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The voter model is one of the standard interacting particle systems.
Two related problems for this process are to analyze its behavior, after
large times t, for the sets of sites (1) sharing the same opinion as the site
0, and (2) having the opinion that was originally at 0. Results on the sizes of
these sets were given by Sawyer (1979) and Bramson and Griffeath (1980).
Here, we investigate the spatial structure of these sets in d ≥ 2, which we
show converge to quantities associated with super-Brownian motion, after
suitable normalization. The main theorem from Cox, Durrett and Perkins
(2000) serves as an important tool for these results.

1. Introduction. The voter model was introduced independently by
Clifford and Sudbury in [5] (where it was called the invasion process) and
by Holley and Liggett in [16]. It is one of the simplest interacting particle
systems (see [15] and [20]), but one which exhibits a wide range of interesting
phenomena. The process is easily described. One supposes that at each site x
of the d-dimensional integer lattice �d there is a voter who randomly changes
opinion. In the two-type model, each voter holds one of two opinions, say 0
or 1, and at rate-1 exponential random times, selects a neighbor at random
according to a given jump kernel p�x�y�, and adopts the opinion of the neigh-
bor at the chosen site. (Note that no change occurs if the two opinions are
the same.) All voting times and neighbor selections are independent of one
another. We denote the process by ξt, where ξt�x� is the opinion at site x at
time t, and will adopt the convention of identifying the configuration ξt with
�x� ξt�x� = 1�, the set of sites with opinion 1. For x ∈ �d, ξxt will denote the
process starting from a single 1 at the site x at time 0. The multitype voter
model ξ̄t is defined using the same dynamics as for the two-type model, but
now the set of possible opinions is taken to be infinite; we will assume here
that the initial opinions are all distinct. A convenient choice is to take the set
of these opinions to be �d, so that ξ̄t� �d → �d and ξ̄0�x� ≡ x.

Another basic interacting particle system is the coalescing random walk.
Particles are assumed to execute rate-1 random walks according to some jump
kernel p�x�y�. The movement of the particles is independent for particles at
distinct sites; when particles meet, they coalesce, and afterwards move as a
single particle. Unless specified otherwise, it will be assumed that there is
initially a particle at each site of �d. The voter model and coalescing random
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walk are dual processes. In Section 2, we will give a detailed construction of
both processes, using this duality to express one in terms of the other.

In this paper, we will study the limiting spatial structure of the voter model
in d ≥ 2. (The behavior for d = 1 is different, and will be discussed briefly at
the end of the section.) These results also have analogs in terms of coalescing
random walks. We first provide some background and then state the main
results.

Throughout the paper, we will make certain assumptions on the jump
kernel p�x�y�. We will assume that

p�x�y�=p�0� y− x� is irreducible and symmetric, with p�0�0� = 0�

and for some 0 < σ2 <∞�
∑
x∈�d

p�0� x�xixj = δ�i� j�σ2(1.1)

[δ�i� j� = 1 for i = j, and δ�i� j� = 0 otherwise]. We set β2 = 2πσ2, and let
βd, for d ≥ 3, be the probability that a random walk with jump kernel p�x�y�
starting at the origin never returns to the origin. Some of our results also
require the following additional assumption:

there exists a constant c > 0 such that
∑
x∈�d

p�0� x�ec�x� <∞�(1.2)

Results on the sizes of the sets of interest to us were given in [22] and [4].
In [22], Sawyer studied the patch or clan of the origin π0

t , which is the set
of sites in ξ̄t holding the same opinion as site 0. That is, π0

t = �y� ξ̄t�y� =
ξ̄t�0��. Sawyer determined the asymptotic growth of �π0

t �, the cardinality of π0
t .

Theorem 2.1 of [22] states that, as t→∞,

E�π0
t � ∼

{
2β2t/ log t� in d = 2,
2βd t� in d ≥ 3,

(1.3)

and

�π0
t �

E�π0
t �
⇒ � �2� + � ′�2��(1.4)

Here, � �2� and � ′�2� are independent, exponential random variables with
parameter 2, ⇒ denotes convergence in distribution and f�t� ∼ g�t� means
that f�t�/g�t� → 1 as t→∞.

Set pt = P��ξ0t � > 0�. It is easy to see that �ξ0t � is a martingale, and hence
pt → 0 as t→∞. The asymptotic rate at which pt tends to 0 was found in [4].
Theorem 1′ there states that, as t→∞,

pt ∼
{ �log t�/β2t� in d = 2,
1/βdt� in d ≥ 3,

(1.5)

and

pt�ξ̂0t � ⇒ � �1��(1.6)

where �ξ̂0t � has the law of �ξ0t � conditioned on the event ��ξ0t � �= 0�, and � �1�
is an exponential random variable with parameter 1. [Theorem 1′ in [4] was
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proved for the nearest neighbor random walk with p�0� x� = 1/2d for �x� = 1;
in Section 2, we will point out the minor change in reasoning needed to show
that (1.5) and (1.6) hold under the more general assumption (1.1).]

It is natural to ask whether these limit theorems can be augmented with
information on the spatial structure of ξ0t and π0

t . (This question was raised
in [4].) Theorems 1 and 2 below do exactly this and express this information in
terms of a measure-valued branching diffusion, super-Brownian motion. This
process was introduced independently in [25] and [8], and has been studied
extensively in recent years. (See the references in [9], [21] and [18].) We will
give a brief description of it now and a more formal one in Section 3.

We start with a critical branching random walk system ζt. The process ζt
models the evolution of a system of particles on �d, in which each particle
dies at rate r, r > 0, and gives birth to a new particle at the same rate. After
birth, the new particle is instantly transported to a site chosen at random
according to the kernel p�x�y�. (A particle moves only when it is born.) The
number of particles at site x at time t is denoted by ζt�x�. All death times,
birth times and displacement choices are independent of one another. Super-
Brownian motion is obtained by taking a diffusion limit of this system. This
is done by speeding up time by a factor N, scaling space by

√
N, assigning

mass 1/N to each particle, choosing appropriate initial conditions and letting
N→∞. Here is a precise formulation.

Define a sequence of branching random walks ζNt on SN = �d/
√
N, with

rate Nr and jump kernel pN�x�y� = p�x√N�y√N�, x�y ∈ SN. Assign each
particle in ζNt mass 1/N, and define the corresponding measure-valued process
XN

t by

XN
t = 1

N

∑
y∈SN

ζNt �y� δy�(1.7)

where δy is the unit point mass at y. Let �f��d� denote the set of finite Borel
measures on �d, endowed with the topology of weak convergence of measures.
When the (deterministic) initial measures XN

0 converge to a measure X0 ∈
�f��d� as N → ∞, one can show that the sequence �XN

t �t≥0 converges
weakly to a continuous, measure-valued process �Xt�t≥0; this limiting process
is super-Brownian motion with branching rate 2r and diffusion coefficient σ2.
(The proof is analogous to the proof of Theorem II.5.1 of [21]). We will give a
more direct definition of super-Brownian motion in Section 3.

To connect the convergence of critical branching random walks with the
two-type voter model, we reformulate the voter model dynamics. Since we will
be rescaling the voter model, we assume that opinions at neighboring sites
are given by rate-r rather than rate-1 exponential random times. Sites with
opinion 1 can be thought of as being occupied by a particle, with other sites
being vacant. In this setting, a particle at x dies at rate rVt�x�, where Vt�x�
is the local density of vacant sites near x,

Vt�x� =
∑
y∈�d

p�x�y�1�ξt�y�=0��
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Similarly, a particle at x creates a particle at rate rVt�x�, with the particle
being created at a vacant y at the rate rp�y�x� = rp�x�y�. Consequently,
the voter model can be viewed as a state-dependent branching random walk
in which the total branching rate of a particle at x is 2rVt�x�. This is the
viewpoint taken in [7], where it is proved that, like the branching random
walks ζNt , a sequence of rescaled voter models converges to super-Brownian
motion when the initial measures converge.

To be precise, let ξNt denote the rate-N voter model on SN with jump kernel
pN�x�y�, and define the mass normalizers

mN =
{
N/ logN� in d = 2,
N� in d ≥ 3

(1.8)

and the measure-valued process XN
t ,

XN
t = 1

mN

∑
y∈ξNt

δy�

Theorem 1.2 of [7] states that if XN
0 converges to a measure X0 ∈�f��d� as

N→∞, then (
XN

t

)
t≥0 ⇒ �Xt�t≥0�(1.9)

where the limit process Xt is super-Brownian motion on �d with branching
rate 2βd and diffusion coefficient σ2. We note here that, for the proof of this
result, it is not necessary forN→∞ over just integer values, as was assumed
in [7]; for our results, we find it convenient to allow N→∞ over �+.

In view of (1.9), it seems plausible that, after conditioning on nonextinction
of the 1 opinion of ξ0t and rescaling time, space and mass, the spatial structure
of ξ0t should be related in some way to super-Brownian motion. This is indeed
the case, and to describe this relation, we employ the family of canonical
measures �Rt�x� ·�� x ∈ �d, t > 0� of super-Brownian motion with branching
rate γ and diffusion coefficient σ2 (see, e.g., Chapter 11 of [9]). The Rt�x� ·�
are finite measures on �f��d�, which assign no mass to the zero measure,
and are characterized by

Eµ
[
exp

(−Xt�φ�
)] = exp

(
−
∫
�d

∫
�f��d�

(
1− e−ν�φ�

)
Rt�x�dν�µ�dx�

)
�(1.10)

for nonnegative measurable functions φ on �d. The notation ν�φ� is shorthand
for

∫
φ�x�ν�dx�; for µ ∈ �f��d�, Xt, under Pµ, denotes super-Brownian

motion with initial state X0 = µ. We note here that Rt�x��f��d�� = 2/γt.
Informally, the canonical measure Rt�x� ·� represents the law of the contri-
bution to Xt of the descendants at time t of a single individual present at x
at time 0, after normalizing the corresponding measures to compensate for
“immediate” extinction. It can also be constructed as the normalized limit of
the set of particles descended from a single particle in the original branching
random walk system (see, e.g., Theorem II.7.2 of [21]). More precise informa-
tion about canonical measures is provided in Section 3.
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Our first result, Theorem 1, shows that the law of the two-type voter model
ξ0t , conditioned on nonextinction and viewed as a measure, converges to
R̂1�0� ·� = βdR1�0� ·�, as t → ∞, where �Rt�x� ·�� is the family of canonical
measures with branching rate 2βd and diffusion coefficient σ2. This is consis-
tent with the exponential limit law (1.6), since the law of the total mass of a
random measure distributed according to R̂1�0� ·� is exponential. Theorem 1
will follow as a corollary from the more general process level convergence result
for ξ0t given in Theorem 4, in Section 4, which is akin to the limit below (1.7)
and to the limit (1.9). In (1.11) and elsewhere, � denotes law.

Theorem 1. Assume d ≥ 2. As t→∞,

�

(
1
mt

∑
y∈ξ0t

δy/
√
t

∣∣∣ ξ0t �= �
)
⇒ R̂1�0� ·��(1.11)

Let d0 denote the Hausdorff metric on nonempty compact subsets of �d,
that is, d0�K�K′� = d1�K�K′� + d1�K′�K�, where

d1�K�K′� = inf
{
ε > 0� K ⊂K′

ε

}
�

andK′
ε denotes the closure of the ε-enlargement ofK′. The following variant of

Theorem 1 asserts that the random set ξ0t /
√
t, under P� · � ξ0t �= ��, converges

in distribution in the Hausdorff metric. Here, suppµ denotes the closed sup-
port of the measure µ. We note that suppµ is compact a.s. with respect to the
measure R̂1�0� dµ� (see Theorem IV.7 of [18]).

Theorem 1′. Assume d ≥ 2, and that (1.2) holds. As t → ∞, the law
of ξ0t /

√
t under P� · � ξ0t �= �� converges weakly to the law of suppµ under

R̂1�0� dµ�.

Theorem 1′ will be demonstrated in Section 7. It will follow quickly from
Theorem 1 once one shows that “rarefied regions,” with low, nonzero densities
of particles, will not occur as t → ∞. Such a result is needed to ensure that
the limit of ξ0t /

√
t, under P� · � ξ0t �= ��, in the Hausdorff metric corresponds

to that given in (1.11) (rather than the former being larger).
We next consider the patch of the origin π0

t for the rate-1 multitype voter
model ξ̄t with jump kernel p�x�y�. For this, we employ certain random vari-
ables �t, taking values in �f��d�, which are characterized by

E�F��t�� =
∫
�f��d�

∫
�d
F�θzν�ν�dz�Rt�0� dν�� F ∈ Cb

(
�f��d�

)
�(1.12)

[Cb��f��d�� denotes the space of continuous bounded functions on �f��d�,
and for z ∈ �d, θz denotes the shift by z; i.e., �θzν��φ� =

∫
φ�y − z�ν�dy�.]

Informally, �t is the random measure obtained by viewing each measure ν
from points z, which are weighted according to ν�dz� and Rt�0� dν�. (More
detail on �t will be given in Section 3.)
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Theorem 2. Assume d ≥ 2. As t→∞,

1
mt

∑
y∈π0

t

δy/
√
t ⇒ �1�(1.13)

As in Theorem 1′, one can rephrase Theorem 2, where the convergence
in (1.13) is replaced by the convergence of the random sets π0

t /
√
t in the

Hausdorff metric.

Theorem 2′. Assume d ≥ 2 and that (1.2) holds. As t → ∞, π0
t /
√
t con-

verges in distribution to supp�1.

Theorem 2 follows relatively quickly from Theorem 1; it is demonstrated in
Section 5. Theorem 2′ is shown in Section 7 in the same manner as Theorem 1′.

At the beginning of the section, it was mentioned that the voter model
and coalescing random walk are dual processes. On account of this, one can
reinterpret Theorems 1, 1′, 2 and 2′ in terms of coalescing random walks.
The set ξ0t for the two-type voter model is also the set of initial sites of those
particles, in the coalescing random walk, which are at 0 at time t; this allows
one to reinterpret Theorems 1 and 1′. Similarly, the set π0

t for the multitype
voter model is the set of initial sites of those particles which have coalesced,
by time t, with the particle starting at 0; this allows one to also reinterpret
Theorems 2 and 2′. An explicit coupling of the voter model and coalescing
random walk is given by their common percolation substructure, in Section 2.

In d ≥ 3, the multitype voter model has a stationary distribution, with an
infinite number of opinions, which is the limit of ξ̄t as t → ∞. We denote
by π0

∞ the patch of the origin for a random measure with this distribution;
we view π0

∞ as a random element of � ��d�, the space of Radon measures µ
on �d (i.e., µ�*� < ∞ for all compact sets *), endowed with the topology of
vague convergence. We will later show that the random measures �t converge
monotonically, as t → ∞, to a random measure �∞ taking values in � ��d�.
The random set π0

∞ is related to �∞ in the following way.

Theorem 3. Assume d ≥ 3. As N→∞,

1
N

∑
y∈π0∞

δy/
√
N ⇒ �∞�(1.14)

with respect to the topology of vague convergence on � ��d�.

Theorem 3 is demonstrated in Section 6. It follows quickly from a variant of
Theorem 2.

The results of this paper pertain to dimensions d ≥ 2. As mentioned in
the beginning of the section, the asymptotic behavior of the voter model (and
coalescing random walk) is different for d = 1. There, the appropriate mass
normalizer is mN = √

N, but the limit (1.9) does not hold without modifi-
cation. One alternative is to use a sequence of jump kernels which become
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progressively more spread out as N → ∞. This was done in Theorem 1.1
of [7]. One expects, in this case, that variants of our Theorems 1, 1′, 2 and
2′ should hold. Alternatively, one may consider the nearest neighbor voter
model in d = 1. In this case, the endpoints of intervals of 1′s move like inde-
pendent random walks, except that they “annihilate” each other when they
meet. As a consequence of this fact (see [2]), the limitXt in (1.9) exists, and is
Lebesgue measure on a collection of intervals whose endpoints are annihiliat-
ing Brownian motions. It is also not difficult to argue directly that versions of
our Theorems 1, 1′, 2 and 2′ hold in the nearest neighbor case. (For instance,
the limit of ξ0t /

√
t, conditioned on nonextinction, is the interval between two

Brownian motions, starting at the same point, conditioned not to meet before
time 1.) We do not know what happens in d = 1 for (fixed) nonnearest neighbor
kernels. However, results in [6] on the tightness of “interface” regions suggest
that this case may be similar to the nearest neighbor case.

The remainder of the paper is organized as follows. Background material
on the voter model and coalescing random walk is given in Section 2, and
background material on super-Brownian motion is given in Section 3.
Theorems 1, 1′, 2, 2′ and 3 are demonstrated in Sections 4–7, as indicated
earlier. A quick application of Theorem 1′ is given in Section 8, which relates
appropriate limits of the two-type voter model and coalescing random walk to
a nonlinear diffusion equation.

2. The voter model and coalescing random walk. In this section,
we give the standard graphical construction of the voter model and its dual
process, coalescing random walk. We then recall a correlation inequality from
[3] and show that (1.5) and (1.6) hold under (1.1).

Let �+�x�y�� x� y ∈ �d� be a family of independent Poisson point processes
on �+, where +�x�y� has intensity p�x�y�ds (and ds denotes Lebesgue mea-
sure). The atoms of +�x�y� will be the times at which the voter at x adopts
the opinion of the voter at y; we indicate this by drawing an arrow from y to x
at time s, for s ∈ +�x�y�. For s < t, we say that there is a path up from �y� s�
to �x� t� if there is a sequence of times s = s0 < s1 < s2 · · · < sn ≤ sn+1 = t and
sites y = x0� x1� � � � � xn = x such that:

1. For 1 ≤ i ≤ n, there is an arrow from xi−1 to xi at time si.
2. For 0 ≤ i ≤ n, there are no arrows pointing towards xi in the time interval

�si� si+1�.

There is a path down from �x� t� to �y� s� if and only if there is a path up from
�y� s� to �x� t�. For t > 0 and x ∈ �d, define �Wx�t

s �0≤s≤t by settingWx�t
0 = x and,

for 0 < s ≤ t, settingWx�t
s = y if and only if there is a path down from �x� t� to

�y� t−s�. It is easy to see thatWx�t
s is a rate-1 random walk with jump kernel

p�x� y�. Furthermore, the two walks Wx1� t
s and W

x2� t
s move independently

until they meet, at which time they merge, and move together afterwards.
That is, �Wx�t

s �0≤s≤t� x ∈ �d, forms a coalescing random walk system.
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The two-type voter model ξt with initial state ξ0 is given by

ξt�x� = ξ0
(
W

x�t
t

)
�(2.1)

and, in particular, ξyt is the random set

ξ
y
t =

{
x� Wx�t

t = y
}
�(2.2)

The multitype voter model ξ̄t is given by the same Poisson processes via

ξ̄t�x� =W
x�t
t �(2.3)

and πxt , the patch of site x at time t of the multitype voter model, is given by

πxt =
{
z� Wz� t

t =W
x�t
t

}
�(2.4)

It follows easily that for any finite A ⊂ �d with 0 ∈ A,{
π0
t = A�W

0� t
t = y

} = {ξyt = A
}
�(2.5)

The rescaled voter models ξNt and ξ̄Nt may be constructed analogously
using a family of independent Poisson processes �+N�x�y�� x� y ∈ SN�, where
+N�x�y� has intensity NpN�x�y�ds, and employing the corresponding coa-
lescing random walks �WN�x� t

s �0≤s≤t on SN. Also, the analogs of (2.2) and (2.4)
hold.

In the proof of Theorem 4, we will require the following correlation inequal-
ity from Lemma 1 of [3]. Recall the definition of pt above (1.5).

Lemma 1. For x �= y,

P
(�ξxt � > 0� �ξyt � > 0

) ≤ P
(�ξxt � > 0

)
P
(�ξyt � > 0

) = p2
t �(2.6)

We recall that the asymptotics (1.5) and (1.6) were proved, in [4], for the
jump kernel p�x�y� of simple symmetric random walk on �d. Only Lemma 5
there makes use of this additional assumption. Display (2.7) of Lemma 2 below
is the corresponding inequality, and allows us to conclude that both (1.5) and
(1.6) hold under the weaker assumption (1.1).

Lemma 2. Let Wt denote a rate-1 random walk on �d with jump kernel
p�x�y� satisfying (1.1), with W0 = 0. For x ∈ �d, let Ht�x� = P�Ws =
x for some s ≤ t�. There exist positive constants Cd, such that for all r ≥ 2
and x ∈ �d with �x� = r,

Hr2�x� ≥
{
C2/ log r� in d = 2,
Cd/r

2−d� in d ≥ 3.
(2.7)

Proof. Let Gt�x� = ∫ t
0 P�Ws = x�ds. Lemma 5 of [4] relies on the

inequality

Ht�x� ≥ Gt�x�/Gt�0��(2.8)
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and on the asymptotic behavior of Gt�x� for simple symmetric random walk.
For d ≥ 4, under the more general (1.1), the corresponding upper bounds on
Gt�x�, for x �= 0, require more than finite second moments on p�x�y� (as noted
in [26]); fortunately, the appropriate lower bounds on Gt�x� do not.

We verify (2.7) under (1.1). After adaptation to continuous time, P7.9 of [23]
and the remark following it imply that there exist constants εd > 0 �depending
on the kernel p�x�y��, such that for all r ≥ 1, r2/2 ≤ s ≤ r2, and x ∈ �d with
�x� = r, P�Ws = x� ≥ εd/s

d/2. Using this estimate, it follows that

Gr2�x� ≥ εd

∫ r2
r2/2

s−d/2 ds ≥
{
ε2 log 2� in d = 2,
�εd/2�r2−d� in d ≥ 3.(2.9)

It also follows from P7.9 of [23], in a similar fashion, that there exist finite
constants Ad such that for all r ≥ 1, Gr2�0� ≤ 1 + A2 log r for d = 2, and
Gr2�0� ≤ G∞�0� < ∞ for d ≥ 3. Substituting (2.9) and these estimates into
(2.8) verifies (2.7) for d ≥ 2, as needed. ✷

3. Super-Brownian motion. In this section, we summarize some of the
basic properties of super-Brownian motion. For a Polish space E with Borel
σ-field � , let � �E� be the space of nonnegative Radon measures on �E�� �,
and let �f�E� [resp. �1�E�] be the space of finite (resp. probability) measures
µ ∈ � �E�. We assign � �E� the topology of vague convergence, and �f�E�
and �1�E� the topology of weak convergence. For µ ∈ �f�E� and functions
φ on E, let µ�φ� = ∫

φ�x�µ�dx� whenever the integral is well defined. Let
C��+��f��d�� be the space of continuous functions from �+ to �f��d�,
equipped with the topology of uniform convergence on compact intervals. Let
Xt�ω� = ωt denote the coordinate process of such a function; we will typically
writeXt forXt�ω�. Also, let D��+��f��d�� be the Skorokhod space of cadlag
functions from �+ to �f��d�.

For µ ∈ �f��d�, we say that Pµ ∈ �1�C��+��f��d��� is the law of super-
Brownian motion with initial state µ, branching rate γ and diffusion coefficient
σ2 if, for all φ ∈ C∞

b ��d�,

Mt�φ� =Xt�φ� −X0�φ� −
∫ t
0
Xs

(
σ24

2
φ

)
ds

is a Pµ-continuous, square-integrable martingale, with increasing process

�M�φ��t =
∫ t
0
Xs

(
γφ2)ds�

See Chapter I of [21] for details on the construction of super-Brownian motion
and for a proof that the above martingale problem is well posed.

Let 1 denote the function on �d which is identically 1. Under Pµ, the total
mass processXt�1� is a Feller branching diffusion process, and it is well known
that

Eµ
[
exp

(−θXt�1�
)] = exp

(
− 2θµ�1�
2+ θγt

)
� θ > 0�
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It follows that Pµ�Xt�1� > 0� = 1− e−2µ�1�/γt, and hence that

Pεδ0
(
Xt�1� > 0

) ∼ 2ε/γt as ε→ 0�(3.1)

Employing the infinite divisibility of the mass of Xt, one can show that
there is a family �Rt�x� ·�� x ∈ �d� t > 0� of finite measures on �f��d� (see
Chapter 11 of [9]), such that Rt�x� �0�� = 0, and for nonnegative measurable
functions φ on �d,

Eµ
[
exp

(−Xt�φ�
)] = exp

(
−
∫
�d

∫
�f��d�

�1− e−ν�φ��Rt�x�dν�µ�dx�
)
�(3.2)

[This formula was given earlier as (1.10).] Equivalently, Xt under Pµ has
the same law as

∑
Xi

t, where
∑
δXi

t
is a Poisson point process with intensity∫

Rt�x� ·�µ�dx�. The measures Rt�x� ·� have total mass

Rt

(
x��f��d�

) = 2/γt�(3.3)

and, for θ > 0, ∫
�f��d�

e−θν�1�Rt�x�dν� =
�2/γt�2

�2/γt� + θ �(3.4)

It follows from this last formula, by differentiating with respect to θ and then
setting θ = 0, that ∫

�f��d�
ν�1�Rt�x�dν� = 1�(3.5)

Furthermore, for any Borel set B ⊂ �d,∫
�f��d�

ν�B�Rt�x�dν� =
∫
B
nt�x�y�dy�(3.6)

where nt�x�y� is the transition density of Brownian motion in �d with diffu-
sion coefficient σ2 (see Theorem 2.7.2 in [21]). Using (3.2), it is simple to check
that

lim
ε→0

ε−1Eεδx
[
1− e−Xt�φ�] = ∫

�f��d�

(
1− e−ν�φ�)Rt�x�dν��(3.7)

For measurable ϒ ⊂�f��d�, with 0 /∈ ϒ,
lim
ε→0

ε−1Pεδx�Xt ∈ ϒ� = Rt�x�ϒ�(3.8)

is a consequence of the Poisson representation Xt =
∑
Xi

t described above.
As shown in Section 4 of [13], or in Section 5 of [17] by the Brownian

snake approach (see also Section II.7 of [21]), there is a σ-finite measure
N0 on C��+��f��d��, the excursion measure of super-Brownian motion with
branching rate γ and diffusion coefficient σ2, with the following properties.
The measure N0 assigns zero mass to the zero trajectory, and to the set of
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trajectories with times 0 < α < β such that ωα = 0 and ωβ �= 0. For all t > 0
and measurable ϒ ⊂�f��d� with 0 /∈ ϒ,

N0�Xt ∈ ϒ� = Rt�0� ϒ��(3.9)

In particular, N0�Xα �= 0� = 2/γα < ∞ for any α > 0. Thus, N0 restricted
to �Xα �= 0� is a finite measure. Also, for every δ > 0, the process �Xt+δ�t≥0
induced by N0�· �Xδ �= 0� is Markovian, with the transition kernels of super-
Brownian motion having branching rate γ and diffusion coefficient σ2. The
following Poisson representation formula is useful. If

∑
i δωi is a Poisson point

measure on C��+��f��d�� with intensity εN0, then

Y
εδ0
t =∑

i

Xt�ωi�� t > 0�

is a super-Brownian motion with initial state εδ0.
Let α > 0, and let F be a bounded, continuous function on C��+��f��d��

such that F�ω� = 0 for all ω with ω�t� = 0 for all t ≥ α. For such F,

lim
ε→0

ε−1Eεδ0
[
F
(�Xt�t≥0

)] = N0�F��(3.10)

which is an extension of (3.8). Here, N0�F� def= ∫
F�ω�N0�dω�. (Note that for

general bounded, continuous F, N0�F� need not be defined.) Display (3.10) is a
simple consequence of the previous representation and of properties of Poisson
point measures. To see this, note that, by (3.1), (3.3) and (3.9), Pεδ0�Xα �= 0� ∼
εN0�Xα �= 0� as ε → 0. Moreover, the process �Xt�t≥0 is distributed under
Pεδ0�· � Xα �= 0� as the sum of two independent terms, the first term being
distributed according toN0�· �Xα �= 0� and the second going to 0 in probability
as ε→ 0. The convergence (3.10) then follows easily.

We will use a form of the Palm measures for super-Brownian motion. (See
Chapter 4 of [10] for a more general theory.) The map

ϒ �→
∫
�f��d�

∫
�d

1ϒ�θzν� ν�dz�Rt�0� dν��(3.11)

for measurable ϒ ⊂ �f��d�, defines a measure on �f��d�, which by (3.5) is
a probability measure. We let �t denote a random measure with this law; �t
satisfies (1.12).

We also give an alternate, more probabilistic construction of �t, which will
be used in the proof of Theorem 3. Let B0

t be a Brownian motion in �d starting
at 0, with diffusion coefficient σ2. Let � �dsdν� be a point measure on �+ ×
�f��d�, such that, conditionally on the Brownian motion B0, � is Poisson
with intensity γdsRs�B0

s � dν�, and define the random measures

�t =
∫ t
0

∫
�f��d�

ν� �dsdν��

The following result is a straightforward consequence of the Palm measure
formula for superprocesses (see, e.g., page 1734 of [19]).
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Lemma 3. For every t > 0, the random measures �t and �t have the
same law.

The equivalence of �t and �t is easier to see, on an intuitive level, if one
considers � ′

t =
∫ t
0

∫
�f��d��θB0

t
ν�� ′�dsdν� instead of �t, where � ′ is a Poisson

measure with intensity γ dsRt−s�B0
s � dν�. In this setting, the Brownian motion

B0
s corresponds to the historical path leading to a typical particle in the

support of ν, under Rt�0� dν�. For each atom �s� ν� of the Poisson measure � ′,
the measure ν corresponds to “cousins” of this particle which have common
ancestry up until time s. Standard time reversal and translation arguments
imply that �t and � ′

t have the same distribution.
For Theorem 3, we will also employ the random measure

�∞ =
∫ ∞
0

∫
�f��d�

ν� �dsdν��

Clearly,

�t ↑ �∞ as t→∞�(3.12)

Furthermore, for d ≥ 3, �∞ takes values in � ��d� (i.e., it is Radon with
probability 1). If * ⊂ �d is compact,

E
[
�∞�*�

] = γE

[∫ ∞
0

∫
�f��d�

ν�*�Rs�B0
s � dν�ds

]
= γE

[∫ ∞
0

∫
*
ns�B0

s � y�dyds
]

= γ
∫ ∞
0

∫
*
n2s�0� y�dyds�

where we have used (3.6) for the second equality. For d ≥ 3, the last integral
is finite (although it is infinite for d = 2).

4. A process level generalization of Theorem 1. In this section, we
state and prove Theorem 4, which provides the basis for the other results in
the paper. Theorem 1 is, in particular, an easy consequence of Theorem 4.
Recall that ξN�xt is the rate-N (two-type) voter model on SN with jump kernel
pN�x�y�, where ξN�xt starts from a single 1, at x, at time 0. The associated
random measures of ξN�xt are

X
N�x
t = 1

mN

∑
y∈ξN�xt

δy�

where mN is defined in (1.8).

Theorem 4. Assume d ≥ 2, and let N0 be the excursion measure of super-
Brownian motion on �d with branching rate 2βd and diffusion coefficient σ2.
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(a) Let α > 0, and let F be a bounded continuous function on D��+��f��d��
such that F�ω� = 0 for all ω, with ωt = 0 for all t ≥ α. Then,

lim
N→∞

mNE
[
F
((
X

N�0
t

)
t≥0
)]

= N0�F��(4.1)

(b) Let α > 0, and let F be a bounded continuous function on D��+��f��d��.
Then,

lim
N→∞

E
[
F
((
X

N�0
t

)
t≥0
) ∣∣∣XN�0

α �= 0
]
= N0

[
F � ωα �= 0

]
�(4.2)

The two parts of Theorem 4 are equivalent, with part (a) containing the
cleaner statement (4.1), and part (b) its more intuitive analog (4.2). The latter
states that the probability measures obtained by conditioning �XN�0

t �t≥0 on
XN�0

α �= 0 converge weakly to N0 conditioned on ωα �= 0. Later on in the
section, we will demonstrate the theorem by showing that (b) implies (a),
which is almost immediate, and then showing (b). [Part (a) also implies (b);
the argument is similar to that used to prove (4.14) and (4.15) below.]

Assume that G ∈ Cb��f��d�� with G�0� = 0. For a given α > 0, define G̃

on D��+��f��d�� by G̃��Xt�t≥0� = G�Xα�. Since G̃ is a.s. continuous with
respect to N0, it follows from (4.2) that G�XN�0

α �, conditioned on XN�0
α �= 0,

converges weakly to the image of N0�· � ωα �= 0� under G̃. By (3.3) and (3.9),
this last quantity is the image of βdαRα�0� ·� under G. So,

lim
N→∞

E
[
G
(
XN�0

α

) �XN�0
α �= 0

]
= βdα

∫
�f��d�

G�µ�Rα�0� dµ��

Theorem 1 follows from this upon substituting 1 for α and t for N. By (1.5)
and (1.8) mNP�XN�0

α �= 0� → 1/βdα as N→∞. One can therefore also write
the above limit as

lim
N→∞

mNE
[
G�XN�0

α �] = ∫
�f��d�

G�µ�Rα�0� dµ��(4.3)

which is the analog (4.1). It will be applied in Section 5.
The proof of Theorem 4 is somewhat lengthy. We first summarize the basic

idea and present two lemmas. For ε > 0, let BN�ε be the square in SN centered
at the origin of side length bN = �εmN�1/d/N1/2, so that �BN�ε� ∼ εmN as
N → ∞. Let ηN�εt denote the voter model with initial state BN�ε, η

N�ε
t =⋃

x∈BN�ε
ξ
N�x
t , and define the corresponding measures YN�ε

t ,

Y
N�ε
t = 1

mN

∑
y∈ηN�εt

δy�

By the definition of BN�ε, Y
N�ε
0 → εδ0 in �f��d� as N → ∞. Consequently,

by (1.9), (
Y
N�ε
t

)
t≥0

⇒
(
Y
εδ0
t

)
t≥0

as N→∞�(4.4)
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where Yεδ0
t denotes super-Brownian motion with initial state εδ0, branching

rate 2βd and diffusion coefficient σ2.
Roughly speaking, our strategy for proving (4.2) is to show that with high

probability, when Y
N�ε
t �= 0, there is a random site xN ∈ BN�ε such that

Y
N�ε
t = X

N�xN
t . Since xN is close to the origin, the law of XN�xN

t should be
close to the law ofXN�0

t , when the latter is conditioned on nonextinction. Thus,
we should be able to obtain the limiting behavior of XN�0

t from that of YN�ε
t ,

by letting ε→ 0 and N→∞.
Let SN�εt be the set of surviving family lines at time t from η

N�ε
t ,

S
N�ε
t =

{
x ∈ BN�ε� �ξN�xt � > 0

}
�(4.5)

Our first lemma shows that one may neglect the possibility that there are two
or more surviving family lines at a fixed rescaled time.

Lemma 4. For any δ > 0,

P
(
�SN�εδ � ≥ 2

)
≤ �BN�ε�2p2

δN ∼ (ε/δβd)2(4.6)

as N→∞.

Proof. By a simple decomposition and Lemma 1,

P��SN�εδ � ≥ 2� = P

 ⋃
x�y∈BN�ε

x�=y

{
�ξN�xδ � > 0� �ξN�yδ � > 0

}
≤ ∑

x�y∈BN�ε
x�=y

P
(
�ξN�xδ � > 0� �ξN�yδ � > 0

)
≤ �BN�ε�2p2

δN�

Now apply (1.5). ✷

We will need certain bounds on the total mass process of super-Brownian
motion. The total mass process Xt�1� is a Feller diffusion Ut, defined by

dUt =
√
γUt dBt�(4.7)

where Bt is a standard Brownian motion on �. Let Uε
t denote this diffusion

with initial value ε > 0.

Lemma 5. For δ > 0 and α > 0, let

cδ�α� = lim sup
ε→0

ε−1E

[(
sup
0≤t≤δ

Uε
t

)
∧Uε

α ∧ 1
]
�(4.8)

Then, cδ�α� → 0 as δ→ 0.
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Proof. The argument is based on the following basic properties of Uε
t :

(1) Uε
t is a Markov process and (2) Uε

t is a square integrable continuous
martingale. We also use the following formulas that can be derived from the
Laplace transform of Uε

δ, which is given above (3.1). For δ > 0,

E
[�Uε

δ�2
] = ε2 + γδε(4.9)

and

P
(
Uε
δ > 0

) = 1− e−2ε/γδ�(4.10)

By the Markov property at time δ and (4.10), we have, for δ < α/2,

E

[(
sup
0≤t≤δ

Uε
t

)
∧Uε

α ∧ 1
]
≤ E

[(
sup
0≤t≤δ

Uε
t

)
1{

Uε
α>0
}]

= E

[(
sup
0≤t≤δ

Uε
t

)
P
(
Uε
α > 0 � Uε

δ

)]
= E

[(
sup
0≤t≤δ

Uε
t

)(
1− e−2Uε

δ/γ�α−δ�
)]

≤ 4
γα

E

[(
sup
0≤t≤δ

Uε
t

)2]
�

By Doob’s inequality, this is

≤ 16
γα
E
[
�Uε

δ�2
]
�

The lemma follows from this bound and (4.9). ✷

Before starting the proof of Theorem 4, we make a few observations concern-
ing weak convergence on D��+��f��d��. Recall that D��+��f��d��, with the
Skorokhod metric, is a complete metric space. Note, for this, that the topology
of weak convergence on the space �f��d� is given by the metric d,

d�µ� ν� = sup
f∈BL��d�

�µ�f� − ν�f���(4.11)

where BL��d� denotes the set of all nonnegative functions on �d which are
bounded by 1, and are Lipschitz with Lipschitz constant at most 1. (See
Problems 3.11.2 and 9.5.6 in [14].) Let 	 denote the set of Lipschitz functions
F�ω� onD��+��f��d��, with 0 ≤ F�ω� ≤ 1, which depend only on �ωt�0 ≤ t ≤
KF� for some KF > 0. By Theorem 3.4.5 of [14], 	 is convergence determin-
ing on D��+��f��d�� [i.e., for probability measures Q and QN,

∫
FdQN →∫

FdQ as N → ∞, for all F ∈ 	 , implies that QN ⇒ Q], since 	 strongly
separates points. We also note that the Skorokhod metric on D��+��f��d��,
when restricted to functions that only differ on �0�K�,K > 0, is bounded above
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by the corresponding uniform metric on �0�K�. It follows that, for each F ∈ 	 ,
there exists a constant CF ≥ 1, such that, for every ω�ω′ ∈ D��+��f��d��,

�F�ω� −F�ω′�� ≤ CF sup
0≤t≤KF

d
(
ω�t��ω′�t�)�(4.12)

We will employ measurable functions F satisfying (4.12) and 0 ≤ F�ω� ≤ 1,
with the further restriction given in (4.13), in the proof of Theorem 4. We will
also employ related sets of convergence determining functions on �f��d� in
Theorems 2 and 3 in Sections 5 and 6.

Proof of Theorem 4. It is easy to see that (4.1) follows from (4.2). We
first note that P�XN�0

α �= 0� = P��ξN�0α � �= 0� ∼ 1/αβdmN as N→∞, by (1.5)
and (1.8). On the other hand, by (3.3) and (3.9),N0�ωα �= 0� = Rα�0��f��d�� =
1/αβd. So, for F satisfying the assumptions of part (a), (4.2) implies (4.1).

The remainder of the proof is devoted to demonstrating (4.2) for any mea-
surable function F on D��+��f��d�� satisfying 0 ≤ F ≤ 1 and condition
(4.12). It suffices to further restrict F so that

F�ω� ≤ CFωα�1��(4.13)

where α > 0 is as in (4.2). Note that (4.13) implies the condition on F given
in part (a) of Theorem 4, that F�ω� = 0 for all ω, with ωt = 0 for all t ≥ α. To
see that the additional restriction (4.13) is justified, we argue as follows.

Suppose that (4.2) holds under (4.13). Let Fn�ω� = F�ω�gn�ω�, where
gn�ω� = 1 ∧ �nωα�1��. Since, for each n > 0, Fn�ω� ≤ nωα�1�, Fn satisfies
(4.13), and so

lim
N→∞

E
[
Fn

(�XN�0
t �t≥0

) �XN�0
α �= 0

]
= N0�Fn � ωα �= 0��

Since Fn ≤ F, and Fn → F1�ωα �=0� as n→∞, monotone convergence implies

lim inf
N→∞

E
[
F
(�XN�0

t �t≥0
) �XN�0

α �= 0
]
≥ N0

[
F � ωα �= 0

]
�(4.14)

Replacing F with 1−F in (4.14), we obtain

lim inf
N→∞

E
[
1−F(�XN�0

t �t≥0
) �XN�0

α �= 0
]
≥ N0

[
1−F � ωα �= 0

]
and hence,

lim sup
N→∞

E
[
F
((
X

N�0
t

)
t≥0
)
�XN�0

α �= 0
]
≤ N0

[
F � ωα �= 0

]
�(4.15)

Together, (4.14) and (4.15) imply (4.2).
In the remainder of the proof, it will be more convenient to employ the

format of (4.1), instead of (4.2), but with the restrictions onF given above. That
is, we will prove that, for functions F on D��+��f��d�� satisfying 0 ≤ F ≤ 1
and conditions (4.12) and (4.13),

lim
N→∞

mNE
[
F
((
X

N�0
t

)
t≥0
)]

= N0�F��(4.16)
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Given (4.16), (4.2), for this class of functionsF, follows easily by again using the
estimates on P�XN�0

α �= 0� and N0�ωα �= 0� in the first paragraph of the proof.
In order to demonstrate (4.16), we will employ the following six displays,

(4.17)–(4.22). For these displays, recall that Yεδ0
t denotes super-Brownian

motion with branching rate 2βd and diffusion coefficient σ2, YN�ε
t is the nor-

malized voter model process defined above (4.4) and Uε
t is a Feller branching

diffusion started at ε. The functionF is assumed to satisfy the conditions spec-
ified in the previous paragraph, and we setFx = F◦θx, where θxω = �θxωt�t≥0;
ε > 0 and δ ∈ �0� α� are also assumed. We will first demonstrate �4�16�,
assuming (4.17)–(4.22), and will afterwards justify these displays. They are

lim
N→∞

E
[
F
((
Y
N�ε
t

)
t≥0
)]

= E
[
F
((
Y
εδ0
t

)
t≥0
)]
�(4.17)

lim sup
N→∞

∣∣∣∣E[F((YN�ε
t

)
t≥0
)]

−E
[
F
((
Y
N�ε
t

)
t≥0
)
1{∣∣SN�εδ

∣∣=1
}]∣∣∣∣ ≤ ( ε

δβd

)2

�(4.18)

lim
N→∞

E

[∣∣∣F((YN�ε
t

)
t≥0
)
1{∣∣SN�εδ

∣∣=1
}

− ∑
x∈BN�ε

Fx

((
Y
N�ε
t

)
t≥0
)
1{

S
N�ε
δ =�x�

}∣∣∣] = 0�

(4.19)

lim sup
N→∞

∣∣∣∣∣E
[ ∑
x∈BN�ε

[
Fx

((
Y
N�ε
t

)
t≥0
)
−Fx

((
X

N�x
t

)
t≥0
)]

1�SN�εδ =�x��

]∣∣∣∣∣
≤ CFE

[(
sup
0≤t≤δ

Uε
t

)
∧Uε

α ∧ 1

]
�

(4.20)

lim sup
N→∞

∣∣∣∣∣E
[ ∑
x∈BN�ε

Fx

((
X

N�x
t

)
t≥0
)
1{

S
N�ε
δ =�x�

}
−�BN�ε�F

((
X

N�0
t

)
t≥0
)]∣∣∣∣∣ ≤

(
ε

δβd

)2

�

(4.21)

N0�F� = limε→0 ε
−1E

[
F
(�Yεδ0

t �t≥0
)]
�(4.22)

Combining (4.17)–(4.21), one obtains

lim sup
N→∞

∣∣∣�BN�ε�E
[
F
((
X

N�0
t

)
t≥0
)]

−E
[
F
((
Y
εδ0
t

)
t≥0
)]∣∣∣

≤ 2
(

ε

δβd

)2

+CFE

[(
sup
0≤t≤δ

Uε
t

)
∧Uε

α ∧ 1

]
�
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Consequently,

lim sup
N→∞

∣∣∣ε−1�BN�ε�E
[
F
((
X

N�0
t

)
t≥0
)]

−N0�F�
∣∣∣

≤ 2ε(
δβd

)2 + ∣∣∣ε−1E
[
F
((
Y
εδ0
t

)
t≥0
)]

−N0�F�
∣∣∣

+CFε
−1E

[(
sup
0≤t≤δ

Uε
t

)
∧Uε

α ∧ 1
]
�

Since mN ∼ ε−1�BN�ε�, we can replace ε−1�BN�ε� with mN on the left side of
the above inequality, which then becomes independent of ε. Letting ε go to 0
on the right side and defining cδ�α� as in Lemma 5, (4.22) implies that

lim sup
N→∞

∣∣∣mNE
[
F
((
X

N�0
t

)
t≥0
)
−N0�F�

∣∣∣ ≤ CFcδ�α��

By Lemma 5, the right side goes to 0 as δ → 0. We have thus proved (4.16),
assuming (4.17)–(4.22), for our restricted class of functions F; as explained
earlier, this implies (4.2) for general F.

We need to justify (4.17)–(4.22). The limit (4.22) is (3.10) and (4.17) fol-
lows from (4.4), since F which satisfy (4.12) are continuous on C��+��f��d��.
We next show (4.18). Since, by (4.13), F�0� = 0,

E

[
F
((
Y
N�ε
t

)
t≥0

)]
= E

[
F
((
Y
N�ε
t

)
t≥0

)
1{∣∣SN�εδ

∣∣≥1}
]
�

The inequality (4.18) follows from this and Lemma 4.
In order to show (4.19), we note that by (4.12),

�F�ω� −Fx�ω�� ≤ CF sup
0≤t≤K

d�ωt� θxωt� ≤ CF �x� sup
0≤t≤K

ωt�1��

These inequalities, the boundF ≤ 1 and the fact that the events �SN�εδ = �x��,
x ∈ BN�ε are disjoint imply that

E

[∣∣∣∣∣ ∑
x∈BN�ε

[
F
((
Y
N�ε
t

)
t≥0

)
−Fx

((
Y
N�ε
t

)
t≥0

)]
1{

S
N�ε
δ =�x�

}∣∣∣∣∣
]

≤ CFE

[(
dbN sup

0≤t≤K
Y
N�ε
t �1�

)
∧ 1

]
�

(Recall that BN�ε has side length bN; here d is its dimension.) Since bN → 0,
it follows from (4.4) and bounded convergence that the right side goes to 0 as
N→∞. The limit (4.19) follows from this and the decomposition

E

[
F
((
Y
N�ε
t

)
t≥0

)
1{∣∣SN�εδ

∣∣=1
}] = ∑

x∈BN�ε

E

[
F
((
Y
N�ε
t

)
t≥0

)
1{

S
N�ε
δ =�x�

}]�
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For (4.20), note that, on the event �SN�εδ = �x��, XN�x
t = Y

N�ε
t holds for all

t ≥ δ. Also, XN�x
t ≤ Y

N�ε
t always holds for all t. From the assumptions (4.12)

and (4.13) on F and 0 ≤ F ≤ 1, it follows that, for every x ∈ BN�ε,∣∣∣∣Fx

((
Y
N�ε
t

)
t≥0

)
−Fx

((
X

N�x
t

)
t≥0

)∣∣∣∣ 1{SN�εδ =�x�
}

≤ CF

(
sup
0≤t≤δ

(
Y
N�ε
t �1�

)
∧YN�ε

α �1� ∧ 1

)
1{

S
N�ε
δ =�x�

}�
Since the events �SN�εδ = �x�� are disjoint, it follows from this, that

lim sup
N→∞

∣∣∣∣∣E
[ ∑
x∈BN�ε

[
Fx

((
Y
N�ε
t

)
t≥0

)
−Fx

((
X

N�x
t

)
t≥0

)]
1{

S
N�ε
δ =�x�

}]∣∣∣∣∣
≤ CF lim sup

N→∞
E

[
sup
0≤t≤δ

(
Y
N�ε
t �1�

)
∧YN�ε

α �1� ∧ 1

]
�

Together with (4.4), this implies (4.20).
We still need to show (4.21). The reasoning is almost the same as that for

(4.18). Since F�ω� = 0 if ωα = 0,

E

[
F
((
X

N�x
t

)
t≥0

)]
= E

[
F
((
X

N�x
t

)
t≥0

)
1{∣∣SN�εδ

∣∣≥1}
]
�

for each x. The same simple decomposition as in Lemma 4 therefore shows
that ∣∣∣∣∣E

[ ∑
x∈BN�ε

Fx

((
X

N�x
t

)
t≥0

)
1{

S
N�ε
δ =�x�

} − ∑
x∈BN�ε

Fx

((
X

N�x
t

)
t≥0

)]∣∣∣∣∣
≤ �BN�ε�2p2

δN#
the right side ∼ �ε/δβd�2 for large N. The limit (4.21) follows from this and

E

[
Fx

((
X

N�x
t

)
t≥0

)]
= E

[
F
((
X

N�0
t

)
t≥0

)]
� ✷

5. Convergence of the patch of the origin. We introduce the notation

π
N�0
t =

{
y� WN�y� t

t =W
N�0� t
t

}
� ?

N�0
t = 1

mN

∑
y∈πN�0t

δy�

where �WN�y� t
s �0≤s≤t are the coalescing random walks with jump rates N on

SN, which were introduced in Section 2. Thus, πN�0t is the patch of the origin
after scaling time by N and space by

√
N, and ?

N�0
t is the corresponding
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measure after normalization by mN. In this section, we prove that for all
t > 0 and F ∈ Cb��f��d��,

lim
N→∞

E
[
F
(
?
N�0
t

)] = E�F��t���(5.1)

where �t is given by (3.11) [see also (1.12)]. Theorem 2 follows by substituting 1
for t and t for N in (5.1). The proof of (5.1) uses (4.3).

The first step is to derive the following representation.

Lemma 6.

E
[
F
(
?
N�0
t

)] =mNE

[∫
�d
F
(
θzX

N�0
t

)
X

N�0
t �dz�

]
� t ≥ 0�(5.2)

Proof. Let 
N be the collection of finite subsets of SN. As in (2.5), for all
y ∈ SN and A ∈ 
N, with 0 ∈ A, the events �πN�0t = A� W

N�0� t
t = −y� and

�ξN�−yt = A� coincide (−y is more convenient than y for the next calculation).
Using this and P�ξN�−yt = A� = P�ξN�0t = A+ y�, we have

E
[
F
(
?
N�0
t

)]
= ∑

A∈
N

∑
y∈SN

1A�0�E
[
F
(
?
N�0
t

)
1{

π
N�0
t =A�WN�0� t

t =−y
}]

= ∑
A∈
N

∑
y∈SN

1A�0�F
(
m−1
N

∑
x∈A

δx

)
P
(
ξ
N�−y
t = A

)
= ∑

A∈
N

∑
y∈SN

1A�0�F
(
m−1
N

∑
x∈A

δx

)
P
(
ξ
N�0
t = A+ y

)
�

Changing variables, we obtain

E
[
F
(
?
N�0
t

)]
= ∑

A∈
N

∑
y∈SN

1A�y�F
(
θy

(
m−1
N

∑
x∈A

δx

))
P
(
ξ
N�0
t = A

)
(recall that θyµ is the shift of µ by y). Consequently,

E
[
F
(
?
N�0
t

)] = E

[ ∑
y∈SN

F
(
θyX

N�0
t

)
ξ
N�0
t �y�

]

and since ξN�0t �y� =mNX
N�0
t ��y��, (5.2) follows. ✷

Letting G�µ� = ∫�d F�θzµ�µ�dz�, we can rewrite (5.2) in the form

E
[
F
(
?
N�0
t

)]
=mNE

[
G
(
X

N�0
t

)]
�(5.3)

Employing this and (1.12), it suffices to show that

lim
N→∞

mNE
[
G
(
X

N�0
t

)]
=
∫
�f��d�

G�µ�Rt�0� dµ�(5.4)

in order to show (5.1).
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In (5.1), and hence in (5.4), it suffices to also assume (by reasoning analo-
gous to that in the paragraph before the proof of Theorem 4) that 0 ≤ F ≤ 1,
and F is Lipschitz with Lipschitz constant at most 1. We claim that, under
these conditions, G is continuous. To see this, note that∣∣F�θzµ� −F�θzν�∣∣ ≤ d�θzµ� θzν� = d�µ� ν�(5.5)

and

�F�θzν� −F�θz′ν�� ≤ �z− z′�ν�1��(5.6)

Applying (5.5) to the first integral below, and (5.6) together with (4.11) [for
f�z� = F�θzν�/�1 ∨ ν�1�� ∈ BL��d�] to the second integral, one obtains that

�G�µ� −G�ν�� ≤
∫
�F�θzµ� −F�θzν��µ�dz�

+
∣∣∣∫ F�θzν�µ�dz� − ∫ F�θzν� ν�dz�∣∣∣

≤
[
µ�1� + (1 ∨ ν�1�)]d�µ� ν��

Thus, G is continuous.
In order to demonstrate (5.4), we would like to apply (4.3) to G. It is easy to

see that G�0� = 0. It is not bounded, however, and so we set Gn�µ� = n∧G�µ�.
Applying (4.3) to Gn, one obtains

lim
N→∞

mNE
[
Gn

(
X

N�0
t

)] = ∫
�f��d�

Gn�µ�Rt�0� dµ��(5.7)

By monotone convergence, the right side above converges to
∫
�f��d�G�µ�×

Rt�0� dµ� as n→∞. Since Gn ≤ G, this implies that

lim inf
N→∞

mNE
[
G
(
X

N�0
t

)] ≥ ∫
�f��d�

G�µ�Rt�0� dµ��(5.8)

If F is replaced with 1 −F, then G�µ� is replaced with Ĝ�µ� = µ�1� −G�µ�
in (5.8). Note that mNE�XN�0

t �1�� and ∫ µ�1�Rt�0� dµ� both equal 1, by (3.5).
Consequently,

lim sup
N→∞

mNE
[
G
(
X

N�0
t

)] ≤ ∫
�f��d�

G�µ�Rt�0� dµ��

Together with (5.8), this implies (5.4).

6. Proof of Theorem 3. In this section we assume that d ≥ 3, and prove
Theorem 3. It will be convenient to introduce another family of rate-N coa-
lescing random walks on SN, ��WN�x

s �s≥0� x ∈ SN�, where, for each t > 0, the
law of ��WN�x

s �0≤s≤t� x ∈ SN� is the same as that of ��WN�x� t
s �0≤s≤t� x ∈ SN�.

(This extension allows pathwise comparisons between WN�x
s at different s.)

Let τN�x� = inf �t� WN�x
t = W

N�0
t � [where τN�x� = ∞ if the set is void] and

define

π̄
N�0
t = {y� τN�y� ≤ t

}
� π̄N�0∞ = {y� τN�y� <∞}(6.1)
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and the associated measures

%?N�0
t = 1

N

∑
y∈π̄N�0t

δy� %?N�0
∞ = 1

N

∑
y∈π̄N�0∞

δy�(6.2)

Note that

%?N�0
t

�d�= ?
N�0
t � %?N�0

∞
�d�= 1
N

∑
y∈π0∞

δy/
√
N�(6.3)

where ?N�0
t was introduced in Section 5 and π0

∞ in Section 1. (Since d ≥ 3,
mN =N here.)

Theorem 3 is equivalent to

lim
N→∞

E
[
F
(
%?N�0
∞
)]

= E�F��∞��(6.4)

for all F ∈ Cb�� ��d��. Since
lim
t→∞

E�F��t�� = E�F��∞��

is an immediate consequence of Lemma 3 and 3.12, and since by the limit
(5.1), limN→∞E�F�%?N�0

t �� = E�F��t�� holds, it suffices to show that

lim
t→∞

sup
N

∣∣∣E[F(%?N�0
t

)]−E[F(%?N�0
∞
)]∣∣∣ = 0�(6.5)

It is simple to check that the topology of vague convergence on � ��d� is
generated by a metric given by a weighted sum of differences as in (4.11), but
where the functions f also have compact support. By reasoning analogous to
that in the paragraph before the proof of Theorem 4, it suffices to consider, for
each compact set * ⊂ �d, those F satisfying

�F�µ� −F�ν�� ≤ sup
f∈B*

L��d�
�µ�f� − ν�f���

where B*
L��d� is the collection of nonnegative, continuous functions f on �d

which have support in *, and are bounded above by 1. For such f,∣∣%?N�0
t �f� − %?N�0

∞ �f�∣∣ ≤N−1 ∑
x∈*∩SN

�1π̄N�0t
�x� − 1π̄N�0∞ �x��

=N−1 ∑
x∈*∩SN

1
{
t < τN�x� <∞}�

Therefore,∣∣∣E[F(%?N�0
t

)]−E[F(%?N�0
∞
)]∣∣∣ ≤ N−1�* ∩ SN� sup

x∈*∩SN

P
(
t < τN�x� <∞)�(6.6)

To estimate this last probability, we note that τN�x� is the time at which
the rate-2N random walk WN�x

s −WN�0
s first hits 0. Therefore, by a standard
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random walk calculation and the local central limit theorem (see, e.g., the
appendix in [7]), for t bounded away from 0,

P�t < τN�x� <∞� ≤ 2N
∫ ∞
t
P�WN�x

s = 0�ds ≤ CN
∫ ∞
t
�sN�−d/2 ds

= 2C
d− 2

�tN�1−d/2
(6.7)

for some finite constant C. Since * is compact, �* ∩ SN� ≤ C′Nd/2 for some C′.
On account of this, (6.6) and (6.7), for appropriate C′′ and all N ≥ 1,∣∣∣E[F(%?N�0

t

)]−E[F(%?N�0
∞
)]∣∣∣ ≤ C′′t1−d/2�

This proves (6.5). ✷

7. Weak convergence of random sets. In this section, we demonstrate
the convergence of the random sets in Theorems 1′ and 2′. These results are
modifications of Theorems 1 and 2, which demonstrate convergence for the
corresponding measures. The main step will be given by Lemma 8, which, in
essence, states that off a set of small probability, sites in ξ0t will always be
near a significant concentration of other sites in ξ0t . This prevents the limits
in Theorems 1′ and 2′, under the Hausdorff metric, from being larger than the
corresponding limits in Theorems 1 and 2. Throughout this section and the
next one, condition (1.2) will be assumed.

We consider the family ��WN�x
t �t≥0� x ∈ �d� of coalescing random walks

used in the previous section, but now with N = 1, and denote the family by
��Wx

t �t≥0, x ∈ �d�. Recall that these are rate-1 random walks with jump kernel
p�x�y�; the corresponding transition kernels will be denoted by qt�x�y�. For
every t ≥ 0 and x ∈ �d, set

�
y
t = {x� Wx

t = y
}

and �t = � 0
t . We denote by P∗

t the conditional probability

P∗
t � · � = P

(· � �t �= �)�
By (2.2), the random sets ξ0t and �t have the same distribution. In particular,

pt = P�ξ0t �= �� = P��t �= ��, and so Theorem 1′ is equivalent to the following
proposition.

Proposition 1. The law of 1√
t
�t under P

∗
t converges weakly to the law of

suppµ under R̂1�0� dµ�.

The following lemma will be employed in Lemma 8, which will then be used
to demonstrate Proposition 1.
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Lemma 7. There exist positive constants C and C′ such that, for every t > 1
and A > 0,

P∗
t

(
sup
x∈�t

�x� > A
√
t

)
≤ C exp�−C′A��(7.1)

Proof. For A > 0 and n ≥ 1, set An = 1
12A

∑n
k=1 2

−k/4 and set A0 = 0.
Also, for t > 1, denote by N =N�t� the first integer such that 2−Nt < 1. It is
easy to check that the event on the left side of (7.1) can only occur if, for some
x ∈ �t with �x� > A

√
t, one of the following three events occurs:

(a) �Wx
t/2N � ≤ AN

√
t.

(b) �Wx
t/2n+1 � > An+1

√
t and �Wx

t/2n � ≤ An

√
t for some n = 1� � � � �N− 1.

(c) �Wx
t/2� > 2−1/4

12 A
√
t.

We will obtain upper bounds on the probabilities of each of these three
possibilities. In each case we will use

P
(�Wt� > A

√
t
) ≤ c1 exp�−c2A��(7.2)

where c1 > 0 and c2 > 0 do not depend on t > 1/2 and A > 0; this inequality
is a straightforward consequence of the assumption (1.2).

We first consider (c). Set A′ = 2−1/4

12 A. For every t > 1,

P
(∃ x ∈ �t� �Wx

t/2� > A′√t) ≤ E

[ ∑
�y�>A′√t

1{
�
y
t/2 �=��� y

t/2⊂�t

}]�
[When interpreted in terms of the voter model over �0� t�, the event in the
indicator function on the right side above is the event that the opinion at
�t/2� y� is “descended” from that at �0�0�, and itself has “descendants” at
time t.] By using the Markov property at time t/2, this expectation equals∑

�y�>A′√t pt/2 qt/2�y�0�. It follows, using (7.2), that

P
(∃ x ∈ �t� �Wx

t/2� > A′√t) ≤ c1pt/2 exp�−c2A′��(7.3)

We next consider (b). For every n = 1� � � � �N− 1,

P
(
∃ x ∈ �t� �Wx

t/2n+1 � > An+1

√
t and �Wx

t/2n � ≤ An

√
t
)

≤ ∑
�y�>An+1

√
t

∑
�z�≤An

√
t

P
(∃ x� Wx

t/2n+1 = y� Wx
t/2n = z� Wx

t = 0
)

= ∑
�y�>An+1

√
t

∑
�z�≤An

√
t

pt/2n+1 qt/2n+1�y� z�qt−�t/2n��z�0�(7.4)

≤ pt/2n+1 P
(
�Wt/2n+1 � ≥ �An+1 −An�

√
t
)

≤ c1pt/2n+1 exp

(
−2�n+1�/4

12
c2A

)
�
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The reasoning for (a) is similar. One has

P
(
∃ x ∈ �t� �Wx

t/2N � ≤ AN

√
t and �x� > A

√
t
)

≤ ∑
�x�>A√t

∑
�y�≤AN

√
t

P�Wx
t/2N = y� Wx

t = 0�

= ∑
�x�>A√t

∑
�y�≤AN

√
t

qt/2N�x�y�qt−�t/2N��y�0�(7.5)

≤ c1 exp
(
−2N/2c2A/2

)
≤ c1 exp

(
−c2

√
tA/2

)
�

since AN ≤ A/2.
Putting together (7.3), (7.4) and (7.5), we arrive at

P

(
sup
x∈�t

�x� > A
√
t

)
≤ c1pt/2 exp

(
−2−1/4

12
c2A

)

+ c1
N−1∑
n=1

pt/2n+1 exp
(
−2�n+1�/4

12
c2A

)
+ c1 exp

(−c2A√t/2)�
The inequality (7.1), for A ≥ 1, follows from this bound and (1.5). Increasing
C by the factor eC

′
implies (7.1) all A > 0. ✷

For a ∈ �d and r > 0, we denote byB�a� r� the open ball of radius r centered
at a. Lemma 8 shows that, with high probability, there are many other points
of �t near every point of �t. This result provides the main step in the proofs of
Propositions 1 and 2 and of Theorem 5 at the end of the section.

Lemma 8. Let ρ > 0 and η > 0. For small enough δ > 0 and large enough t,

P∗
t

(
∃ x ∈ �t� ��t ∩B�x�η

√
t�� < δmt

)
< ρ�(7.6)

Proof. Inequality (7.6) can be motivated in terms of the voter model over
�0� t�. We will argue that, except on a set of small probability, (a) all “ancestors”
at time �1−ε�t, where ε > 0 is fixed, are “close” to their “descendants” at time t,
and (b) all such ancestors have at least of order of magnitudemt descendants.
Part (a) will follow from Lemma 7 and is given in (7.7); part (b) is given in (7.8).

We first consider (a). For every ε ∈ �0�1�, let
�ε� t =

{
y ∈ �d� � y

εt �= � and �
y
εt ⊂ �t

}
�

[For the voter model, this is the set of all descendants at time �1− ε�t, of the
opinion at the origin at time 0, that themselves have descendants at time t.
Recall that time for the voter model runs backwards relative to the random
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walks Wx
t .] By applying the Markov property at time εt, and then Lemma 7,

we get, for every γ > 0 and ε ∈ �0�1/2�,
P
(
∃ y ∈ �ε� t� � y

εt �⊂ B
(
y� γ

√
t
)) ≤∑y∈�d P

(
�
y
εt �⊂ B

(
y� γ

√
t
))
q�1−ε�t�y�0�

≤ Cpεt exp
(
−C′ γ√

ε

)
�

(7.7)

provided that t is sufficiently large. The constants C and C′, from Lemma 7,
do not depend on ε.

Recall from (1.6) that the law of pt��t�, under P∗
t , converges, as t→ ∞, to

an exponential distribution with parameter 1, that is, for any α > 0,

lim
t→∞

P∗
t

(
pt��t� ≤ α

) = 1− e−α < α�

Using the same decomposition as in (7.7), we have, for given ε ∈ �0�1/2� and
t sufficiently large,

P
(∃ y ∈ �ε� t� �� y

εt � ≤ αp−1
εt

) ≤ ∑
y∈�d

P
(
0 < �� y

εt � ≤ αp−1
εt

)
q�1−ε�t�y�0�

= pεt P
∗
εt

(��εt� ≤ αp−1
εt

)
(7.8)

≤ pεtα�

By combining (7.7) and (7.8), we see that, for any fixed γ > 0, α > 0 and
ε ∈ �0�1/2�, and large t,

P∗
t

(∃ y ∈ �ε� t� � y
εt �⊂ B�y� γ√t� or �� y

εt � ≤ αp−1
εt

)
≤ pεt
pt

(
C exp

(
−C′ γ√

ε

)
+ α

)
�

(7.9)

Last, we consider the behavior of �t on the complement of the event in (7.9)
and set

H = {∀y ∈ �ε� t� �
y
εt ⊂ B

(
y� γ

√
t
)
and �� y

εt � > αp−1
εt

}
�

For any given x ∈ �t, set y =Wx
εt ∈ �ε� t. Then, on H,

��t ∩B�x�2γ
√
t�� ≥ ��t ∩B�y� γ

√
t��

≥ �� y
εt � ≥ αp−1

εt ≥ εαβdmt/2
(7.10)

for each x ∈ �t, where the first bound follows from �y− x� ≤ γ
√
t, and the last

bound holds for t large enough because of (1.5).
If one sets η = 2γ and δ = εαβd/2, the inner inequality in (7.6) does not

hold on H, and so the left side of (7.6) is bounded above by P�Hc�. Moreover,
if one chooses ε > 0 and α > 0 small enough so that

2
ε

(
C exp

(
−C′ γ√

ε

)
+ α

)
< ρ�

then P�Hc� < ρ for large t, because of (7.9) and (1.5). This implies (7.6). ✷
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Proof of Proposition 1. It is enough to show convergence along each
sequence tn ↑ ∞. For every t > 0, let Zt be the random measure defined by

Zt =
1
mt

∑
y∈�t

δy/
√
t�

By Theorem 1, the law of Zt under P∗
t converges weakly to R̂1�0� ·�. So, by the

Skorokhod representation theorem, there exist random measures Z̃tn
, defined

on the same probability space, such that for every n, Z̃tn
has the law of Ztn

under P∗
tn
, and

Z̃tn
−→ Z̃∞ a�s� �(7.11)

where Z̃∞ has distribution R̂1�0� ·�.
Recall that the Hausdorff metric on nonempty compact subsets of �d is

defined by d0�K�K′� = d1�K�K′� + d1�K′�K�, where d1�K�K′� = inf�ε > 0�
K ⊂ K′

ε� and K′
ε denotes the closed ε-enlargement of K′. To show

Proposition 1, it is enough to verify that

d0
(
supp Z̃tn

� supp Z̃∞
) −→ 0

in probability as n → ∞. It is well known, and easy to prove, that (7.11)
implies

d1�supp Z̃∞� supp Z̃tn
� −→ 0 a.s.

(In order for Z̃tn
, as n→∞, to contribute mass arbitrarily close to some point

z, Z̃tn
must also contain sites which are close.) Thus, the problem is to prove

that

d1
(
supp Z̃tn

� supp Z̃∞
) −→ 0(7.12)

in probability.
Fix α > 0 and γ > 0. From Lemma 8 and the definition of Zt, we can choose

δ > 0 small enough so that for every t large enough,

P∗
t

(
∃ z ∈ suppZt� Zt

(
B
(
z�
α

2

))
< δ

)
<
γ

2
�(7.13)

From the definition of d1,

P
(
d1
(
supp Z̃tn

� supp Z̃∞
)
> α

)
= P

(
∃ z ∈ supp Z̃tn

� dist (z� supp Z̃∞
)
> α

)
�

Using (7.13) and the fact that Z̃tn
has the law of Ztn

under P∗
tn
, we see that,

for n large enough, the previous quantity is bounded above by

γ

2
+P

(
∃ z ∈ �d� Z̃tn

(
B
(
z�
α

2

))
≥ δ and Z̃∞

(
B�z� α�) = 0

)
�(7.14)
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Recall the definition (4.11) of the metric d inducing the weak topology on
�f��d�, and note that for the function f�y� = �α−�z−y��+, �Z̃tn

�f�−Z̃∞�f�� ≥
αδ/2 on the event in (7.14). It therefore follows from (7.14) that, for large n,

P
(
d1
(
supp Z̃tn

� supp Z̃∞
)
> α

)
≤ γ

2
+P

(
d
(
Z̃tn

� Z̃∞
) ≥ αδ/2

)
�

By (7.11), this is bounded above by γ for n large enough. Since γ can be chosen
arbitrarily close to 0, this completes the proof. ✷

We now demonstrate Theorem 2′. The set π̄0
t = π̄

1�0
t , defined in Section 6,

has the same distribution as π0
t . It therefore suffices to prove the following.

Proposition 2. The random sets 1√
t
π̄0
t converge in distribution to supp�1.

Proof. We wish to show that the following analog of Lemma 8 holds: for
every ρ > 0 and η > 0, if δ > 0 is chosen small enough and t large enough,

P
(
∃ x ∈ π̄0

t � �π̄0
t ∩B�x�η

√
t�� < δmt

)
< ρ�(7.15)

Once one has shown (7.15), the argument is the same as that given in the
proof of Proposition 1, which we therefore omit.

In order to show (7.15), first recall from (1.3)–(1.5), that pt�π̄0
t � converges in

distribution as t → ∞. We can therefore choose M > 0 large enough so that
for every t > 0,

P
(
pt �π̄0

t � >M
)
<
ρ

2
�(7.16)

Let 
 denote the collection of finite subsets of �d. For any z ∈ �d and A ∈ 

with 0 ∈ A, �π̄0

t = A�W0
t = z� = �� z

t = A�. Also, let h�A� = 1 for those sets
A with �A� ≤Mp−1

t and such that �A∩B�x�η√t�� < δmt for some x ∈ A, and
set h�A� = 0 otherwise. After a simple decomposition, this implies

P
(
�π̄0
t � ≤Mp−1

t and ∃ x ∈ π̄0
t � �π̄0

t ∩B
(
x�η

√
t
)� < δmt

)
= ∑

z∈�d

∑
A∈
 � 0∈A

P
(
π̄0
t = A�W0

t = z
)
h�A�

= ∑
z∈�d

∑
A∈
 � 0∈A

P�� z
t = A�h�A��

Since P�� z
t = A� = P��t = A−z�, and h�A� = h�A+z�, by changing variables

and interchanging the order of summation, we have∑
z∈�d

∑
A∈
 � 0∈A

P�� z
t = A�h�A� = ∑

A∈


∑
z∈A

P��t = A�h�A�

= ∑
A∈


P��t = A��A�h�A��
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This is at most MP∗
t �∃ x ∈ �t� ��t ∩B�x�η

√
t�� < δmt�, which, by Lemma 8, is

at most ρ/2 for large t. Putting things together, it follows that

P
(
�π̄0
t � ≤Mp−1

t and ∃ x ∈ π̄0
t � �π̄0

t ∩B�x�η
√
t�� < δmt

)
≤ ρ/2(7.17)

for large t. Combining (7.16) and (7.17), we obtain (7.15). ✷

Let XN
t be defined as above (1.9), and assume that XN

0 → X0 ∈ �f��d�
as N → ∞. In (1.9), the result �XN

t �t≥0 ⇒ �Xt�t≥0, where Xt is super-
Brownian motion with branching rate 2βd and diffusion coefficient σ2, was
quoted from [7]. The ideas from Section 7 can also be used to give a “set
version” of this result.

Theorem 5. The set-valued process �ξNt �t>0 converges in distribution to
�suppXt�t>0, in the sense of weak convergence of finite-dimensional marginals.

We exclude t = 0 in Theorem 5, since our assumptions do not imply the
convergence of the sets ξN0 , and furthermore, suppX0 need not be compact.
[For t > 0, suppXt is a.s. compact (see Section 9.3 in [9]).]

Proof. As in Proposition 2, it suffices to demonstrate the analog of
Lemma 8 for the random sets ξNt , for each fixed t > 0. Namely, we wish
to verify, for each choice of ρ > 0 and η > 0, that for δ > 0 sufficiently small
and N sufficiently large,

P
(
∃ x ∈ ξNt � �ξNt ∩B�x�η�� < δmN

)
< ρ�(7.18)

The remainder of the argument is then the same as in the proof of
Proposition 1.

The left side of (7.18) is bounded above by∑
y∈ξN0

P
(
∃ x ∈ ξN�yt � �ξN�yt ∩B�x�η�� < δmN

)
= pNt �ξN0 �P

(
∃ x ∈ ξN�0t � �ξN�0t ∩B�x�η�� < δmN � ξN�0t �= �

)
�

The assumption XN
0 → X0 implies that pNt �ξN0 � remains bounded, in prob-

ability, as N → ∞. Since ξN�0t and 1√
N
�Nt have the same distribution, (7.18)

follows from Lemma 8. ✷

8. A related diffusion equation. Proposition 1 can be used to answer
questions of the following type. Let A be an open subset in �d. What is the
limiting behavior of the probability that the voter model, starting from a single
1 at the site 0, intersects

√
tA at time t? One can also phrase the problem

in terms of a system of coalescing random walks starting at every point of√
tA ∩ �d: What is the limiting behavior of the probability that one of these

walks is at the origin at time t?
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Let A be an open subset of �d. We say that A satisfies the interior cone
condition if, for every point z ∈ ∂A, there is an open cone with vertex z which
is contained in A in the neighborhood of z.

Theorem 6. Suppose that A satisfies the interior cone condition. Then,

lim
t→∞

p−1
t P�ξ0t ∩

√
tA �= ��= lim

t→∞
p−1
t P��t ∩

√
tA �= ��

=
∫
�suppµ∩A �=��

R̂1�0� dµ��
(8.1)

This limit equals u1�0�, where the function �ut�x�, t > 0, x ∈ �d� is the unique
nonnegative solution of the problem

∂u

∂t
= σ2

2
4u− u2� �t� x� ∈ �0�∞�× �d �

u0�x� = +∞� x ∈ A�(8.2)

u0�x� = 0� x ∈ �d
∖%A�

where %A denotes the closure of A.

Proof. For every t > 0 and x ∈ �d, set

vt�x� =
∫
�suppµ∩A �=��

Rt�x�dµ��

v̄t�x� =
∫
�suppµ∩%A�=��

Rt�x�dµ��

By known connections between superprocesses and partial differential equa-
tions (see [12]), the function vt�x� is the minimal nonnegative solution of the
problem

∂v

∂t
= σ2

2
4v− βd v2� �t� x� ∈ �0�∞�× �d�

v0�x� = +∞� x ∈ A�
Similarly, v̄t�x� is the maximal nonnegative solution of the problem

∂v̄

∂t
= σ2

2
4v̄− βd v̄2� �t� x� ∈ �0�∞�× �d�

v̄0�x� = 0� x ∈ �d
∖%A�

From arguments similar to the proof of Theorem 7.1 in [1], one easily sees that
the interior cone condition implies vt�x� = v̄t�x� for every t and x. It follows
that the function vt�x� is the unique nonnegative solution of (8.2), with u2

replaced by βdu2. Obviously, ut�x� = βdvt�x� is then the unique nonnegative
solution of (8.2).
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We now show (8.1). Observe that the set of all compact subsets K of �d,
with K∩A �= �, is open with respect to the Hausdorff metric. It follows from
Proposition 1 that

lim inf
t→∞

P∗
t ��t ∩

√
tA �= �� ≥

∫
�suppµ∩A �=��

R̂1�0� dµ� = βd v1�0��

Similarly, since the set of all compact sets K such that K ∩ %A �= � is closed,

lim sup
t→∞

P∗
t ��t ∩

√
t%A �= �� ≤

∫
�suppµ∩%A�=��

R̂1�0� dµ� = βdv̄1�0��

The equality v1�0� = v̄1�0� then gives (8.1). ✷

It is interesting to compare Theorem 6 with Sznitman’s results [24] about
systems of annihilating Brownian spheres in �d. Sznitman studies the limiting
behavior of such a system when the radius of the spheres tends to 0 and the
initial number of particles goes to ∞. The limiting density of particles is then
given as a solution of the same equation as in Theorem 6, but with a different
constant in the forcing term; the initial value also differs because Sznitman
starts with a given initial density of particles. Such a connection is not too
surprising on account of a result in [3], where it is shown that the limiting
density of particles, except for a constant factor 2, is the same for systems of
coalescing and annihilating random walks.
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[19] Le Gall, J.-F. and Perkins, E. (1995). The Hausdorff measure of the support of two-
dimensional super-Brownian motion. Ann. Probab. 23 1719–1747.

[20] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
[21] Perkins, E. (1999). Measure-valued processes and interactions. École d’Été de Probabilités
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