεf. This yields the following
result, for every t ≥ 0,

P	
Pεf− EP	Pεf�
 ≥ t� ≤ 2 exp
(
− t2

2���2
)
�

SincePεf	x� converges to f	x� everywhere as ε tends to 0, we get the following
corollary.

Corollary 4. For any convex Lipschitz function f on �0�1�n with Lipschitz
constant �f�Lip ≤ 1, and for every t ≥ 0,

P	
f− EP	f�
 ≥ t� ≤ 2 exp
(
− t2

2���2
)
�(2.20)

If P is a product measure µ1 ⊗ · · · ⊗ µn on �0�1�n, ��� = 1, the latter
inequality (2.20) is the analogue of Talagrand’s deviation inequality with the
median M instead of the mean (See also [15], [16], [17]). Talagrand showed
that for every convex Lipschitz function f, with �f�Lip ≤ 1, for every t ≥ 0,

P	
f−M
 ≥ t� ≤ 4 exp	−t2/4��(2.21)

Marton extends this result to contracting Markov chains. Talagrand and Mar-
ton first prove the concentration of measure phenomenon in terms of sets
(see Theorem 6.1, [16]). (2.21) follows by considering the set �f ≤ M� (see
Theorem 6.6, [16]). Actually, concentration inequalities around the mean or
the median are equivalent up to numerical constants (see, e.g., [14]). Let us
briefly sketch the argument. Corollary 4 indicates that, for a convex Lipschitz
function with Lipschitz constant �f�Lip ≤ 1, if t > 4���√log 2,

P	
f− EP	f�
 ≤ t� > 1
2 �

Therefore, the definition of the median implies that


M− EP	f�
 ≤
√
2�

Thus, from (2.20), we get that, for every u ≥ 0,

P	
f−M
 ≥ u� ≤ P	
f− EP	f�
 ≥ u−
√
2� ≤ 2 exp

(
−	u− √

2�2
2���2

)
�

Hence, since ��� ≥ 1, for every u ≥ 0,

P	
f−M
 ≥ u� ≤ 6 exp
(
− u2

4���2
)
�

Corollary 4 of course extends to probability measures P on �a� b�n. Assume
P is the distribution of a sample X = 	X1� � � � �Xn� of random variables on
some probability space 	��� ���. Each random variable Xi takes values in
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�a� b�. By a simple scaling, we get from Corollary 4 that for any convex Lip-
schitz function f on �n, with Lipschitz constant �f�Lip ≤ 1, for every t ≥ 0,

P	
f− EP	f�
 ≥ t� ≤ 2 exp
(
− t2

2	b− a�2���2
)
�(2.22)

Let us also recall one typical application of this deviation inequality to
norms of random series. For 1 ≤ i ≤ n, let Zi be random variables on some
probability space 	��� ��� with 
Zi
 ≤ 1. � denotes its triangular matrix of
mixing coefficients. For 1 ≤ i ≤ n, let bi be vectors in some arbitrary Banach
space E with norm � · �. Then, for every t ≥ 0,

�

(∣∣∣∣
∥∥∥∥ n∑
i=1
Zibi

∥∥∥∥− Ɛ

∥∥∥∥ n∑
i=1
Zibi

∥∥∥∥
∣∣∣∣ ≥ t) ≤ exp

(
− t2

8σ2���2
)
�(2.23)

where

σ2 = sup
�ξ�≤1

n∑
i=1

�ξ� bi 2�

We now turn to the proof of Corollary 3. Instead of using the method sug-
gested by Marton, dealing with a geometric description of concentration, we
prefer to follow the functional approach of [7]. Our approach is inspired by [2].
The following proof of Corollary 3 is an adaptation of the proof of Theorem 3.1
of [2] to the particular case of a nonsymmetric d2-distance between probability
measures on �n. The proof is based on the relation between the information
inequalities of Theorem 1 and exponential integrability.

Proof of Corollary 3. Let f be a convex function on �0�1�n. Let Q be a
measure on �0�1�n with Radon–Nikodym derivative dQ/dP = g with respect
to the measure P. For every measure � in� 	P�Q�, that is, for every measure
� on �n × �n, whose marginals are Q and P,∫

f	y�dQ	y� −
∫
f	x�dP =

∫∫
	f	y� − f	x��d�	x�y��

As already mentioned in the proof of Corollary 1, if f is a convex function on
�0�1�n, we can bound f	y� − f	x� independently of ∇f	x�. Namely, for every
x and y in �0�1�n,

f	y1� � � � � yn� − f	x1� � � � � xn� ≤
n∑
j=1

∣∣∂jf	y�∣∣1yj �=xj �
Therefore, for every measure � in � 	P�Q�,∫

f	y�dQ	y� −
∫
f	x�dP	x� ≤

∫∫ n∑
j=1


∂jf	y�
1yj �=xj d�	x�y��
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The assumption that 
∇f
 ≤ 1 P-almost everywhere is still true Q-almost
everywhere. Therefore, ∫ n∑

j=1

∂jf
2 dQ ≤ 1�

Finally, according to the definition of d2	P�Q� (2.10), we get that,∫
fdQ−

∫
fdP ≤ d2	P�Q��(2.24)

Similarly, if f is a concave function on �0�1�n, for every x and y in �0�1�n,
we bound f	y� − f	x� independently ∇f	y�. Therefore, we get in this case,∫

f	y�dQ	y� −
∫
f	x�dP	x� ≤

∫∫ n∑
j=1


∂jf	x�
1yj �=xj d�	x�y��

Under the assumption that ∫ n∑
j=1


∂jf
2 dP ≤ 1�

it follows that ∫
fdQ−

∫
fdP ≤ d2	Q�P��(2.25)

Assume now that f is either a convex function, or a concave function, satis-
fying the assumption of Corollary 3. Applying the results of Theorem 1, (2.11)
or (2.12), we get from (2.24) or (2.25) that∫

fdQ−
∫
fdP ≤

√
2���2 EntP

(
dQ

dP

)
�

That is, ∫
fgdP−

∫
fdP ≤

√
2���2 EntP	g��

We then use the following variational equality:√
2���2 EntP	g� = inf

λ>0

(���2λ
2

+ 1
λ
EntP	g�

)
�

Thus, for every λ > 0,∫
	f− EP	f��gdP ≤ ���2λ

2
+ 1
λ
EntP	g��

In other words, for every λ > 0,∫ (
λ	f− EP	f�� −

���2λ2
2

)
gdP ≤ EntP	g��
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Then, choosing g = el/EP
(
el
)
where

l = λ	f− EP	f�� −
���2λ2

2
�

it follows that for every λ ≥ 0,

EP
(
eλ	f−EP	f��

) ≤ exp
(���2λ2

2

)
�

By Chebyshev’s inequality, for every λ ≥ 0, t ≥ 0,

P	f− EP	f� ≥ t� ≤ exp
(
−λt+ ���2λ2

2

)
�

Optimizing in λ proves the deviation inequalities (2.18) and (2.19) of Corol-
lary 3. ✷

We now turn to the (some what lengthy) proof of Theorem 1. To better
explain the idea, let us first outline the scheme of the proof. We first assume
that P admits a strictly positive density g with respect to a product measure
µ1 ⊗ · · · ⊗ µn on �0�1�n. This assumption is not restrictive. Indeed, consider
the case of a nonnegative density g̃. Let then

g = g̃1g̃>0�

Here g is a strictly positive measurable function. So we can consider the
probability whose density is g with respect to µ1 ⊗ · · · ⊗ µn on �0�1�n. We
then apply Theorem 1 to this measure. Noting that 1g̃=0 is a measurable
function, we easily extend the results of Theorem 1 to the case of a nonnegative
density g̃.

Let Q be a probability measure on �n, with Radon–Nikodym derivative
dQ/dP with respect to P. Let α be a vector of positive functions α = 	α1� � � � �
αn�, with ∫ n∑

i=1
α2i 	y�dQ	y� ≤ 1�

Let β be a vector of positive functions β = 	β1� � � � � βn�, with∫ n∑
i=1
β2i 	x�dP	x� ≤ 1�

The key of the proof is to find a good measure � with marginals Q and P
to bound efficiently the two following expressions independently of α or β.
Precisely, we will construct a measure � such that, for every α and β with the
above conditions,∫∫ n∑

i=1
αi	y�1xi �=yi d�	x�y� ≤ ���

√
2 EntP

(
dQ

dP

)
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and ∫∫ n∑
i=1
βi	x�1xi �=yi d�	x�y� ≤ ���

√
2 EntP

(
dQ

dP

)
�

To this task, we introduce conditioning notation. If g is a strictly positive
density, we can write,

g	x1� � � � � xn� = gn	xn
x1� � � � � xn−1� · · ·g2	x2
x1�g1	x1��
where for 1 ≤ j ≤ n,

gj	xj
x1� � � � � xj−1� =
∫
g	x1� � � � � xj� zj+1� � � � � zn�µj+1	dzj+1� · · ·µn	dzn�∫
g	x1� � � � � xj−1� zj� � � � � zn�µj	dzj� · · ·µn	dzn�

�

For 1 ≤ j ≤ n, we denote by Gj	· 
x1� � � � � xj−1� the probability measure whose
density is gj	· 
x1� � � � � xj−1� with respect to the measure µj,

Gj	dxj
x1� � � � � xj−1� = gj	xj
x1� � � � � xj−1�µj	dxj��
Let h denotes the density of the measure Q with respect to the product mea-
sure µ1 ⊗ · · · ⊗ µn on �n,

h = dQ

dP
g�

Similarly for the density h,

h	y1� � � � � yn� = hn	yn
y1� � � � � yn−1� · · ·h2	y2
y1�h1	y1�
with

hj	yj
y1� � � � � yj−1� =
∫
h	y1� � � � � yj� zj+1� � � � � zn�µj+1	dzj+1� · · ·µn	dzn�∫
h	y1� � � � � yj−1� zj� � � � � zn�µj	dzj� · · ·µn	dzn�

�

We set similarly

Hj	dxj
x1� � � � � xj−1� = hj	xj
x1� � � � � xj−1�µj	dxj��
To clarify all the proof, we need some additional conditioning notation. For
every 1 ≤ i < j ≤ k ≤ n, let

hkj	yj� � � � � yk
y1� � � � � yi�

=
∫

· · ·
∫
h	y1� � � � � yi� zi+1� � � � � zj−1� yj� � � � � yk� zk+1� � � � � zn�
× µi+1	dzi+1� · · ·µj−1	dzj−1�µk+1	dzk+1� · · ·µn	dzn��

To simplify the notation, Hk
j	· � � � � � · 
y1� � � � � yi� will denote the probability

measure whose density is hkj	· � � � � � · 
y1� � � � � yi�, that is,

Hk
j	dyj� � � � � dyk
y1� � � � � yi� = hkj	yj� � � � � yk
y1� � � � � yi�µj	dyj� · · ·µk	dyk��
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Similarly, with the same definitions for gkj and G
k
j,

Gkj	dyj� � � � � dyk
y1� � � � � yi� = gkj	yj� � � � � yk
y1� � � � � yi�µj	dyj� · · ·µk	dyk��

Moreover, we sometimes write yj1 for 	y1� � � � � yj�, 1 ≤ j ≤ n. Let us note that,
for 1 ≤ j ≤ n,

h
j−1
1 	y1� � � � � yj−1 = hj−1	yj−1
yj−2� � � � � y1� · · ·h2	y2
y1�h1	y1�

and

P = Gn1 � Pf =Hn
1 �

With these notation, we set, for 1 ≤ i ≤ n,

Ei =
∫
EntGi	·
y1� ���� yi−1�

(
hi	·
y1� � � � � yi−1�
gi	·
y1� � � � � yi−1�

)
Hi−1

1 	dy1� � � � � dyi−1��

Let us recall the well-known tensorization property of entropy.

Lemma 1.

n∑
i=1
Ei = EntP

(
h

g

)
= EntP

(
dQ

dP

)
�(2.26)

Together with Lemma 2 below, this property is one main argument of the
proof of Theorem 1.

Proof. We have

EntP

(
h

g

)
=
∫ h
g
log

h

g
dP�

Since

h	y1� � � � � yn�
g	y1� � � � � yn�

= hn	yn
y1� � � � � yn−1�
gn	yn
y1� � � � � yn−1�

· · · h1	y1�
g1	y1�

�

it follows that

EntP

(
h

g

)
=

n∑
i=1

∫
· · ·
∫
log

hi	yi
y1� � � � � yi−1�
gi	yi
y1� � � � � yi−1�

Hn
1	dy1� � � � � dyn��

Integrating, this yields

EntP

(
h

g

)
=

n∑
i=1

∫
· · ·
∫
log

hi	yi
y1� � � � � yi−1�
gi	yi
y1� � � � � yi−1�

×Hi	dyi
y1� � � � � yi−1�Hi−1
1 	dy1� � � � � dyi−1��

(2.27)
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According to the definition of entropy,

EntGi	·
y1� ���� yi−1�

(
hi	·
y1� � � � � yi−1�
gi	·
y1� � � � � yi−1�

)
=
∫
log

hi	yi
y1� � � � � yi−1�
gi	yi
y1� � � � � yi−1�

Hi	dyi
y1� � � � � yi−1��

Consequently, with the definition of Ei, we see that (2.27) is equivalent to
(2.26). ✷

For 1 ≤ j ≤ n, consider

>j =
∫
αj	y�2 dQ	y�

and

>̃j =
∫
βj	x�2 dP	x��

To be more precise, to prove Theorem 1, we will construct a measure � such
that, for every 1 ≤ j ≤ n,∫∫

αj	y�1yj �=xj d�	y�x� ≤
j∑
i=1
γ
j
i 	2Ei�1/2	>j�1/2(2.28)

and ∫∫
βj	x�1yj �=xj d�	y�x� ≤

j∑
i=1
γ
j
i 	2Ei�1/2	>̃j�1/2�(2.29)

Then, according to the definition of the usual operator norm of the matrix �
with respect to the Euclidean topology, it follows that∫∫ n∑

i=1
αi	y�1xi �=yi d�	x�y� ≤ ���

(
2

n∑
i=1
Ei

)1/2(
n∑
j=1
>j

)1/2
and ∫∫ n∑

i=1
βi	x�1xi �=yi d�	x�y� ≤ ���

(
2

n∑
i=1
Ei

)1/2(
n∑
j=1
>̃j

)1/2
�

By the definitions of >j and >̃j,

n∑
j=1
>j ≤ 1

and
n∑
j=1
>̃j ≤ 1�
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The information inequalities (2.11) and (2.12) of Theorem 1 will then follow
from Lemma 1.

So, to prove Theorem 1, we just have to show (2.28) and (2.29). Before
considering the general case, it is of interest to see the case of dimension one,
n = 1. In this proof, we present Lemma 2 which is at the center of the proof of
Theorem 1. Then, to extend our approach to any dimension, we use a result
of Fiebig in [6] recalled in Proposition 2.

If n = 1, we want to construct a measure � on �×� with marginals P and
Q. Let � be the probability whose density l1 with respect to µ1	dy1�⊗µ1	dx1�
is defined by

l1	x1� y1� = 1x1=y1 min	h	y1�� g	x1��

+ 1x1 �=y1
�h	y1� − g	y1��+�g	x1� − h	x1��+

�Q−P�TV
�

where �α�+ denotes the positive part of the real number α. Integrating one
of the variables, it is clear that the marginals of � are Q and P. With this
definition, we have,∫∫

α1	y1�1y1 �=x1�	dy1� dx1�

=
∫∫
α1	y1�1y1 �=x1

�h	y1� − g	y1��+ �g	x1� − h	x1��+
�Q−P�TV

µ1	dy1�µ1	dx1��

We know that ∫
�g	x1� − h	x1��+ µ1	dx1� = �Q−P�TV�

Therefore, integrating with respect to the variable x1, it follows that∫∫
α1	y1�1y1 �=x1�	dy1� dx1� =

∫
α1	y1��h	y1� − g	y1��+ µ1	dy1��

Since ∫
α1	y1�2 dQ	y1� ≤ 1�

by the Cauchy–Schwarz inequality, we get that∫∫
α1	y1�1y1 �=x1�	dy1� dx1� ≤

(∫ [
1− g	y1�

h	y1�
]2
+
h	y1�µ1	dy1�

)1/2
�(2.30)

Similarly, with the same definition for the measure �, we have∫∫
β	x1�1y1 �=x1�	dy1� dx1� ≤

(∫ [
1− h	x1�

g	x1�
]2
+
g	x1�µ1	dx1�

)1/2
�(2.31)

Finally, to end the proof in the case n = 1, we just have to apply the following
lemma.
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Lemma 2. For every probability measures R and Q with density r and q
with respect to a measure ν, define

dν	r
q� =
(∫ [

1− r

q

]2
+
qdν

)1/2
�

Then, we have

d2ν	r
q� + d2ν	q
r� ≤ 2EntR
(q
r

)
�

Consequently,

dν	r
q� ≤
(
2EntR

(q
r

))1/2
(2.32)

and

dν	q
r� ≤
(
2EntR

(q
r

))1/2
�(2.33)

This result is an improvement of Lemma 3.2 of [8]. Indeed Marton proves
(2.32) and (2.33) without giving the upper symmetric version. Moreover, we
will present a simpler proof of it. However, let us note that the proof of Theo-
rem 1 will only use the nonsymmetric inequalities (2.32) and (2.33).

Note that for n = 1, we exactly have, with our notation,

dν	r
q� = d2	R�Q� = inf
�∈� 	R�Q�

(∫
Pr	Z �= y1
Y = y1�2 dQ	y1�

)1/2
�

where 	Z�Y� is a pair of a random variables taking values in � × �, with
law II.

Proof. Let u = q/r. We have

EntR	u� =
∫
	u log u− u+ 1�rdν�(2.34)

Let

A	u� = u log u− u+ 1

and

�	u� = A	u�
u

�

An elementary study of the functions A and � shows that, for every 0 ≤ u ≤ 1,

A	u� ≥ 1
2	1− u�2�

whereas for u ≥ 1,

�	u� ≥ 1
2

(
1− 1

u

)2
�
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Since

u log u− u+ 1 = A	u�1u≤1 + u�	u�1u≥1�
it follows that

u log u− u+ 1 ≥ 1
2

[
1− u]2+ + u1

2

[
1− 1

u

]2
+
�

Making use of this inequality in (2.34) ends the proof of Lemma 2. ✷

Proof of Theorem 1. We want to generalize the preceding argument to
any dimension n. We just have to construct a measure � on �n × �n with
marginals P and Q satisfying the inequalities (2.28)and (2.29). In fact, we
will construct a measure � on

�n × �n × �n−1 × · · · × �

with marginals P and Q. The construction of � is not as simple as in the
case n = 1. Before giving the expression of �, we will present step by step the
structure of dependence between random variables

	Y1� � � � �Yn��
(
X

	1�
1 � � � � �X

	1�
n

)
�
(
X

	2�
2 � � � � �X

	2�
n

)
� � � � �

(
X

	n−1�
n−1 �X

	n−1�
n

)
�X

	n�
n

taking values in

�n × �n × �n−1 × · · · × ��

with law � on 	��� ���. To simplify the notation, for every 1 ≤ i ≤ n� X	i�

will denote the random vector 	X	i�
i � � � � �X

	i�
n �. The marginal P = Gn1 of � will

be the law of X	1� = 	X	1�
1 � � � � �X

	1�
n � and the marginal Q = Hn

1 of � will be
the law of 	Y1� � � � �Yn�.

The structure of dependence between all these random variables is based
on the following remark.

Remark 1. Assume thatX,Y,Z are three random variables. Assume that
the law of 	X�Y� admits the density σ	x�y� with respect to dµ	x� dν	y�, and
that the law of 	Y�Z� admits the density ρ	y� z� with respect to dν	y�dλ	z�.
Let k	y� denote the density of the law ofYwith respect to dν	y�. If the random
variables X and Z are independent given Y, then the law of X, Y, Z admits
the density

σ	x�y�ρ	y� z�
k	y� �

with respect to dµ	x�dν	y�dλ	z�.

Let us first consider the random variables X	1�
1 , Y1. The law of 	X	1�

1 �Y1�
is given by its density l1 that will be denoted

L1
(
dx

	1�
1 � dy1

) = l1(x	1�
1 � y1

)
µ1
(
dx

	1�
1

)
µ1	dy1��
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As in the case of dimension one, L1 is defined so that the law of X	1�
1 is G1

and the law of Y1 is H1. Given X
	1�
1 , Y1, the law of(

X
	1�
2 � � � � �X

	1�
n �X

	2�
2 � � � � �X

	2�
n

)
on �n−1 × �n−1 will be denoted

�n2

(
dx

	1�
2 � � � � � dx

	1�
n � dx

	2�
2 � � � � � dx

	2�
n 
X	1�

1 �Y1

)
= σn2

(
x

	1�
2 � � � � � x

	1�
n � x

	2�
2 � � � � � x

	2�
n 
X	1�

1 �Y1

)
× µ2

(
dx

	1�
2

)
· · ·µn

(
dx

	1�
n

)
µ2

(
dx

	2�
2

)
· · ·µn

(
dx

	2�
n

)
�

�n2	· 
X	1�
1 �Y1� is defined so that the law of 	X	1�

2 � � � � �X
	1�
n � given X	1�

1 �Y1 is
Gn2	· 
X	1�

1 �, and the law of 	X	2�
2 � � � � �X

	2�
n � given X	1�

1 �Y1 is G
n
2	· 
Y1�. To sim-

plify the notation, for every 1 ≤ i ≤ n let x	i� denote the vector 	x	i�
i � � � � � x

	i�
n �

on �n−i+1. The law of 	Y1�X
	1��X	2�� is given by the product density,

d1

(
y1� x

	1�� x	2�
)
= l1

(
x

	1�
1 � y1

)
σn2

(
x

	1�
2 � � � � � x

	1�
n � x

	2�
2 � � � � � x

	2�
n 
x	1�

1 � y1

)
�

In this construction, we easily see that the law of X	1� is Gn1 = P.
Now assume that for 2 ≤ i ≤ n, the law of(

Y1� � � � �Yi−1�X
	1�� � � � �X	i�

)
is given by a density

di−1
(
y1� � � � � yi−1� x

	1�� � � � � x	i�
)

such that the law of 	Y1� � � � �Yi−1�, is Hi−1
1 and the law of the random vector

X	i� given Y1� � � � �Yi−1 is

Gni 	· 
Y1� � � � �Yi−1��
Then we first introduce the random variable Yi for 2 ≤ i ≤ n. The law of
	X	i�

i �Yi� given Y1� � � � �Yi−1 will be denoted

Li	dx	i�
i � dyi
Y1� � � � �Yi−1� = li	x	i�

i � yi
Y1� � � � �Yi−1�µi	dx	i�
i �µi	dyi��

Li	· 
Y1� � � � �Yi−1� is defined so that the law of Yi given Y1� � � � �Yi−1 is

Hi	· 
Y1� � � � �Yi−1��
and the law of X	i�

i given Y1� � � � �Yi−1 is

Gi	· 
Y1� � � � �Yi−1��
Using Remark 1, the density of the law of

	Y1� � � � �Yi−1�Yi�X
	1�� � � � �X	i��
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will be given by the density

di	y1� � � � � yi� x	1�� � � � � x	i��

= di−1	y1� � � � � yi−1� x	1�� � � � � x	i�� li	x	i�
i � yi
y1� � � � � yi−1�

gi	x	i�
i 
y1� � � � � yi−1�

�
(2.35)

Thus, according to Remark 1, Yi is independent of

X	1�� � � � �X	i−1�� 	X	i�
i+1� � � � �X

	i�
n �

given X	i�
i , Y1� � � � �Yi−1. For 1 ≤ i ≤ n − 1, we then introduce the random

vector X	i+1�. The law of(	X	i�
i+1� � � � �X

	i�
n �� 	X	i+1�

i+1 � � � � �X
	i+1�
n �)

on �n−i × �n−i given Y1� � � � �Yi, X
	i�
i will be denoted

�ni+1	dx	i�
i+1� � � � � dx

	i�
n � dx

	i+1�
i+1 � � � � � dx

	i+1�
n 
X	i�

i �Y1� � � � �Yi�
= σni+1	x	i�

i+1� � � � � x
	i�
n � x

	i+1�
i+1 � � � � � x

	i+1�
n 
X	i�

i �Y1� � � � �Yi�
× µi+1	dx	i�

i+1� · · ·µn	dx	i�
n �µi+1	dx	i+1�

i+1 � · · ·µn	dx	i+1�
n ��

�ni+1	· 
X	i�
i �Y1� � � � �Yi� will be defined so that the law of(

X
	i�
i+1� � � � �X

	i�
n

)
conditionally on Y1� � � � �Yi, X

	i�
i is

Gni+1
(· 
Y1� � � � �Yi−1�X

	i�
i

)
�

and the law of X	i+1� conditionally on Y1� � � � �Yi, X
	i�
i is

Gni+1 	· 
Y1� � � � �Yi−1�Yi� �
Using Remark 1, the density of the law of

	Y1� � � � �Yi�X
	1�� � � � �X	i��X	i+1��

is given by the density

di	y1� � � � � yi� x	1�� � � � � x	i�� x	i+1��

= d̄i	y1� � � � � yi� x	1�� � � � � x	i�� σni+1	x	i�
i+1� � � � � x

	i�
n � x

	i+1�
i+1 � � � � � x

	i+1�
n 
x	i�

i � y
i
1�

gni+1	x	i�
i+1� � � � � x

	i�
n 
y1� � � � � yi−1� x	i�

i �
�

Thus, according to Remark 1, X	i+1� is independent of X	1�� � � � �X	i−1� given
X	i�, Y1� � � � �Yi.

In this way, by induction over i, we construct the law � of the family of
random variables,

Y1� � � � �Yn�X
	1�� � � � �X	n��
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so that the law � is given by the density

π = d̄n	y1� � � � � yn� x	1�� � � � � x	n���
Now, we will set with more details the expression of π. Let us first give the

exact expression of the density li	·
yi−11 �, 1 ≤ i ≤ n. For every 1 ≤ i ≤ n, we
have

li	x	i�
i � yi
yi−11 �
= 1

x
	i�
i =yi min	hi	yi
yi−11 �� gi	x	i�

i 
yi−11 ��

+ 1
x

	i�
i �=y1

�hi	yi
yi−11 � − gi	yi
yi−11 ��+ �gi	xi
yi−11 � − hi	xi
yi−11 ��+
�Hi	· 
yi−11 � −Gi	·
yi−1i ��TV

�

As for the case n = 1, integrating one of the variables x	i�
i or yi, it is clear

that the marginals of Li	·
yi−11 � are Gi	·
yi−11 � and Hi	·
yi−11 �.
Now, let us describe, for every 2 ≤ i ≤ n, the measure

�ni
(· 
x	i−1�

i−1 � y1� � � � � yi−1
)
�

To present the condition satisfied by �ni 	· 
x	i−1�
i−1 � y1� � � � � yi−1�, we need the

following result by Fiebig [6] [see inequality (2.1), page 482].

Proposition 2. Let Q and R be two probability measures on �k with
strictly positive densities q and r with respect to a measure ν on �k. Let
	Z1� � � � �Zk� 	resp. 	W1� � � � �Wk�� be a random vector on �k whose law is
Q (resp. R). Then, there exists a probability measure whose density is σ with
respect of ν ⊗ ν on �k × �k such that, for every 1 ≤ j ≤ k,∫∫

1zj �=wj σ	z�w�dν	z�dν	w� ≤ �Q−R�TV�

Fiebig proves this result for probability measures on a countable set S. The
proof is easily extended to probability measures on �k with strictly positive
densities yielding thus Proposition 2. Thanks to Proposition 2, we may as-
sume that, for every 2 ≤ i ≤ n, �ni 	·� � � � � ·
x	i−1�

i−1 � y
i−1
1 � satisfies the following

conditions. For every 2 ≤ i ≤ n, the marginals of

�ni
(
dx

	i−1�
i � � � � � dx

	i−1�
n � dx

	i�
i � � � � � dx

	i�
n 
x	i−1�

i−1 � y1� � � � � yi−1
)

are

Gni
(
dx

	i−1�
i � � � � � dx

	i−1�
n 
y1� � � � � yi−2� x	i−1�

i−1
)

and

Gni
(
dx

	i�
i � � � � � dx

	i�
n 
y1� � � � � yi−2� yi−1

)
�

Recall that if X = 	X1� � � � �Xn� is a sample whose law is P,

Gni
(· 
y1� � � � � yi−2� x	i−1�

i−1
)
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is the law of 	Xi� � � � �Xn� given Xi−1 = x	i−1�
i−1 and Xi−2

1 = yi−21 . Similarly,

Gni
(· 
y1� � � � � yi−2� yi−1)

is the law of 	Xi� � � � �Xn� given Xi−1 = yi−1 and Xi−2
1 = yi−21 . According to

Proposition 2,

�ni
(· � � � � ·
x	i−1�

i−1 � y
i−1
1

)
satisfies the following additional property, for every 2 ≤ i ≤ j ≤ n,∫

· · ·
∫

1
x

	i−1�
j �=x	i�

j
�ni
(
dx

	i−1�
i � � � � � dx

	i−1�
n � dx

	i�
i � � � � � dx

	i�
n 
x	i−1�

i−1 � y
i−1
1

)
≤ aj

(
yi−21 � x

	i−1�
i−1 � yi−1

)
�

(2.36)

where

aj
(
yi−21 � x

	i−1�
i−1 � yi−1

)
= �� (Xn

j
Xi−1
1 = yi−11

)−�
(
Xn
j
Xi−2

1 = yi−21 �Xi−1 = x	i−1�
i−1

)�TV�
Let us now present the expression of π. For 2 ≤ i ≤ n, define

ξni
(
yi� x

	i−1�
i � � � � � x

	i−1�
n � x

	i�
i � � � � � x

	i�
n 
x	i−1�

i−1 � y
i−1
1

)
= σni 	x	i−1�

i � � � � � x
	i−1�
n � x

	i�
i � � � � � x

	i�
n 
x	i−1�

i−1 � y
i−1
1 �

gni 	x	i�
i � � � � � x

	i�
n 
yi−11 �

li	x	i�
i � yi
yi−11 ��

We have

π
(
y1� � � � � yn� x

	1�� � � � � x	n�)
= dn

(
y1� � � � � yn� x

	1�� � � � � x	n�)
= l1	x	1�

1 � y1�
n∏
i=2
ξni
(
yi� x

	i−1�
i � � � � � x

	i−1�
n � x

	i�
i � � � � � x

	i�
n 
x	i−1�

i−1 � y
i−1
1

)
�

This density π has all the properties to be a good candidate to prove (2.28)
and (2.29). Indeed, integrating successively π with respect to the variables

	x	1�
2 � � � � � x

	1�
n �� 	x	2�

3 � � � � � x
	2�
n �� � � � � x	n�

n−1�

and then with respect to the variables

x
	n�
n � � � � � x

	1�
1 �

we see that the law of 	Y1� � � � �Yn� is Q. Similarly, integrating successively
with respect to

yn� x
	n�� yn−1� x

	n−1�� � � � � y2� x
	2�� y1�
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shows that the law of the random vector X	1� is P. Therefore, our aim is to
prove that for every 1 ≤ j ≤ n,∫

· · ·
∫
αj	y1� � � � � yn�1yj �=x	1�

j
d�	y1� � � � � yn� x	1�� � � � � x	n��

≤
j∑
i=1
γ
j
i 	2Ei�1/2	>j�1/2

(2.37)

and ∫
· · ·
∫
βj	x	1�

1 � � � � � x
	1�
n �1

yj �=x	1�
j
d�	y1� � � � � yn� x	1�� � � � � x	n��

≤
j∑
i=1
γ
j
i 	2Ei�1/2	>̃j�1/2�

(2.38)

Equations (2.37) and (2.38) are very similar and the scheme of their proof is
identical. First, we present the proof of (2.37) and then of (2.38). For every
1 ≤ j ≤ n, we have,

1
yj �=x	1�

j
≤ 1

yj �=x	j�
j

+ 1
x

	j�
j �=x	j−1�

j
+ · · · + 1

x
	2�
j �=x	1�

j
�

Hence, we get∫
· · ·
∫
αj	y1� � � � � yn�1yj �=x	1�

j
d�	y1� � � � � x	n�� ≤ Aj +

j−1∑
i=1
B

	i�
j �

where

Aj =
∫

· · ·
∫
αj	y1� � � � � yn�1yj �=x	j�

j
d�	y1� � � � � x	n��

and

B
	i�
j =

∫
· · ·
∫
αj	y1� � � � � yn�1x	i+1�

j �=x	i�
j
d�	y1� � � � � x	n���

Thus, the proof of (2.37) is now divided in two parts, the study of the integral
Aj and then the study of the integral B

	i�
j . Integrating successively the density

π with respect to the variables

	x	1�
2 � � � � � x

	1�
n �� 	x	2�

3 � � � � � x
	2�
n �� � � � � x	n�

n−1�

we show that the law of

	Y1� � � � �Yn�X
	1�
1 � � � � �X

	n�
n �

is given by the density

l1	x	1�
1 � y1� · · · ln	x	n�

n � yn
yn−11 ��
Consequently, the law of 	Y1� � � � �Yn�X

	j�
j � is

Hn
j+1	dyj+1� � � � � dyn
yj1�Lj	dx	j�

j � dyj
yj−11 �Hj−1
1 	dy1� � � � � dyj−1��
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Thus, for every 1 ≤ j ≤ n,

Aj =
∫∫ (∫

αj	y1� � � � � yn�Hn
j+1	dyj+1� � � � � dyn
yj1�

)
× 1

yj �=x	j�
j
Lj	dx	j�

j � dyj
yj−11 �Hj−1
1 	dy1� � � � � dyj−1��

From the definition of lj, we have

1
yj �=x	j�

j
lj	x	j�

j � yj
yj−11 �

= 1
yj �=x	j�

j

�hj	yj
yj−11 � − gj	yj
yj−11 ��+ �gj	x	j�
j 
yj−11 � − hj	x	j�

j 
yj−11 ��+
�Hj	· 
yj−11 � −Gj	·
yj−11 ��TV

�

Integrating with respect to x	j�
j , it follows that

Aj =
∫∫ (∫

αj	y1� � � � � yn�Hn
j+1	dyj+1� � � � � dyn
yj1�

)
× [hj	yj
yj−11 � − gj	yj
yj−11 �]+ µj	dyj�Hj−1

1

(
dy1� � � � � dyj−1

)
�

Then, by the Cauchy–Schwarz inequality,

Aj ≤
∫ (∫

αj	y1� � � � � yn�2Hn
j	dyj� � � � � dyn
yj−11 �

)1/2
×
(∫ [

1− gj	yj
yj−11 �
hj	yj
yj−11 �

]2
+
Hj	dyj
yj−11 �

)1/2
H
j−1
1 	dy1� � � � � dyj−1��

According to its definition,

dµj
(
gj	·
yj−11 �
hj	· 
yj−11 �) = (∫ [1− gj	yj
yj−11 �

hj	yj
yj−11 �

]2
+
Hj	dyj
yj−11 �

)1/2
�

From the inequality (2.32) of Lemma 2, we have

dµj
(
gj	·
yj−11 �
hj	· 
yj−11 �) ≤ (2EntGj	· 
yj−11 �

(
hj	· 
yj−11 �
gj	· 
yj−11 �

))1/2
�

By the Cauchy–Schwarz inequality again, it follows that

Aj ≤
(∫
αj	y1� � � � � yn�2Q	dy1� � � � � dyn�

)1/2
×
(∫

2EntGj	· 
yj−11 �

(
hj	· 
yj−11 �
gj	· 
yj−11 �

)
H
j−1
1 	dy1� � � � � dyj−1�

)1/2
�

Finally, with the definitions of Ej and >j, we get

Aj ≤ 	2Ej�1/2	>j�1/2�(2.39)
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We now want to bound similarly B	j�
j . Recall that

B
	i�
j =

∫
· · ·
∫
αj	y1� � � � � yn�1x	i+1�

j �=x	i�
j
�	dy1� � � � � dx	n���

Let here �̂	· 
x	i�� x	i+1�� yi1� denote the law of 	Yi+1� � � � �Yn� given
X	i� = x	i�� X	i+1� = x	i+1�� Yi1 = yi1�

Integrating successively the density π with respect to the variables(
x

	1�
2 � � � � � x

	1�
n

)
� � � � �

(
x

	i−1�
i � � � � � x

	i−1�
n

)
� x

	1�
1 � � � � � x

	i−1�
i−1 �

and then with respect to

yn� x
	n�� yn−1� x

	n−1�� � � � � yi+2� x
	i+2��

we see that the law of 	X	i��X	i+1��Y1� � � � �Yi� is given by

�ni+1	dx	i�
i+1� � � � � dx

	i�
n � dx

	i+1�
i+1 � � � � � dx

	i+1�
n 
x	i�

i � y
i
1�

×Li	dx	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1��
Thus, we have

B
	i�
j =

∫∫
αj	y1� � � � � yn��̂	dyi+1� � � � � dyn
x	i�� x	i+1�� yi1�

× 1
x

	i+1�
j �=x	i�

j
�ni+1	dx	i�

i+1� � � � � dx
	i�
n � dx

	i+1�
i+1 � � � � � dx

	i+1�
n 
x	i�

i � y
i
1�

×Li	dx	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1��
Consequently, by Cauchy–Schwarz inequality,

B
	i�
j ≤

∫ (∫
αj	y1� � � � � yn�2�̃	dyi+1� � � � � dyn
x	i�

i � y
i
1�
)1/2

×
(∫

1
x

	i+1�
j �=x	i�

j
�ni+1	dx	i�

i+1� � � � � dx
	i�
n � dx

	i+1�
i+1 � � � � � dx

	i+1�
n 
x	i�

i � y
i
1�
)1/2

×Li	dx	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1��
where �̃	·
x	i�

i � y
i
1� denotes the law of 	Yi+1� � � � �Yn� given

X
	i�
i = x	i�

i � Yi1 = yi1�
Actually, we have

�̃	· 
x	i�
i � y

i
1� =Hn

i+1	· 
yi1�
and therefore �̃ is independent of x	i�

i . By the property (2.36) of the measure
�ni+1, we know that∫

1
x

	i+1�
j �=x	i�

j
�ni+1	dx	i�

i+1� � � � � dx
	i�
n � dx

	i+1�
i+1 � � � � � dx

	i+1�
n 
x	i�

i � y
i
1�

≤ aj	yi−11 � x
	i�
i � yi��
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Thanks to this inequality, we bound B	i�
j , either with the coefficient γji , or

with γ̃ji , as follows. By definition, we know that for every real number y1� � � � �

yi� x
	i�
i ,

aj	yi−11 � x
	i�
i � yi� ≤ 	γji �21x	i�

i �=yi �(2.40)

Therefore

B
	i�
j ≤γji

∫ (∫
αj	y1� � � � � yn�2Hn

i+1	dyi+1� � � � � dyn
yi1�
)1/2

× 1
x

	i�
i �=yiLi	dx

	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1��
(2.41)

The second way to boundB	i�
j with γ̃ji is quite different since we do not take the

supremum over all y1� � � � � yi� x
	i�
i in �. By the triangular inequality applied

to the norm � · �TV, we have

aj	yi−11 � x
	i�
i � yi� ≤ 	ãj	yi−11 � x

	i�
i � + ãj	yi−11 � yi��1x	i�

i �=yi�

where

ãj	yi−11 � yi� = �� 	Xn
j
Xi

1 = yi1� −� 	Xn
j��TV�

The density gi	· 
yi−11 � is strictly positive. Therefore, the measure

Li	dx	i�
i � dyi
yi−11 �

is absolutely continuous with respect to the measure

Gi	dx	i�
i 
yi−11 �Gi	dyi
yi−11 ��

Moreover, the measure

Hi−1
1 	dy1� � � � � dyi−1�

is absolutely continuous with respect to the measure

Gi−11 	dy1� � � � � dyi−1��
since gi−11 is a strictly positive density. It follows that the measure

Li	dx	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1�
is absolutely continuous with respect to the measure

Gi	dx	i�
i 
yi−11 �Gi	dyi
yi−11 �Gi−11 	dy1� � � � � dyi−1��

According to the definition of γ̃ji , it follows that

ãj	yi−11 � yi� ≤ 1
2	γ̃

j
i �2
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for almost every yi1 with respect to the measure Gi1, the law of Xi
1. Therefore,

for almost every yi−11 � yi� x
	i�
i with respect to the measure

Gi	dx	i�
i 
yi−11 �Gi	dyi
yi−11 �Gi−11 	dy1� � � � � dyi−1��

we have

aj	yi−11 � x
	i�
i � yi� ≤ 	γ̃ji �21x	i�

i �=yi �(2.42)

This inequality is still true for almost every yi−11 � yi� x
	i�
i with respect to the

measure.

Li	dx	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1��
It follows that

B
	i�
j ≤ γ̃ji

∫ (∫
αj	y1� � � � � yn�2Hn

i+1	dyi+1� � � � � dyn
yi1�
)1/2

× 1
x

	i�
i �=yiLi	dx

	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1��
(2.43)

The end of the proof is obviously the same from inequality (2.41) or (2.43).
From (2.41), integrating with respect to the variable x	i�

i , we obtain

B
	i�
j ≤ γji

∫ (∫
αj	y1� � � � � yn�2Hn

i+1	dyi+1� � � � � dyn
yi1�
)1/2

× [hi	yi
yi−11 � − gi	yi
yi−11 �]+ µi	dyi�Hi−1
1 	dy1� � � � � dyi−1��

Then, by the Cauchy–Schwarz inequality,

B
	i�
j ≤ γji

∫ (∫
αj	y1� � � � � yn�2Hn

i 	dyi� � � � � dyn
yi−11 �
)1/2

×
(∫ [

1− gi	yi
yi−11 �
hi	yi
yi−11 �

]2
+
Hi	dyi
yi−11 �

)1/2
Hi−1

1 	dy1� � � � � dyi−1��

We finish as for the bound of Aj, applying (2.32) of Lemma 2. We thus get

B
	i�
j ≤ γji 	>j�1/2	2Ei�1/2�(2.44)

From (2.44) and (2.39), we deduce (2.37). This ends of proof of (2.11) of Theo-
rem 1.

As we already mentioned, the scheme of the proof of inequality (2.38) is the
same as the one of inequality (2.37). For every 1 ≤ j ≤ n,

1
yj �=x	1�

j
≤ 1

yj �=x	j�
j

+ 1
x

	j�
j �=x	j−1�

j
+ · · · + 1

x
	2�
j �=x	1�

j
�

Hence, ∫
· · ·
∫
βj	x	1�

1 � � � � � x
	1�
n �1

yj �=x	1�
j
�	dy1� � � � � dx	n�� ≤ Cj +

j−1∑
i=1
D

	i�
j �
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where

Cj =
∫

· · ·
∫
βj	x	1�

1 � � � � � x
	1�
n �1

yj �=x	j�
j
�	dy1� � � � � dx	n��

and

D
	i�
j =

∫
· · ·
∫
βj	x	1�

1 � � � � � x
	1�
n �1

x
	i+1�
j �=x	i+1�

j
�	dy1� � � � � dx	n���

First we study the integral Cj and then the integral D	i�
j . Let �̆j	· 
x	j�

j � y
j
1�

denote the law of (
X	1�� � � � �X	j−1��

(
X

	j�
j+1� � � � �X

	j�
n

))
given

X
	j�
j = x	j�

j � Y
j
1 = yj1�

This law is independent of yj. Indeed, as we already deduced from (2.35),(
X	1�� � � � �X	j−1�� 	X	j�

j+1� � � � � 	X	j�
n �)

is independent of Yj given X
	j�
j , Y1� � � � �Yj−1. We therefore denote

�̆j	· 
x	j�
j � y1� � � � � yj� = �̆j	· 
x	j�

j � y
j−1
1 ��

The law of 	X	j�
j �Y1� � � � �Yj� is given by

Lj	dx	j�
j � dyj
yj−11 �Hj−1

1 	dy1� � � � � dyj−1��
Therefore,

Cj =
∫∫
βj	x	1�

1 � � � � � x
	1�
n � �̆j	dx	1�

1 � � � � � dx
	j�
n 
x	j�

j � y
j−1
1 �

× 1
yj �=x	j�

j
Lj	dx	j�

j � dyj
yj−11 �Hj−1
1 	dy1� � � � � dyj−1��

From the definition of lj, we have

1
yj �=x	j�

j
lj	x	j�

j � yj
yj−11 �

= 1
yj �=x	j�

j

[
hj	yj
yj−11 � − gj	yj
yj−11 �]+ [gj	x	j�

j 
yj−11 � − hj	x	j�
j 
yj−11 �]+

�Hj	· 
yj−11 � −Gj	·
yj−11 ��TV
�

Integrating with respect to yj, it follows that

Cj =
∫∫ (∫

βj	x	1�
1 � � � � � x

	1�
n � �̆j	dx	1�

1 � � � � � dx
	j�
n 
x	j�

j � y
j−1
1 �

)
× [gj	x	j�

j 
yj−11 � − hj	x	j�
j 
yj−11 �]+ µj	dx	j�

j �Hj−1
1 	dy1� � � � � dyj−1��
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Then, by the Cauchy–Schwarz inequality,

Cj ≤
∫ (∫

βj
(
x

	1�
1 � � � � � x

	1�
n

)2
�̃j
(
dx

	1�
1 � � � � � dx

	j�
n 
x	j�

j � y
j−1
1

)
Gj
(
dx

	j�
j 
yj−11

))1/2
×
(∫ [

1− hj	x	j�
j 
yj−11 �

gj	x	j�
j 
yj−11 �

]2
+
Gj
(
dx

	j�
j 
yj−11

))1/2
H
j−1
1

(
dy1� � � � � dyj−1

)
�

By definition,

dµj
(
hj	·
yj−11 �
gj	· 
yj−11 �) = (∫ [1− hj	x	j�

j 
yj−11 �
gj	x	j�

j 
yj−11 �

]2
+
Gj	dx	j�

j 
yj−11 �
)1/2

�

From the inequality (2.32) of Lemma 2, we have that

dµj
(
hj	·
yj−11 �
gj	· 
yj−11 �) ≤ (2EntGj	· 
yj−11 �

(
hj	· 
yj−11 �
gj	· 
yj−11 �

))1/2
�

By the Cauchy–Schwarz inequality, it follows that

Cj ≤
(∫
βj	x	1�

1 � � � � � x
	1�
n �2P	dx	1�

1 � � � � � dx
	1�
n �
)1/2

×
(∫

2EntGj	· 
yj−11 �

(
hj	· 
yj−11 �
gj	· 
yj−11 �

)
H
j−1
1 	dy1� � � � � dyj−1�

)1/2
�

Finally, from the definition of Ej and >̃j, we get

Cj ≤ 	2Ej�1/2	>̃j�1/2�(2.45)

Now we will bound D	i�
j with the same tools as for the bound of B	i�

j . Let

�̆i	· 
x	i�� x	i+1�� yi1�
denote the law of 	X	1�� � � � �X	i−1��, given(

X	i� = x	i�� X	i+1� = x	i+1�� Yi1 = yi1
)
�

The law of 	X	i��X	i+1��Yi1� is

�ni+1
(
dx

	i�
i+1� � � � � dx

	i�
n � dx

	i+1�
i+1 � � � � � dx

	i+1�
n 
x	i�

i � y
i
1

)
×Li	dx	i�

i � dyi
yi−11 �Hi−1
1 	dy1� � � � � dyi−1��

Let

Tj	x	i�
i � y

i
1�

=
∫

1
x

	i+1�
j �=x	i�

j
�ni+1

(
dx

	i�
i+1� � � � � dx

	i�
n � dx

	i+1�
i+1 � � � � � dx

	i+1�
n 
x	i�

i � y
i
1

)
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and

Uj	x	i�
i � y

i
1� =

∫
βj	x	1�

1 � � � � � x
	1�
n �2�̌i	dx	1�

1 � � � � � dx
	i−1�
n 
x	i�� x	i+1�� yi1�

× �ni+1	dx	i�
i+1� � � � � dx

	i�
n � dx

	i+1�
i+1 � � � � � dx

	i+1�
n 
x	i�

i � y
i
1��

Recall the definition of D	i�
j ,

D
	i�
j =

∫
· · ·
∫
βj	x	1�

1 � � � � � x
	1�
n �1

x
	i+1�
j �=x	i+1�

j
�	dy1� � � � � dx	n���

By the Cauchy–Schwarz inequality, we have

D
	i�
j ≤

∫∫ (
Uj	x	i�

i � y
i
1�
)1/2(

Tj	x	i�
i � y

i
1�
)1/2

×L1	dx	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1��
Actually, Uj	x	i�

i � y
i
1� is independent of yi. Indeed, integrating with respect to

the variables x	i+1�
i+1 � � � � � x

	i+1�
n , we get

Uj	x	i�
i � y

i
1� =

∫
βj
(
x

	1�
1 � � � � � x

	1�
n

)2
�̆i	dx	1�

1 � � � � � dx
	i�
n 
x	i�

i � y
i−1
1 ��

where �̆i	· 
x	i�
i � y

i−1
1 � has already been defined as the law of(

X	1�� � � � �X	i−1�� 	X	i�
i+1� � � � �X

	i�
n �)

given

X
	i�
i = x	i�

i � Yi1 = yi1�
Recall that this law is independent of yi. Therefore, we will write

Uj	x	i�
i � y

i
1� = Uj	x	i�

i � y
i−1
1 ��

By the property (2.36) of the measure �ni+1, we have

Tj	x	i�
i � y

i
1� ≤ aj	yi−11 � x

	i�
i � yi��

From inequality (2.40), we get that for every y1� � � � � yn� x
	i�
i in �,

Tj	x	i�
i � y

i
1� ≤ 	γji �21x	i�

i �=yi �

From inequality (2.42), we get that for almost every yi−11 � yi� x
	i�
i with respect

to the measure Li	dx	i�
i � dyi
yi−11 �Hi−1

1 	dy1� � � � � dyi−1�,
Tj	x	i�

i � y
i
1� ≤ 	γ̃ji �21x	i�

i �=yi �

The end of the proof is identical for γji and γ̃
j
i . We have

D
	i�
j ≤ γji

∫∫ (
Uj	x	i�

i � y
i−1
1 �)1/2 1

x
	i�
i �=yiLi	dx

	i�
i � dyi
yi−11 �

×Hi−1
1 	dy1� � � � � dyi−1��
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Integrating with respect to yi, it follows that

D
	i�
j ≤ γji

∫∫ (
Uj	x	i�

i � y
i−1
1 �)1/2[gi	x	i�

i 
yi−11 � − hi	x	i�
i 
yi−11 �]+dµi	x	i�

i �

×Hi−1
1 	dy1� � � � � dyi−1��

Then, by the Cauchy–Schwarz inequality,

D
	i�
j ≤ γji

∫ (∫
Uj

(
x

	i�
i � y

i−1
1

)
Gi
(
dx

	i�
i 
yi−11

))1/2

×
(∫ [

1− hi
(
x

	i�
i 
yi−11

)
gi
(
x

	i�
i 
yi−11

)
]2

+
Gi	dx	i�

i 
yi−11 �
)1/2

Hi−1
1 	dy1� � � � � dyi−1��

We conclude the argument as in case of Cj, using inequality (2.33) of Lemma 2
for dµi	hi	· 
yi−11 �
gi	·
yi−11 ��. We get in this way

D
	i�
j ≤ γji 	>̃j�1/2	2Ei�1/2�(2.46)

We then deduce (2.38) from (2.46) and (2.45). This ends the proof of Theo-
rem 1. ✷

3. Deviation inequalities for empirical processes. In this section,
X = 	X1� � � � �Xn� is a sample of random variables on a probability space
	��� ���, taking values in some measurable space S. We extend the defini-
tion of the mixing coefficients γji and γ̃ji as follows. For every 1 ≤ i < j ≤ n
and for xi� y1� � � � � yi in S, let

aj
(
yi−11 � xi� yi

)
=
∥∥∥� 	Xn

j
Xi−1
1 = yi−11 � Xi = xi� −� 	Xn

j
Xi−1
1 = yi−11 � Xi = yi�

∥∥∥
TV

and (
γ
j
i

)2 = sup
	xi� yi�∈S2

sup
yi−11 ∈Si−1

aj	yi−11 � xi� yi��

Similarly, for every 1 ≤ i < j ≤ n, let
ãj	yi1� = ∥∥� 	Xn

j
Xi
1 = yi1� −� 	Xn

j�
∥∥
TV

and (
γ̃
j
i

)2 = 2 ess sup
yi1∈Si�� 	Xi

1�
ãj	yi1��

As previously, we are interested in samples X = 	X1� � � � �Xn� for which ���
may be bounded independently of n, the size of the sample X. Such samples
have already been described in Section 2.
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Let � be a countable class of bounded measurable functions g on S. Our
aim is to give some exponential deviation inequalities for the supremum of
empirical processes. To this task, let

Z = sup
g∈�

∣∣∣∣∣ n∑
i=1
g	Xi�

∣∣∣∣∣�
If � is a finite family of nonnegative functions, a quite simple application

of Theorem 1 provides the following deviation inequalities for the random
variable Z.

Theorem 2. Under the previous notation, assume that 0 ≤ g ≤ C� g ∈ � .
Then, for every t ≥ 0,

�	Z ≥ Ɛ	Z� + t� ≤ exp

(
− t2

2C���2	Ɛ	Z� + t�

)
(3.1)

and

�	Z ≤ Ɛ	Z� − t� ≤ exp

(
− t2

2C���2Ɛ	Z�

)
�(3.2)

For further purposes, observe that (3.1) is equivalent to saying that, for
every t ≥ 0,

�	Z ≥ Ɛ	Z� + t� ≤ exp

(
− 1
4���2 min

(
t

C
�

t2

CƐ	Z�

))
�

Inequalities (3.1) and (3.2) give the exact control of the deviation from the
mean. This statement extends in this case the result of Talagrand for Gaus-
sian bounds (see [15]). Actually, this theorem is exactly the extension of The-
orem 2.1 [7], in case of dependence. However, this result is limited to the
supremum of empirical processes over classes of nonnegative functions. This
assumption is restrictive and we want to present now some deviation inequal-
ities for which � is a class of arbitrary bounded functions. Assume that for
every real function g in � � 
g
 ≤ C. Define the random variable V,

V2 =
n∑
i=1

sup
g∈�

g	Xi�2�

Theorem 3. Under the previous notation, for every t ≥ 0,

�	Z ≥ Ɛ	Z� + t� ≤ exp

(
− 1
8���2 min

(
t

C
�

t2

4Ɛ	V2�

))
(3.3)

and

�	Z ≤ Ɛ	Z� − t� ≤ exp

(
− 1
8���2 min

(
t

C
�

t2

4Ɛ	V2�

))
�(3.4)
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In the independent case 	��� = 1�, Talagrand actually got a much better
result. Namely, for every t ≥ 0,

�	
Z− Ɛ	Z�
 ≥ t� ≤K exp

(
− 1
K

t

C
log

(
1+ Ct

Ɛ	�2�

))
�(3.5)

where K is a numerical constant and where

�2 = sup
g∈�

n∑
i=1
g2	Xi��

In particular,

�	
Z− Ɛ	Z�
 ≥ t� ≤K exp

(
− 1
K

min

(
t

C
�
t2

Ɛ	�2�

))
�(3.6)

Clearly �2 ≤ V2 so that our results are less precise on this side. It is an open
question to prove (3.3) and (3.4), with �2 instead of V2. Let us recall that in
the independent case, for the bound of �	Z ≥ Ɛ	Z� + t� above the mean, [7]
and then [12] present an efficient simple proof of (3.5) based on log-Sobolev
method. Note also that in the independent case, Ɛ	�2� may be bounded by
CƐ	Z� and the supremum of the variances which are then of direct interest
in applications (see [16], [7]).

Proof of Theorem 2. By homogeneity, it is enough to deal with the case
C = 1. Assume � is a finite class of positive measurable functions,

� = �N = �g1� � � � � gN��
We will prove Theorem 2 for � = �N. The result of countable classes of
positive measurable functions will follow by monotone convergence. Let

fN	x1� � � � � xn� = max
1≤k≤N

n∑
i=1
gk	xi��

For 1 ≤ k ≤N and for every x1� � � � � xn in S, define

αk	x1� � � � � xn� =

1� if k = inf
{
1 ≤ l ≤N� fN	x1� � � � � xn� =

∣∣∣∣ n∑
i=1
gl	xi�

∣∣∣∣},
0� otherwise.

According to this definition,

fN	x1� � � � � xn� =
N∑
k=1

n∑
i=1
αk	x1� � � � � xn�gk	xi�

and
N∑
k=1
αk	x1� � � � � xn� = 1�
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Let us observe that for all x = 	x1� � � � � xn� and y = 	y1� � � � � yn� in Sn,

fN	y� − fN	x� ≤
N∑
k=1

n∑
i=1

	gk	yi� − gk	xi��αk	y��

Let α	x� denote the vector 	α1	x�� � � � � αN	x��. For every x in Sn, α	x� is one
of the basis elements of �N. Actually α	x� is the derivative of the supremum
norm on �N. Let g	xi� = 	g1	xi�� � � � � gN	xi��� g	xi� ∈ �+N. We have, for
every x and y,

fN	y� − fN	x� ≤
n∑
i=1

〈
α	y�� g	yi� − g	xi�

〉
�

As a consequence, if f̃N = −fN, we get, for every x and y,

f̃N	y� − f̃N	x� ≤
n∑
i=1

〈
α	x�� g	xi� − g	yi�

〉
�

Since gk are nonnegative, it follows that

fN	y� − fN	x� ≤
n∑
i=1

〈
α	y�� g	yi�

〉
1xi �=yi(3.7)

and

f̃N	y� − f̃N	x� ≤
n∑
i=1

〈
α	x�� g	xi�

〉
1xi �=yi �(3.8)

From this stage, the proof is similar to the proof of Corollary 3. P is the law
of 	X1� � � � �Xn� on Sn. Let Q be a probability measure on Sn with density g
with respect to P. For every measure � on Sn ×Sn with marginals Q and P,
that is, � ∈ � 	P�Q�,∫

fN	y�dQ	y� −
∫
fN	x�dP	x� =

∫∫
	fN	y� − fN	x��d�	x�y��

Therefore, by (3.7),∫
fN	y�dQ	y� −

∫
fN	x�dP	x� ≤

∫∫ n∑
n=1

�α	y�� g	yi� 1xi �=yi d�	x�y��

Integrating with respect to the variable x and then using the Cauchy–Schwarz
inequality, we get∫
fN	y�dQ	y� −

∫
fN	x�dP	x�

≤
[∫ n∑

i=1
�α	y�� g	yi� 2 dQ	y�

]1/2[∫ n∑
n=1

�2	Xi �= yi
Yi = yi�dQ	y�
]1/2

�
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where 	X�Y� denotes a pair of random variable taking values in �n×�n, and
with law �. According to the definition of d2	P�Q�, minimizing the right-hand
side over all measures � in � 	P�Q� yields
∫
fN	y�dQ	y� −

∫
fN	x�dP	x� ≤

[∫ n∑
i=1

〈
α	y�� g	yi�

〉2
dQ	y�

]1/2
d2	P�Q��

Similarly, for the function f̃N, we get from (3.8),

∫
f̃N	y�dQ	y� −

∫
f̃N	x�dP	x� ≤

[∫ n∑
i=1

〈
α	x�� g	xi�

〉2
dP	x�

]1/2
d2	Q�P��

Let us now define h2N on Sn by

h2N	x� =
n∑
i=1

〈
α	x�� g	xi�

〉2
� x ∈ Sn�

With our previous notation, h2N	X� = �2. Applying (2.11) of Theorem 1, we
get ∫

fN dQ−
∫
fN dP ≤

√
2���2EQ	h2N�EntP

(dQ
dP

)
�

Therefore, as in the proof of Corollary 3, for every λ > 0,∫
fNgdP−

∫
fN dP ≤ λ���

2EQ	h2N�
2

+ 1
λ
EntP	g��

Finally, for every λ > 0,∫ [
λ	fN −EP	fN�� − λ2 ���

2h2N
2

]
gdP ≤ EntP	g��(3.9)

For the function f̃N, the result is quite different. For every λ > 0,∫ [
λ	f̃N −EP	f̃N�� − λ2 ���

2EP	h2N�
2

]
gdP ≤ EntP	g��(3.10)

The exponential inequalities then follow with a good choice for the density g.
From the inequality (3.9) we get∫

exp

[
λ	fN −EP	fN�� − λ2 ���

2h2N
2

]
dP ≤ 1�(3.11)

Similarly from (3.10), we get∫
exp

[
λ
(
f̃N −EP

(
f̃N
))]
dP ≤ exp

(
λ2

���2EP	h2N�
2

)
�(3.12)
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Recall that

Z = fN	X� = −f̃N	X�
and that

�2 = h2N	X��
If, for every 1 ≤ k ≤N, 0 ≤ gk ≤ 1, then, �2 ≤ Z. Thus from the exponential
inequality (3.11) we get that for every λ > 0,

Ɛ

(
exp

[
Zλ

(
1− ���2λ

2

)
− λƐ	Z�

])
≤ 1�(3.13)

and from (3.12) we get, for every λ > 0,

Ɛ
(
exp�−λ	Z− Ɛ	Z���)dP ≤ exp

(
λ2

���2Ɛ	Z�
2

)
�(3.14)

Using inequality (3.13) we get, by Chebyshev’s inequality, that for every
0 ≤ λ ≤ 2/���2, and for every t ≥ 0,

�	Z ≥ Ɛ	Z� + t� ≤ exp

[
−tλ

(
1− ���2λ

2

)
+ λ2 ���

2Ɛ	Z�
2

]
�

Choose then

λ = t

���2	t+ Ɛ	Z�� �

and (3.1) follows. From (3.14), we get in the same way that for every λ ≥ 0
and every t ≥ 0,

�	−Z ≥ −Ɛ	Z� + t� ≤ exp

[
−tλ+ λ2 ���

2Ɛ	Z�
2

]
�

Optimizing in λ yields the deviation inequality (3.2). The proof of Theorem 2
is thus complete. ✷

We now present the proof of Theorem 3.

Proof of Theorem 3. As for the proof of Theorem 2, we may assume that
� is finite. Let

fN	x1� � � � � xn� = max
1≤k≤n

∣∣∣∣ n∑
i=1
gk	xi�

∣∣∣∣�
For 1 ≤ k ≤N and for every x1� � � � � xn in S, define

αk	x1� � � � � xn� =

1� if k = inf
{
1 ≤ l ≤N� fN	x1� � � � � xn� =

∣∣∣∣ n∑
i=1
gl	xi�

∣∣∣∣}�
0� otherwise.
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According to this definition,

fN	x1� � � � � xn� =
N∑
k=1
αk	x1� � � � � xn�

∣∣∣∣ n∑
i=1
gk	xi�

∣∣∣∣
and

N∑
K=1

αk	x1� � � � � xn� = 1�

Let us observe that for all x = 	x1� � � � � xn� and y = 	y1� � � � � yn� in Sn,

fN	y� − fN	x� ≤
N∑
k=1
αk	y�

∣∣∣∣ n∑
i=1

	gk	yi� − gk	xi��
∣∣∣∣�

By the triangle inequality,∣∣gk	yi� − gk	xi�∣∣ ≤ ∣∣gk	yi�∣∣1xi �=yi + ∣∣gk	xi�∣∣1xi �=yi �
Therefore, if 
g	xi�
 denotes the vector 	
g1	xi�
� � � � � 
gN	xi�
�, we have

fN	y� − fN	x� ≤
n∑
i=1

〈
α	y�� 
g	yi�


〉
1xi �=yi +

n∑
i=1

〈
α	y�� 
g	xi�


〉
1xi �=yi �

Bounding �α	y�� 
g	xi�
 , by max1≤k≤N 
gk	xi�
, it follows that

fN	y� − fN	x� ≤
n∑
i=1

〈
α	y�� 
g	yi�


〉
1xi �=yi +

n∑
i=1

max
1≤k≤N


gk	xi�
1xi �=yi �(3.15)

Let Q be a probability measure on Sn with density g with respect to P. For
every measure � in � 	P�Q�,∫

fN	y�dQ	y� −
∫
fN	x�dP	x� =

∫ ∫
	fN	y� − fN	x��d�	x�y��

Then, by the Cauchy–Schwarz inequality, from (3.15) we get∫
fN	y�dQ	y� −

∫
fN	x�dP	x�

≤
[∫ n∑

i=1
�α	y�� g	yi� 2 dQ	y�

]1/2(∫ n∑
i=1

�2	Xi �= yi
Yi = yi�dQ	y�
)1/2

+
[∫ n∑

i=1
max
1≤k≤N

g2
k	xi�dP	x�

]1/2(∫ n∑
i=1

�2	Yi �= xi
Xi = xi�dP	x�
)1/2

�

where 	X�Y� denotes a pair of random variables taking values in �n × �n

whose law is �. From the proof of Theorem 1, we know that there exists a
measure � in � 	P�Q� with(∫ n∑

i=1
�2	Xi �= yi
Yi = yi�dQ	y�

)1/2
≤ ���

√
2EntP

(
dQ

dP

)
(3.16)
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and (∫ n∑
i=1

�2	Yi �= xi
Xi = xi�dP	x�
)1/2

≤ ���
√
2 EntP

(
dQ

dP

)
�(3.17)

Recall the definition of h2N,

h2N	x� =
n∑
i=1

〈
α	x�� g	xi�

〉2
� x ∈ Sn�

For every x in Sn, let

l2N	x� =
n∑
i=1

max
1≤k≤N

g2
k	xi��

Choosing the measure � satisfying (3.16) and (3.17), we get that∫
fN	y�dQ	y� −

∫
fN	x�dP	x�

≤
√
2���2EQ	h2N�EntP

(
dQ

dP

)
+
√
2���2EP	l2N�EntP

(
dQ

dP

)
�

Therefore, using the same argument as in the proof of Theorem 2, for every
λ > 0, ∫

fN	y�dQ	y� −
∫
fN	x�dP	x�

≤ λ���
2

2
	EQ	h2N� + EP	l2N�� + 2

λ
EntP	g��

Finally, for every λ > 0,∫ [λ
2
	fN − EP	fN�� − λ2 ���

2

4
	h2N + EP	l2N��

]
gdP ≤ EntP	g��

With a good choice for the density g, we get that∫
exp

[
λ

2
	fN − EP	FN�� − λ2 ���

2

4
	h2N + EP	l2N��

]
dP ≤ 1�

Since Z = fN	X�, �2 = h2N	X� and V2 = l2N	X�, we have∫
exp

[
λ

2
	Z− Ɛ	Z�� − λ2 ���

2

4
	�2 + Ɛ	V2��

]
d� ≤ 1�

By the Cauchy–Schwarz inequality, it follows that∫
exp

(λ
4
	Z− Ɛ	Z��

)
dP ≤

[∫
exp

(
λ2

���2
4
�2
)
dP

]1/2
exp

(
λ2

���2
8

Ɛ	V2�
)
�
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Applying inequality (3.13) to the random variable �2 yields that, for every
0 ≤ µ ≤ 1/C2���2,

Ɛ

(
exp

(
µ

2
�2
))

≤ exp
(
µƐ	�2�)�

Choosing µ = λ2	���2/2�, we get for every 0 ≤ λ ≤ 1/C���2,∫
exp

(
λ2

���2
4
�2
)
dP ≤ exp

(
λ2

���2
2

Ɛ	�2�
)
�

Finally, for every 0 ≤ λ ≤ 1/C���2,∫
exp

(
λ

4
	Z−Ɛ	Z��

)
dP ≤ exp

(
λ2

���2
4

	Ɛ	V2�+Ɛ	�2��
)

≤ exp
(
λ2

���2
2

Ɛ	V2�
)
�

Then the proof of (3.3) is easily completed by Chebyshev’s inequality. The proof
of (3.4) is identical to the one of (3.3). This ends the proof of Theorem 3. ✷
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