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GEODESICS AND SPANNING TREES FOR
EUCLIDEAN FIRST-PASSAGE PERCOLATION

By C. Douglas Howard1 and Charles M. Newman2

City University of New York and Courant Institute of Mathematical Sciences

The metric Dα�q� q′� on the set Q of particle locations of a homoge-
neous Poisson process on �d, defined as the infimum of �∑i �qi−qi+1�α�1/α
over sequences in Q starting with q and ending with q′ (where �·� denotes
Euclidean distance) has nontrivial geodesics when α > 1. The cases 1 <
α < ∞ are the Euclidean first-passage percolation (FPP) models intro-
duced earlier by the authors, while the geodesics in the case α = ∞ are
exactly the paths from the Euclidean minimal spanning trees/forests of
Aldous and Steele. We compare and contrast results and conjectures for
these two situations. New results for 1 < α < ∞ (and any d) include
inequalities on the fluctuation exponents for the metric (χ ≤ 1/2) and for
the geodesics (ξ ≤ 3/4) in strong enough versions to yield conclusions not
yet obtained for lattice FPP: almost surely, every semiinfinite geodesic has
an asymptotic direction and every direction has a semiinfinite geodesic
(from every q). For d = 2 and 2 ≤ α <∞, further results follow concerning
spanning trees of semiinfinite geodesics and related random surfaces.

0. Introduction. There is an extensive literature (see [45] for a sur-
vey) concerning combinatorial optimization in which some functional based
on the Euclidean distances �q − q′� between random points in �d is mini-
mized. Familiar examples include the total length in the travelling salesman
problem and in the minimal spanning tree. In [18], the authors introduced
another family of such functionals in order to obtain Euclidean versions of the
first-passage percolation (FPP) models originally defined in the context of the
�d lattice by Hammersley and Welsh [16]. (We remark that other Euclidean
FPP models were introduced by Vahidi-Asl and Wierman [41, 42] and studied
by them and by Serafini [39].) The focus of this paper is on these Euclidean
FPP models from two perspectives. First, we survey a number of results and
conjectures about these models with special emphasis on contrasts to the
closely related but very different minimal spanning tree/forest of Aldous and
Steele [4]. Second, we derive a number of new results about Euclidean FPP
and explain why some of these go well beyond what has been proved for lat-
tice FPP. It is our hope that the reader will find the pedagogical and research
aspects of the paper to be complementary rather than antagonistic.
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We define, for r = �q1� � � � � qk� a finite sequence of points in �d and for α > 0
(usually we take α > 1),

Tα�r� =
k−1∑
j=1

�qj − qj+1�α� Cα�r� = �Tα�r��1/α�(0.1)

for α = ∞, we set

C∞�r� = max��qj − qj+1�
 1 ≤ j < k��(0.2)

Starting from some (random) set of points Q̃ in �d, we fix some q and q′

in Q̃ and then consider the combinatorial optimization problem of obtain-
ing Dα� Q̃�q� q′� ≡ inf�Cα�r�� where the infimum is over all finite sequences r

in Q̃ with q1 = q and qk = q′ where k is the (arbitrary) length of r. When Q̃ is
finite (e.g.,N independent uniformly distributed points in a cube of volumeN)
there is of course some minimizing r that yields the infimum, but we will be
interested in the case where Q̃ is a homogeneous Poisson point process on
all of �d (corresponding to N → ∞) and then the issue of a minimizing r is
less trivial.
This issue is closely related to that of the existence of a geodesic path

between q and q′ for the metric (when α ≥ 1) Dα� Q̃. It turns out that the
existence of such a geodesic between arbitrary points q and q′ is no problem
for the Euclidean FPP models where 1 ≤ α < ∞, but for Euclidean minimal
spanning trees, which as we shall see correspond to α = ∞, this is a serious
issue which is not yet resolved for d > 2.
In the next section of the paper, we give precise definitions of geodesics

(finite and infinite), explain why finite geodesics between arbitrary q and q′

always exist when α < ∞ and why they may not exist when α = ∞. We
then review previous results for both lattice and Euclidean FPP and state our
new results concerning the existence, nature and use of semiinfinite geodesics.
The latter are based on new estimates concerning the two exponents, χ and ξ,
describing, respectively, the fluctuation of the metric and of its geodesics. These
estimates are presented (and their relation to related results for lattice FPP
is discussed) in Section 2 and are used there to prove the new results of
Section 1. In Sections 3 and 4, the fluctuation exponent estimates are proved.
Some technical lemmas are given in Section 5.

1. Geodesics and spanning trees. Although our primary interest is in
lattice and Euclidean FPP and Euclidean minimal spanning trees/forests, we
will present the basic definitions in the general context of a countable set Q̃ (in
our concrete examples, this will be a subset of �d with d ≥ 2) and a function
τ
 Q̃ × Q̃ → �0�∞� [e.g., τ�q� q′� = �q − q′�α]. We insist that τ�q� q� = 0 for
every q ∈ Q̃ and that τ�q� q′� > 0 when q �= q′ (although this latter condition
can be relaxed, e.g., in lattice FPP models). In our examples, τ�q� q′� = τ�q′� q�,
but this would not be so in directed (or oriented) FPP models.
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A path r is a sequence �qi
 i ∈ I� that is indexed by an interval I in �; it is
finite, semiinfinite or doubly infinite according to the index set I. [For semiin-
finite paths, we generally take I infinite to the right, i.e., of the form �i0 + 1,
i0 + 2� � � ��.] We also define a segment of a path r = �qi
 i ∈ I� to be any sub-
path r′ = �qi
 i ∈ J� with J a subinterval of I. We call a path self-avoiding
if qi �= qj for any i �= j ∈ I.
To each i ∈ I (such that i + 1 ∈ I) we associate τi = τ�qi� qi+1� and to

each finite path r = �qi0+1� � � � � qi0+k� of length k > 1, we associate a cost

function C̃�r� = C̃�τ�qi0+1� qi0+2�� � � � � τ�qi0+k−1� qi0+k�� ∈ �0�∞� that is subad-
ditive: for k′ ≥ k > 1,

C̃�τ1� � � � � τk−1� τk� � � � � τk′ � ≤ C̃�τ1� � � � � τk−1� + C̃�τk� � � � � τk′ ��(1.1)

[For a path r of length 0, we take C̃�r� = 0.] Equivalently, in terms of a
path r = �q� � � � � q̂� � � � � q′� from q to q′ passing through q̂ and thought of as
the concatenation of r1 = �q� � � � � q̂� and r2 = �q̂� � � � � q′�, we have

C̃�r� ≤ C̃�r1� + C̃�r2��(1.2)

We also assume that C̃�τ1� � � � � τn� = ∞ if and only if some τi = ∞ and
that C̃�τ1� � � � � τn� = C̃�τ1� � � � � τj−1� τj+1� � � � � τn� if τj = 0. The examples we

consider are C̃ = ∑i τ
α
i or �∑i τ

α
i �1/α [with τ�q� q′� = �q − q′�]; �∑i τi�1/α

[with τ�q� q′� = �q− q′�α] and maxi τi. Taking α ≥ 1 yields (1.1) and (1.2).
In the usual lattice FPP models (see, e.g., [25]), Q̃ = �d (or a subset of �d)

and τ�q� q′� < ∞ if and only if q and q′ are nearest neighbors on �d; for
such pairs, the τ�q� q′�’s are i.i.d. random variables. In the Euclidean models
of Vahidi-Asl and Wierman, τ�q� q′� < ∞ if and only if q and q′ are neigh-
boring points in the Voronoi or Delaunay graph associated with Q̃ ⊂ �d. In
our abstract setting one can define a graph G with vertex set Q̃ and edge set
consisting of those �q� q′� with τ�q� q′� <∞. The assumption (1.1) [or equiva-
lently (1.2)] is important because it yields the triangle inequality for a natural
metric defined on each connected component of this graph as follows.

Definition. Given q� q′ ∈ Q̃, let R�q� q′� denote the set of all finite paths
starting at q and ending at q′ and define

D̃�q� q′� = inf
r∈R�q� q′�

C̃�r�(1.3)

[or ∞, if R�q� q′� is empty].

Note that D̃�q� q� = 0 and that (1.2) yields the triangle inequality,

D̃�q� q′� ≤ D̃�q� q̂� + D̃�q̂� q′��
In our abstract setting, D̃ may not be a metric (but only a pseudometric) if
in taking the infimum in (1.3), D̃�q� q′� = 0 for some q �= q′. This happens,
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for example, with C̃�r� = �∑i �qi−qi+1�2�1/2 if Q̃ is dense in �d. D̃ will in fact
be a metric in all of our examples because C̃�τ1� � � � � τk−1� ≥ C̃�τ1� and

inf
q′ �=q

C̃�τ�q� q′�� > 0 for all q ∈ Q̃�(1.4)

Definition. A finite path r starting at q and ending at q′ is said to be
minimizing if the infimum in (1.3) is finite and is achieved by r, that is,
if D̃�q� q′� = C̃�r� < ∞. A (finite, semiinfinite or doubly infinite) path r =
�qi
 i ∈ I� is said to be a geodesic if it is self-avoiding and if every finite
segment of r is minimizing.

We note that in all our examples except those with C̃�r� = maxi τi, every
finite path r that is both self-avoiding and minimizing (minimizing does not
quite imply self-avoiding because of the possibility that qi+1 = qi for some i)
is automatically a geodesic. This is because if r�1� were a nonminimizing
segment of r, then representing r as a concatenation of r�0�, r�1� and r�2�,
we could replace r�1� by an r′�1� [with the same endpoints as r�1� but with

C̃�r′�1�� < C̃�r�1��] and thus obtain an r′ with the same endpoints as r and

with C̃�r′� < C̃�r� contradicting the minimizing property of r.

1.1. Euclidean FPP. In this subsection, we restrict attention to the
Euclidean FPP models of [18] where Q̃ = Q, the set of particle locations
of a homogeneous Poisson process of unit density on �d, and C̃�r� = Cα�r� =
�∑j �qj − qj+1�α�1/α with 1 ≤ α < ∞. We denote the corresponding metric D̃
by Dα. Within our general framework, one may (1) set τ�q� q′� = �q − q′�
and C̃�τ1� � � � � τn� = �∑j τ

α
j�1/α, or alternatively, (2) set τ�q� q′� = �q − q′�α

and C̃�τ1� � � � � τn� = �
∑

j τj�1/α. [Indeed, as far as the geodesics are concerned,
one could instead (3) set τ�q� q′� = �q−q′�α and C̃�r� = Tα�r� =

∑
j �qj−qj+1�α

so that C̃�τ1� � � �, τn� =
∑

j τj. The latter is best for comparing Euclidean FPP
with lattice FPP while (1) is best for letting α → ∞ so that both τ�q� q′�
and C̃�r� have a limit.]
When α = 1 [or in version (3) above when 0 < α ≤ 1] and d ≥ 2, since

(almost surely) no three points of Q are collinear, it follows that for any dis-
tinct q� q′ ∈ Q, the unique geodesic between them is the trivial one going
from q to q′ in one step, that is, r = �q� q′�. To get nontrivial geodesics we
need α > 1. The next proposition states that for α �= ∞, geodesics exist between
all pairs of points (and are unique). It is the Euclidean analog of a standard
result in lattice FPP (see, e.g., [40]) with a similar proof, which we sketch. Our
focus for α <∞ will then be on the asymptotic behavior of the finite geodesic
between q and q′ as �q−q′� → ∞ and on the existence, nature and abundance
of infinite geodesics. As we shall see in the next subsection, when α = ∞, even
the existence of finite geodesics is nontrivial.
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Proposition 1.1. In Euclidean FPP with d ≥ 2 and 1 ≤ α < ∞, there
is almost surely a unique geodesic Mα�q� q′� between every pair of distinct
points q� q′ ∈ Q.

Proof. The uniqueness follows because if r and r′ were different self-
avoiding paths from q to q′ with Cα�r� = Cα�r′�, there would be two disjoint
sets ��qi� q̄i�
 i = 1� � � � �m; qi �= q̄i� and ��q′j� q̄′j�
 j = 1� � � � �m′�q′j �= q̄′j�
with

∑
i �q̄i − qi�α =

∑
j �q̄′j − q′j�α. However, that occurs with zero probability.

To prove existence, note that the intersection of Q with the Euclidean
ball ��0�K� ≡ �x ∈ �d
 �x� ≤ K� is, for any K < ∞, almost surely finite.
We define for q ∈ Q,

dα�q�K� = inf�Dα�q� q′�
 q′ ∈ Q\��0�K��(1.5)

and claim that for every q ∈ Q,
lim
K→∞

Dα�q�K� = ∞ a.s.(1.6)

This implies that for given q, q′ and then some sufficiently large K, any r
from q to q′ that exits ��0�K� has Cα�r� > �q − q′� and hence the infimum
in (1.3) must be achieved within the finite collection of (self-avoiding) paths
staying in ��0�K�. The claim (1.6) is proved by appeal to a standard (con-
tinuum) percolation result (see [46, 47]), namely that for some sufficiently
small ε > 0, any semiinfinite self-avoiding path in Q must make infinitely
many steps with �q− q′� > ε. This easily yields (1.6). ✷

As we shall see, analyzing the existence and nature of infinite geodesics
can be difficult. However, the following proposition, which shows that there is
at least one semiinfinite geodesic starting from each q ∈ Q, is not hard.

Proposition 1.2. Suppose d ≥ 2 and 1 < α < ∞. For each q ∈ Q define
Rα�q� to be the graph with vertex set Q and edge set

⋃
q′∈QMα�q� q′�. Almost

surely, for every q ∈ Q, Rα�q� is a spanning tree on Q with every vertex hav-
ing finite degree; thus there is at least one semiinfinite geodesic starting from
every q.

Proof. To see that Rα�q� is a spanning tree, order Q = �q1� q2� � � �� and
note that inductively, for each n,

⋃n
i=1Mα�q� qi� is a tree because of the unique-

ness part of Proposition 1.1. To justify the finite degree claim (which we note
is not valid when α = 1), it suffices to show that for each q̃ ∈ Q, there are
a.s. only finitely many q̄ ∈ Q such that the single step path r = �q̃� q̄� is a
geodesic. This is a consequence of

lim
K→∞

P��q̃�q̄� is a geodesic for some q̃�q̄ with �q̃�≤1, �q̄�≥K�=0�(1.7)

which itself follows from Lemma 5.2 [see (5.5)]. We note that the key geometric
idea here is to define

� �a� b� = �x ∈ �d
 �a− x�α + �x− b�α ≤ �a− b�α�(1.8)
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and realize that �q̃� q̄� cannot be a geodesic unless � o�q̃� q̄�, the interior
of � �q̃� q̄�, is devoid of Poisson particles. ✷

When α = ∞, there will also be at least one semiinfinite geodesic starting
from every q. In that case, however, it is believed to be unique (see Conjecture 1
below), unlike when α < ∞ as we discuss later. A question apparently first
posed (for lattice FPP) by H. Furstenberg (see page 258 of [25]) is What about
doubly infinite geodesics? Here it is believed that a.s. these do not exist both
for α < ∞ and α = ∞. We shall see later the extent to which this has been
proved.

1.2. Minimal spanning trees and forests. In this subsection (and the rest
of the paper) we continue to take Q̃ = Q, a homogeneous Poisson process of
unit density (except as noted) on �d, but for now we take C̃�r� = C∞�r� =
maxj �qj+1−qj� with the corresponding metric D̃�q� q′� = D∞�q� q′�, the min-
imax of �qj+1 − qj� along paths r ∈ R�q� q′�.
Let us denote by R∗�q� q̄� the set of all paths in R�q� q̄� that do not use

the edge �q� q̄�. In order that the edge �q� q̄� belong to some geodesic, it is
necessary and sufficient that r = �q� q̄� is itself a geodesic and, a.s., this is
true if and only if

�q− q̄� < C∞�r� for every r ∈ R∗�q� q̄�.(1.9)

Following Alexander [6], we make the following definition.

Definition. R∞ is the graph with vertex set Q and edge set consisting of
those �q� q̄�’s satisfying (1.9).

The graph R∞ can have no loops because on any loop, the edge �q� q̄�
with maximum �q − q̄� does not satisfy (1.9). Thus R∞ is a forest (a union of
one or more disjoint trees) and contains at most one path between any q� q′.
Every finite geodesic M∞�q� q′� must be a path in R∞ and it is also not hard
to see that every path in R∞ is a geodesic. Thus, as in the α < ∞ case,
if a geodesic M∞�q� q′� exists between q and q′ it will be unique; however,
when α = ∞, it may not exist. M∞�q� q′� exists if and only if q and q′ are in
the same connected component of R∞ (if they are in different components, we
setM∞�q� q′� = �). Thus geodesics exist between every pair q, q′ in Q if and
only if R∞ is a single (spanning) tree.

Definition. R∞�q� is the graph with vertex set Q and edge set
⋃
q′∈Q

M∞�q� q′�.

Clearly R∞�q� is just the connected component of q in R∞; it is not hard
to see that each R∞�q� must be an infinite tree. If R∞ is a single tree, then
(unlike when α <∞) the R∞�q�’s are all the same spanning tree.
It is shown in [6] thatR∞ is the same as the minimal spanning forest (MSF)

constructed by Aldous and Steele [4] as follows: for K < ∞, let RK
∞ denote
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the spanning tree of Q ∩��0�K� that minimizes the sum of �q − q̄� over all
edges �q� q̄� in the tree; then RK

∞ → R∞ as K → ∞. There are two obvious
qualitative issues concerning R∞. Is it a single spanning tree or not? How
many different semiinfinite geodesics start from q? This number, which is
clearly the same for all q’s in any fixed connected component ofR∞, equals the
number of (topological) ends of the component. (An end is an equivalence class
of semiinfinite paths in R∞ that agree except for finite initial segments.) As to
the number of ends, Alexander’s results [6] combined with a natural conjecture
about continuum percolation lead to the following (the natural conjecture is
that at the critical radius R∗

c for overlapping balls of fixed radius centered
at points of Q to form infinite clusters, there a.s. is no infinite cluster; for
an extensive presentation of rigorous results about continuum percolation,
see [29]).

Conjecture 1 [6]. For any d ≥ 2�R∞ contains exactly one semiinfinite
geodesic from each q.

Note that this includes the conjecture that there are no doubly infinite
geodesics. The latter conjecture will persist for α <∞ even though Conjecture
1 will not. As to the other issue, the natural extension from the lattice case of
a conjecture of Newman and Stein [35, 36] is the following.

Conjecture 2 [35, 36]. For d < 8 (and perhaps also d = 8), R∞ is a single
spanning tree; for d > 8�R∞ has (infinitely) many connected components.

The only dimension where these conjectures have been verified is d = 2,
as stated in the next theorem. However we note that Conjecture 1 has been
verified in lattice models also for large d; see Example 2.7 of [6]. For general d,
it has been proved [6] that at most one component of R∞ has two ends and
all others have a single end.

Theorem 1.3 [8, 6]. For d = 2�R∞ is a single spanning tree with one end.

In the next two subsections, we investigate the quite different qualitative
nature of semiinfinite geodesics when α < ∞. There will be many more infi-
nite geodesics from each q and they will be asymptotically fairly regular. The
irregularity of the infinite (or very long) paths in R∞ is itself an interesting
object of study. One way to pursue this issue is to consider for each x in �d the
(unique for d = 2 or under Conjecture 1) infinite path inR∞ starting from (the
q closest to) x, in the model with Poisson density 1/δd, as a random curve in
�d and study its subsequence limits in distribution as δ→ 0. Some interesting
results in this regard (especially for d = 2) have been obtained in [3] using
technical methods from [2] that were developed for the analysis of percolation
scaling limits [1]. There are also interesting results on such scaling limits for
other random spanning tree models in [3] and [38].
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1.3. Previous results for Euclidean FPP. There are two types of previ-
ously known results. The first, valid for all d and 1 < α < ∞, concerns
the asymptotic shape of large balls based on the metric Dα. The second,
proved only for d = 2 and 2 ≤ α < ∞, concerns semiinfinite geodesics r =
�q1� q2� � � ��with a specified asymptotic direction x̂, that is, such that qk/�qk� →
x̂ ∈ Sd−1 as k → ∞. We will call such an r an x̂-geodesic. Doubly infinite
geodesics �� � � � q−1� q0� q1� � � �� such that qk/�qk� → x̂ (resp., ŷ) as k → ∞
(resp., −∞) will be called �x̂� ŷ�-geodesics.
Both types of results were originally derived in [18] as analogs of corre-

sponding lattice FPP results. The first type differs from the lattice case in
that the asymptotic shape is exactly a Euclidean ball (because of the statistical
Euclidean invariance of the homogeneous Poisson point process). The signifi-
cance of this difference for our new results will be discussed in Section 2 of this
paper. We present the shape theorem result in a slightly different form than
the one of [18]; in Section 2 (Theorem 2.3) we improve this result. For x ∈ �d,
denote by q�x� the Poisson particle location in Q closest to x (with any fixed
rule for breaking ties). Then for s > 0, let Bα�x� s� ≡ �q′ ∈ Q
Dα�q�x�� q′� ≤ s�
denote the ball in Q of radius s centered at q�x�, using the metric Dα.

Theorem 1.4 [18]. For any α ∈ �1�∞� and d ≥ 2, there exists µ ∈ �0�∞�
depending on α and d, such that with �0 ≡ ��0� µ−1� the following is true
almost surely. For any ε ∈ �0�1�,

Q ∩ �1− ε�s�0 ⊂ Bα�0� s1/α� ⊂ �1+ ε�s�0(1.10)

for all sufficiently large s.

There are many natural questions one can ask about semiinfinite geodesics.
We may focus on some q ∈ Q [e.g., q�0�, the particle nearest the origin] and
consider (for a fixed α), the set Gα�q� of semiinfinite geodesics starting from q.
Gα�q� is of course just the set of semiinfinite paths starting from q in the
spanning tree Rα�q� defined in Section 1.1 above, so that (for 1 < α < ∞,
according to Proposition 1.2) Gα�q� is nonempty.
When α = ∞, as discussed in Section 1.2, Rα�q� may not be spanning (for

large enough d), but it is still an infinite tree of finite degree at each vertex,
so G∞�q� is also nonempty. For α = ∞ and d = 2, according to Theorem 1.3,
G∞�q� consists of a single infinite geodesic and further for any q and q′, the
(unique) semiinfinite geodesics r and r′ starting from q and q′ coalesce; that
is, there is a unique q̄ ∈ Q (which may be q or q′) such that r (resp., r′)
is the concatenation of a path r̃ from q to q̄ (resp., r̃′ from q′ to q̄) with the
semiinfinite geodesic r̄ starting from q̄, while r̃ and r̃′ are disjoint except for q̄.
It is not hard to show (using the statistical rotational invariance of the Poisson
point process) that here the semiinfinite geodesics cannot have an asymptotic
direction (indeed, that the set of subsequence limit points of qk/�qk� along a
semiinfinite geodesic must a.s. be all of the unit circle).
However, for 1 < α < ∞ and arbitrary d, one expects rather different

answers to the following questions.
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Question 1. Does every semiinfinite geodesic have an asymptotic
direction?

Question 2. Is Rα�q� x̂�, the set of x̂-geodesics starting from q, nonempty
for every unit vector x̂?

Question 3. Are there some x̂’s with more than one x̂-geodesic from some
q [i.e., with Rα�q� x̂� bigger that a singleton]?
If the answer to Question 3 turns out to be “Yes,” one may ask a related

but different question, whose answer could still be “No,” as follows.

Question 4. For a deterministic x̂, can there be more than one x̂-geodesic
from some q and can there be noncoalescing x̂ geodesics from different q’s?

Question 5. Do doubly infinite geodesics exist?

“Yes” answers to Questions 1, 2 and 3 are among the main new results of
this paper and will be stated as theorems in the following subsection. Anal-
ogous results for lattice FPP are still open problems (see [32] and Section 2
of this paper). The answer “No” to the fourth question was previously known,
but only for restricted d and α (it remains an open problem in general), as
follows; the restriction on α will be discussed below.

Theorem 1.5 [18]. For d = 2�2 ≤ α < ∞ and every deterministic x̂, a.s.
there is no more than one x̂ geodesic from any q and a.s. any pair of x̂ geodesics
from distinct q� q′ must coalesce.

We remark that there are lattice FPP analogs to this theorem (and the
next), but these have not been proved for every x̂ [28]; the best such result
is due to Zerner (Theorem 1.5 in [33]). As a consequence of the last theorem,
there was a partial answer to Question 5, stated as the next theorem. The
natural conjecture is that the correct answer to Question 5 is “No,” certainly
for d = 2 and perhaps for all d. (See Chapter 1 of [33] for a discussion of this
conjecture for lattice FPP and its equivalence (when d = 2) to nonexistence
of nonconstant ground states for disordered Ising ferromagnets. Other results
in the lattice context are in [44].)

Theorem 1.6 [18]. For d = 2�2 ≤ α <∞, and every deterministic x̂ and ŷ,
a.s. there are no �x̂� ŷ�-geodesics.

An improvement of Theorem 1.6 (see Theorem 1.11) will be given below,
basically as a consequence of our answer to Question 1, but this improvement
falls well short of the conjecture that doubly infinite geodesics a.s. do not exist.
Behind the restriction to α ≥ 2 in Theorem 1.5 and 1.6 is the following

lemma (Lemma 5 of [18]), which we will use later.
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Lemma 1.7 [18]. Suppose r = �� � � � qi� qi+1� � � �� and r′ = �� � � � q′j� q′j+1� � � ��
are two finite or infinite geodesics such that the closed line segments qiqi+1 and
q′jq

′
j+1 intersect. If d = 2 and 2 ≤ α <∞, then �qi� qi+1� and �q′j� q′j+1� have

at least one point in common.

1.4. New results on infinite geodesics for Euclidean FPP. The next three
theorems, among the main new results of this paper, are consequences of
fluctuation theorems presented in Section 2. The fluctuation theorems are of
interest in their own right.

Theorem 1.8. For d ≥ 2, and 1 < α < ∞, a.s.: every semiinfinite geodesic
has an asymptotic direction.

Theorem 1.9. For d ≥ 2 and 1 < α < ∞, a.s.: for every q ∈ Q and every
unit vector x̂, there is at least one x̂-geodesic starting from q.

Theorem 1.10. For d ≥ 2 and 1 < α <∞, a.s.: for every q ∈ Q, the setV�q�
of unit vectors x̂ such that there is more than one x̂-geodesic starting at q is
dense in the unit sphere.

Remark. For d = 2, is is not hard to show (by arguments like those used
to prove Theorem 0 of [28]) that a.s. V�q� is countable. In general, whenever
the answer to the first part of Question 4 is “No,” then by an application of
Fubini’s theorem, the Lebesgue measure (on the unit sphere Sd−1) of V�q� is
zero. But the proof of Theorem 1.10 also shows thatV�q�must have Hausdorff
dimension at least d− 2.
Theorem 1.8 implies that every doubly infinite geodesic must be an �x̂� ŷ�-

geodesic for some x̂� ŷ ∈ Sd−1. However, the proof of Theorem 1.8 implies a
bit more. We state this in the next theorem in combination with the result of
Theorem 1.6.

Theorem 1.11. For d ≥ 2 and 1 < α < ∞, a.s. doubly infinite geodesics
other than �x̂�−x̂�-geodesics do not exist. In addition, for d = 2 and 2 ≤ α <∞,
and any deterministically chosen x̂, a.s. �x̂�−x̂�-geodesics do not exist.

Theorem 1.11 is a step in the direction of verifying the conjecture that, a.s.,
doubly infinite geodesics do not exist. However, even for d = 2 and 2 ≤ α <∞,
it does not prove the conjecture since it leaves open the possible existence
of �x̂�−x̂�-geodesics with x̂ dependent on the realization of Q.
In the rest of this subsection, we restrict attention to 2 ≤ α <∞ and d = 2

and explore some consequences of combining Theorems 1.5–1.11. This is in the
spirit of [32] (see Theorem 1.1 of that reference and the preceding discussion
there), where the same issues were addressed, but only partially resolved, in
the lattice FPP context.
When d = 2�2 ≤ α <∞� q ∈ Q and x̂ is a deterministic unit vector (in S1),

by Theorems 1.5 and 1.9, there a.s. exists a unique x̂-geodesic starting from q.
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We denote this semiinfinite geodesic by sq�x̂�. In analogy with Rα�q�, as
defined in Proposition 1.2 (but with q replaced by “a point at infinity reached in
the direction x̂”), we define Rα�x̂� to be the graph with vertex set Q and every
edge contained in

⋃
q′∈Q sq′ �x̂�. It follows from Theorem 1.5 that (a.s.)Rα�x̂� is a

spanning tree onQ [the coalescing part of Theorem 1.5 ensures thatRα�x̂� has
a single connected component]. Since every edge in Rα�x̂� touching q is part
of some geodesic, these edges belong to Rα�q� and hence, by Proposition 1.2,
each vertex in Rα�x̂� has finite degree. We combine these facts with a few
others in the following.

Theorem 1.12. Suppose d = 2�2 ≤ α < ∞, and x̂ is a deterministic
unit vector (in S1). Then the following are all valid a.s.. For any q ∈ Q and
any q̄1� q̄2� � � � ∈ Q such that q̄k/�q̄k� → x̂, the finite geodesic Mα�q� q̄k� con-
verges as k → ∞ to the unique x̂-geodesic sq�x̂� starting from q. Thus the
spanning trees Rα�q̄k� → Rα�x̂� as k → ∞ [where the edges of Rα�x̂�, as
defined above, are those in

⋃
q∈Q sq�x̂�]. Rα�x̂� is a spanning tree on Q (with

every vertex having finite degree) and with a single infinite path from each q
[namely, sq�x̂�]; Rα�x̂� thus has a single topological end.

Proof. The things that remain to be proved are that Mα�q� q̄k� → sq�x̂�
and that Rα�x̂� contains no infinite path from q other than sq�x̂�. For a small
ε > 0, let x̂+�ε� [resp., x̂−�ε�] be the unit vector obtained by rotating x̂ by an
angle ε in the clockwise (resp., counterclockwise) direction. By Theorems 1.5
and 1.9, there a.s. exist unique semiinfinite geodesics sq�x̂±�ε�� starting from
q. For a path r = �q1� q2� � � �� let us denote by  R the union of the line seg-
ments qiqi+1 (as a subset of �2). The paths sq�x̂+�ε�� and sq�x̂−�ε�� bifurcate
at some q′ (perhaps equal to q) and then, by uniqueness of finite geodesics,
have no further Q-particles in common. By Lemma 1.6, the sets sq�x̂+�ε��
and sq�x̂−�ε�� bifurcate at q′ and have no further �2-points in common. Thus
�2\��sq�x̂+�ε��∪sq�x̂−�ε��� consists of two connected components (one “inside”
and one “outside”) that we will denote by Sin

q �x̂� ε� and Sout
q �x̂� ε�. The inside

(resp., outside) component is characterized by containing sequences x1� x2� � � �
in �2 such that �xj� → ∞ while the angle between xj/�xj� and x̂ converges to
a point in �−ε� ε� (resp., to a point outside �−ε� ε�).
Now, by Lemma 1.6 again (and the uniqueness of finite geodesics) once k

is large enough that q̄k ∈ Sin
q �x̂� ε��Mα�q� q̄k� (except for its initial portion

from q to q′) must be entirely within the closure of Sin
q �x̂� ε� and thus the

same must be true for any (subsequence) limit r̃ of Mα�q� q̄k�. Since this is
true for every ε > 0, it follows that such an r̃ (which is automatically a geodesic
starting from q) must be an x̂-geodesic. Then by Theorem 1.5, r̃ is a.s. sq�x̂�
as claimed.
Next suppose that r̂ is an infinite path in Rα�x̂� starting from q and dif-

ferent than sq�x̂�. We show that this leads to a contradiction. The path r̂
must bifurcate from sq�x̂� at some q′ (possibly with q′ = q) with no further
Q-particles in common. For any q′′ on r̂ after q′, the concatenation of the seg-
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ment of r̂ from q′′ to q′ and the infinite segment of sq�x̂� starting at q′ [which
is just sq′ �x̂�] must be sq′′ �x̂� since sq′′ �x̂� and sq�x̂� must coalesce somewhere
and if it were not at q′�Rα�x̂� would contain a loop. Let q′′k denote an infi-
nite sequence of distinct such q′′’s from r̂ and let r′′ be a limit of sq′′k�x̂�,
which must exist since each sq′′k�x̂� passes through q′ and contains sq′ �x̂�.
Then r′′ is a doubly infinite geodesic containing sq′ �x̂� and thus by the first
part of Theorem 1.11 is an �x̂�−x̂�-geodesic. This contradicts the second half
of Theorem 1.11, which completes the proof. ✷

Now that we have constructed in Theorem 1.12 the spanning tree Rα�x̂�
composed of the x̂-geodesics sq�x̂�, we may ask: what is it good for? Fol-
lowing [32], it can be used to study the surface of large balls in the met-
ric space �Q�Dα� by means of certain (random) “height functions” on Q (or
on �d). For a fixed α <∞ we replaceDα by the pseudometric on �d�Tα�x�y� ≡
Dα�q�x�� q�y��α [where q�x� is the closest q ∈ Q to x] and look at the pseudo-
metric balls, B̃α�x� s� ≡ �y ∈ �d
 Tα�x�y� ≤ s�. These are unions of Voronoi
regions and are related to the balls Bα�x� s� for the metric Dα (defined just
above Theorem 1.4) by Bα�x� s1/α� = B̃α�x� s� ∩Q.
What does a large-radius ball B̃α�x� s� look like when “viewed from its

surface?” A natural interpretation of this question, that places the surface
near the origin, is to consider the limit of B̃α�q̄k�Tα�q̄k�0�� as �q̄k� → ∞
with q̄k/�q̄k� → x̂. Theorem 1.12 allows us to analyze this limit in terms of a
functionHx̂�q� q′� on Q×Q defined as follows. For q� q′ ∈ Q, defineWx̂�q� q′�
as the unique q′′ in Q where sx̂�q� and sx̂�q′� coalesce (Wx̂ might be q or q′)
so that the path in Rα�x̂� between q and q′ is the concatenation of Mα�q,
Wx̂�q� q′�� and Mα�Wx̂�q� q′�� q′�. The following is mostly a consequence of
Theorem 1.12.

Theorem 1.13. Suppose d = 2�2 ≤ α <∞, and x̂ is a deterministic direc-
tion. Then the following are valid a.s.: for all q� q′ ∈ Q and any q̄1� q̄2� � � � ∈ Q
such that q̄k/�q̄k� → x̂,

Hx̂�q� q′� ≡ lim
k→∞

�Tα�q� q̄k� −Tα�q′� q̄k��

exists and equals Tα�q�Wx̂�q� q′�� − Tα�q′�Wx̂�q� q′��. The balls B̃α�q̄k,
Tα�q̄k�0�� converge as k→ ∞ to �y ∈ �d
 Hx̂�q�y�� q�0�� ≤ 0�. Furthermore,
Hx̂�·� q�0�� as a function on Q satisfies

Hx̂�q� q�0�� = inf
q′ �=q

��q− q′�α +Hx̂�q′� q�0���(1.11)

and more generally for Q0, any finite subset of Q containing q,

Hx̂�q� q�0�� = inf
q′∈Q\Q0

[
Tα�q� q′� +Hx̂�q′� q�0��]�(1.12)

Proof. The only claims that require any explanation are (1.11) and (1.12).
To prove (1.11), we let q′′ denote the first particle after q on sx̂�q� and note
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that by Theorem 1.12,

Hx̂�q� q�0�� = lim
k→∞

��q− q′′�α +Tα�q′′� q̄k� −Tα�q�0�� q̄k��
= �q− q′′�α +Hx̂�q′′� q�0���

(1.13)

This boundsHx̂�q� q�0�� below by the right side of (1.11). The opposite inequal-
ity easily follows from Tα�q� q̄k� ≥ inf q′ �=q��q − q′�α + Tα�q′� q̄k��. The iden-
tity (1.12) is derived by quite similar arguments to those used for (1.11). ✷

We now consider the random field Hx̂�q�y�� q�0��. It is clear, at least on
a heuristic level, that the asymptotic behavior of its mean, as �y� → ∞,
is −µ�α�2��x̂ · y� to leading order, where µ�α�d� is the inverse of the radius
appearing in Theorem 1.4 and x̂·y denotes the standard Euclidean inner prod-
uct. When x̂ · y �= 0, it seems reasonable that the variance of Hx̂�q�y�� q�0��
should have a leading order behavior similar to that of Tα�0� y�, namely
like �y�2χ (with χ = 1/3 conjectured for d = 2, as discussed in Section 2).
For x̂ · y = 0, where by symmetry E�Hx̂�q�y�� q�0�� = 0, it seems that for
d = 2, one should expect the variance to grow faster, namely linearly in �y�,
and correspondingly the boundary of the region where Hx̂�q�x�� q�0�� ≤ 0
should fluctuate from the straight line y = tŷ0 (where ŷ0 · x̂ = 0) by a distance
of order

√
t (see, e.g., [27]). This is related to the conjectured identity ξ = 2χ

(for d = 2) for the fluctuation exponents ξ and χ that are the main topic of
the next section. We remark that the exact values χ = 1/3 and ξ = 2/3 have
been derived recently in [9, 22] for a model related to random permutations,
one of whose many guises is a kind of d = 2 directed FPP.
There are many interesting open questions one can ask about height func-

tions on Q satisfying (1.11) and (1.12), such as whether there exist ones
essentially different from those of the form Hx̂�q� q�0��. For example, in gen-
eral d one could take two deterministic sequences of points q̄

�1�
k and q̄

�2�
k

with �q̄�1�k � = �q̄�2�k � → ∞ and with q̄
�j�
k /�q̄�j�k � → x̂�j� for j = 1�2 as k → ∞

and then study

min
j=1�2

�Tα�q� q̄�j�k �� − min
j=1�2

�Tα�q′� q̄�j�k ��(1.15)

as k → ∞. It could be (and this seems likely the case for d = 2) that
the limit (in distribution) of this random function of q and q′ is a symmet-
ric mixture of the distributions of Hx̂�1� and Hx̂�2� . This would be because
the boundary between the region of Q where Tα�q� q̄�1�k � < Tα�q� q̄�2�k � and
where Tα�q� q̄�1�k � > Tα�q� q̄�2�k � would (probably) be far from the origin as
k→∞. On the other hand, it is conceivable (e.g., for large enough d, if χ = 0
there, see the discussion and references in [27] or [34]) that this boundary
would not wander off to infinity but rather would have an a.s. limit and thus
that (1.15) would also have a limit. The latter limit, defined for all q� q′, should
equal eitherHx̂�1� orHx̂�2� , but only when q and q′ are both on the same side of
the limit boundary. Thanks to Theorem 1.12, we can now pose such questions,
but answering them remains a task for the future.
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2. Fluctuation results. Throughout this section and the remainder of
the paper we deal with some fixed d ≥ 2 and α ∈ �1�∞�. Occasionally, as noted,
we will restrict our attention to d = 2 and α ∈ �2�∞�. We drop the α subscript
in the (pseudo-) metric Tα�x�y� = Tα�q�x�� q�y�� and the geodesicMα�x�y� =
Mα�q�x�� q�y�� and denote these by T�x�y� andM�x�y�. This section is orga-
nized as follows. In Section 2.1, we state two theorems giving large deviation
bounds on T�x�y� as �x − y� → ∞; the proofs are given later in Sections 3
and 4. The first Theorem concerns fluctuations about the mean and the sec-
ond concerns fluctuations about µ�x−y�. Here µ = lim�x−y�→∞ET�x�y�/�x−y�
and also equals the a.s. limit of T�0� nê�/n as n→ ∞ for any fixed unit vec-
tor ê [18]; it is of course the same µ appearing in the shape theorem 1.4.
A third theorem in Section 2.1 gives a strengthened shape theorem like the
one obtained for lattice FPP in [7, 26]. In Section 2.2, we state and prove (using
the theorem about T�x�y� − µ�x − y�) results about fluctuations of M�x�y�
from a straight line as �x − y� → ∞. These results tell us that, with high
probability, long finite geodesics (1) do not deviate far from the straight line
between their endpoints and (2) do not start off in one direction and then
“noticeably” change course. In Section 2.3, we apply these fluctuation results
to prove Theorems 1.8–1.11.

2.1. Fluctuation of the metric. In this subsection we consider fluctuations
of Tl ≡ T�0� lê1� where l > 0 and ê1 is the unit vector �1�0� � � � �0�. As
in the case of lattice models, one expects that the standard deviation of Tl

grows like lχ for some exponent χ = χ�d� that should not depend on α.
For lattice FPP on �1 (with l an integer), the analog of Tl is the sum of l
i.i.d. random variables (τ�j − 1� j� with 1 ≤ j ≤ l) so that χ�1� = 1/2
[assuming E�τ�j − 1� j�2� < ∞]. For Euclidean FPP on �1, again χ�1� = 1/2
although the argument, while standard, is not as trivial since Tl then is essen-
tially

∑N
i=1U

α
i where the Ui are i.i.d. exponential random variables and N is

random such that
∑N

i=1Ui is close to l. For d = 2� χ�2� is believed to equal 1/3
(see [20, 21, 23, 24]), but the only models for which this (and much more) has
been proved are certain directed FPP-like models related to random permuta-
tions (see [9, 22]). For lattice FPP with d ≥ 2, there have been rigorous bounds
on χ�d� including Kesten’s result that χ�d� ≤ 1/2 [26]. This latter bound has
been strengthened by Kesten [26] and Alexander [5, 7] to give large deviation
upper bounds for the deviation of Tl as l → ∞ from its mean and from the
asymptotic expression g�lê1� [or more generally for the deviation of T�q� q′�
for q� q′ ∈ �d as �q− q′� → ∞ from its mean and from g�q− q′�], where

g�v� = lim
n→∞

E�T�0� nv��
n

�(2.1)

In the case of lattice FPP, g is a norm on �d whose unit ball arises in the
shape theorem [10, 11, 25, 37]. For Euclidean FPP,

lim
l→∞

E�T�0� lx̂��
l

= lim
l→∞

ETl

l
= µ ∈ �0�∞�(2.2)
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[see (7) of [18]], where µ = µ�α�d� appears in the shape theorem (Theorem 1.4)
above. The next two theorems are the analogs for Euclidean FPP of the Kesten
and Alexander results of [7, 26] for lattice FPP. The great advantage of
Euclidean FPP over the lattice case is that the unit ball of the metric g�v�
(about which very little has been proved) is replaced by the Euclidean ball (of
radius µ−1). This allows us in the next subsection to go well beyond what was
proved for lattice FPP, as we discuss there.
Here and for the remainder of the paper, we use C0 to represent a strictly

positive constant, to be thought of as small, that depends on α and d but never
on l. The actual value of C0 may decrease as the paper progresses (perhaps
even in a single line); all statements made involving C0 are valid with any
smaller choice of C0. Analogously, C1 is a positive finite constant, thought of as
large, whose value does not depend on l but increases (with similar impunity)
as the paper progresses. Certain other constants, appearing as exponents, we
keep track of more carefully. We record their values here for easy reference:

κ1 = min�1� d/α��
κ2 = 1/�4α+ 3��
κ3 = 1/�2α��
κ4 = d/α and
κ5 = 1/�4α+ 2��

(2.3)

Theorem 2.1. Let d ≥ 2 and α > 1. For some constant C1,

VarTl ≤ C1l for l ≥ 0�(2.4)

Additionally, with κ1 = min�1� d/α�� κ2 = 1/�4α+3�, and for some constantsC0
and C1,

P��Tl−ETl�>x
√
l�≤C1exp�−C0x

κ1� for l≥0 and 0≤x≤C0l
κ2 �(2.5)

The proof of Theorem 2.1 is given in Section 3. The next theorem, which
is essentially a replacement of ETl by µl in (2.5), is proved in Section 4, by
using Theorem 2.1 to show that

�ETl − µl� ≤ C1

√
l�log l�1/κ1 �(2.6)

Theorem 2.2. Let d ≥ 2� α > 1� κ1 = min�1� d/α� and κ2 = 1/�4α+ 3�. For
any ε in �0� κ2�, there exist constants C0 and C1 (depending on ε) such that

P��Tl − µl� ≥ λ� ≤ C1 exp�−C0�λ/
√
l�κ1�

for l > 0 and l
1
2+ε ≤ λ ≤ l

1
2+κ2−ε�

(2.7)

A corollary of Theorem 2.2, the proof of which we sketch in Section 4, is
the following improvement of Theorem 1.4; it is an analog of the Alexander–
Kesten improved shape theorem for lattice FPP [7].
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Theorem 2.3. For any α ∈ �1�∞� and d ≥ 2, with �0 ≡ ��0� µ−1�, the
following is true almost surely:

Q ∩
(
1− �log s�2/κ1√

s

)
s�0 ⊂ Bα�0� s1/α� ⊂

(
1+ �log s�2/κ1√

s

)
s�0

for all sufficiently large s.

We make no claims about the optimality of the exponents κ1 and κ2 appear-
ing in (2.5)–(2.7). We also note that the power 2/κ1 in Theorem 2.3 can be
replaced by �1 + ε�/κ1 with any ε > 0. For lattice FPP with an exponential
tail assumption on the underlying τ�q� q′� variables, the analogous results
in [7, 26] have κ1 = 1 = κ2. In the next subsection, we use Theorem 2.2 to
control deviations of long finite geodesics from approximately straight line
behavior.

2.2. Fluctuations of geodesics. We want to use Theorem 2.2 to bound the
probability that the geodesic M�x�y� touches a Poisson particle located far
from the straight line segment xy. Our reasoning will follow that used in [32]
[see (3.2) there] but modified for the Euclidean context. We use (2.7) and some
other arguments to show that for any ε > 0, with high probability for large �x−
y��M�x�y� does not deviate more than order �x−y� 34+ε from xy. The wandering
exponent ξ = ξ�d� may be regarded as defined so that �y − x�ξ is the actual
order of the typical (or largest) deviation from xy. Thus, our next theorem
implies that ξ ≤ 3/4. It is conjectured that ξ�2� = 2/3 and decreases to 1/2
for increasing d (see the discussion and references in [27] or [34]). A related
result was obtained in [34] for lattice FPP, but it was much weaker because
of lack of information about the asymptotic shape �0 for lattice FPP. Roughly
speaking, the lattice result was only valid when y − x points in a direction
where the boundary of�0 is curved. If it were proved that in a lattice model�0
is uniformly curved, then a result like the next theorem (which is only for
Euclidean FPP) would follow; see [34] for details.
We define Ml =M�0� lê1� and, for A ⊂ �d,

dmax �Ml�A� = sup
q∈Ml

Dist�q�A��(2.8)

where Dist�q�A� denotes the ordinary Euclidean distance from q to the set A.
This represents the maximal Euclidean distance of (any point in)Ml from A;
if Ml is replaced by a single point y, then dmax�y�A� is the usual Euclidean
distance of y to the set A.

Theorem 2.4. Let d ≥ 2� α > 1� κ1 = min�1� d/α� and κ2 = 1/�4α+ 3�. For
any ε ∈ �0� κ2/2�, there exist constants C0 and C1 (depending on ε) such that

P�dmax�Ml�0lê1� ≥ l
3
4+ε� ≤ C1 exp�−C0l

3εκ1/4��(2.9)
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Furthermore, with � = ��lê1�1� = �x ∈ �d
 �x − lê1� ≤ 1�, for (possibly
different) C0 and C1,

P�∃ b∈� with dmax�M�0�b��0b�≥�b� 34+ε�≤C1exp�−C0l
3εκ1/4��(2.10)

Proof. We will prove that, for some C0 and C1,

P�∃ b∈� with dmax�M�0�b��0lê1�≥l
3
4+ε�≤C1exp�−C0 l

3εκ1/4��(2.11)

from which (2.9) follows immediately and (2.10) follows (for possibly differ-
ent C0 and C1) from the facts that � �b� − l� ≤ 1 and �dmax�M�0� b��0b� −
dmax�M�0� b��0lê1�� ≤ 1.

We begin with the observations that

�T�u� v� −T�u�w�� ≤ �q�v� − q�w��α for all u� v�w ∈ �d�(2.12)

and that, for q ∈ Q and w ∈ �d� �q− q�w�� ≤ 2�q−w�, so also
�T�u�q�−T�u�w��≤�2�q−w��α for all q∈Q and u�w∈�d.(2.13)

Furthermore, repeated application of the triangle inequality to (2.12) gives
that

�T�u�v�−T�u�w��≤�2�q�v�−v�+2�v−w��α for all u�v�w∈�d�(2.14)

Now let

A′
l = �x ∈ �d
 Dist�x�0 lê1� < l

3
4+ε��

Al = �x ∈ �d\A′
l
 Dist�x�A′

l� < l
3
4 �

and
A+

l = �x ∈ �d\A′
l
 Dist�x�A′

l� < l
3
4 +

√
d��

Additionally, let Fl denote the event that q�0�� q�lê1� ∈ A′
l and every geodesic

segment qkqk+1 with either �qk� ≤ l or �qk+1� ≤ l has �qk − qk+1� ≤ l3/4. By an
application of Lemma 5.2 [see (5.5)], Fl satisfies P�Fc

l � ≤ C1 exp�−C0l
3d/4�.

Furthermore, for large l, on Fl, for b ∈ � we have

dmax�M�0� b��0lê1� ≥ l
3
4+ε $⇒ ∃ q ∈ Q ∩Al on M�0� b�

$⇒ ∃ q ∈ Q ∩Al with T�0� q� +T�q� b� = T�0� b�
$⇒ ∃ w ∈ �d ∩A+

l with T�0�w� +T�w� lê1�
≤ T�0� lê1� + 2��2

√
d�α + �2�q�lê1� − lê1� + 2�α��

This latter implication uses (2.13) and (2.14). It follows that, on Fl∩��q�lê1�−
lê1� < l1/�2α��, for large l and b ∈ �,

dmax�M�0� b��0lê1� ≥ l
3
4+ε $⇒ ∃ w ∈ �d ∩A+

l

with T�0�w� +T�w� lê1� ≤ T�0� lê1� + l
1
2+ε�
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Hence,

P�∃ b ∈ � with dmax�M�0� b��0lê1� ≥ l
3
4+ε�

≤ C1 exp�−C0l
3d/4� +C1 exp�−C0l

d/�2α��
+ ∑

w∈�d∩A+
l

P
[
T�0�w� +T�w� lê1� ≤ T�0� lê1� + l

1
2+ε
]
�

(2.15)

The proof is completed by combining (2.7) and (2.15) with some elementary
geometry.
Given x�y ∈ �d, let :�x�y� = µ��y� + �x − y� − �x��. Then on �T�0�w� +

T�w� lê1� ≤ T�0� lê1� + l
1
2+ε� at least one of ∣∣T�0�w� − µ�w� �� �T�w� lê1� −

µ�lê1 −w� � or �T�0� lê1� − µl� must exceed :̃�lê1�w� ≡ �:�lê1�w� − l
1
2+ε�/3, so

P�T�0�w� +T�w� lê1� ≤ T�0� lê1� + l
1
2+ε�

≤ P
[∣∣T�0�w� − µ�w�∣∣ > :̃�lê1�w�

]
+P
[∣∣T�w� lê1� − µ�lê1 −w�∣∣ > :̃�lê1�w�

]
+P
[∣∣T�0� lê1� − µl

∣∣ > :̃�lê1�w�
]
�

(2.16)

We note that, for w ∈ A+
l � :�lê1�w�, and hence :̃�lê1�w�, is at least of

order l
1
2+2ε and at most of order l

3
4+ε as l → ∞. For example, for w =

lê1/2 + �l
3
4+ε + √d�ê2� :�lê1�w�/µ = 2��l/2�2 + �l 34+ε + √d�2�1/2 − l which is

of order l
1
2+2ε by the Pythagorean theorem, while, for w = �−l 34+ε − √d�ê1,

:�lê1�w� = 2µ�l 34+ε +√d� = O�l 34+ε�.
Each of the three probabilities in (2.16) can be expressed (using Euclidean

invariance) in the form of the probability of (2.7) with l replaced by some l′

between order l
3
4+ε and order l, and with λ between order l

1
2+2ε and order l

3
4+ε.

We can bound these probabilities by replacing λ by the smaller λ′ = �l′� 12+ε
so that the condition �l′� 12+ε ≤ λ′ ≤ �l′� 12+κ2−ε is satisfied. Since Al can be
contained in a Euclidean ball of radius order l, we have

P
[∃ b ∈ � with dmax�M�0� b��0lê1� ≥ l

3
4+ε
]

≤ C1 exp�−C0l
3d/4� +C1 exp�−C0l

d/�2α��
+C1l

d sup
{
exp�−C0��l′�

1
2+ε/

√
l′�κ1�}�

(2.17)
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where the supremum is over all l′ with l
3
4+ε ≤ l′ ≤ l. This yields (2.11) by

taking l′ = l
3
4+ε and noting that for large l� �l′�εκ1 ≥ l�

3
4+ε�εκ1 ≥ l3εκ1/4. ✷

Theorem 2.4 immediately yields the corollary.

Corollary 2.5. For d ≥ 2� α > 1 and any ε > 0, the number Nε of q
′ ∈ Q

such that dmax�M�0� q′��0q′� ≥ �q′� 34+ε is a.s. finite.

Proof. It follows from (2.10) of Theorem 2.4, rotational invariance and an
application of the Borel–Cantelli lemma, that a.s. the events{∃ b ∈ ��w�1� with dmax�M�0� b��0b� ≥ �b� 34+ε}
occur for only finitely many w ∈ �2/√d��d. The corollary follows since the
��w�1� cover �d. ✷

The next theorem, which itself is a consequence of this corollary, gives a
different version of the inequality ξ ≤ 3/4. To formulate the theorem, we need
some notation. Let C�x� ε� for nonzero x ∈ �d and ε ∈ �0� π� denote the cone

C�x� ε� ≡ �y ∈ �d
 θ�x�y� ≤ ε��(2.18)

where θ is the angle (in �0� π�) between x and y. Recalling the definition of the
spanning tree R�q� = Rα�q� formed by all geodesicsM�q� q′� from q as given
in Proposition 1.2, we define Rout�q� q′� for q′ ∈ Q to be the set of all q′′ ∈ Q
such that M�q� q′′� touches q′, that is, it is the part of R�q� going “outward”
from q′. The next theorem states that for any q and all but finitely many q′ (the
number depending on q), any geodesic continuation of M�q� q′� must remain
inside q+C�q′ − q�f∗��q′ − q��� where f∗�l� ≡ l

3
4+ε/l. This was announced as

Theorem 2 of [19].

Theorem 2.6. Let d ≥ 2� α > 1� ε ∈ �0� 14� and f∗�l� = l−
1
4+ε. Then almost

surely, for every q ∈ Q, for all but finitely many q′ ∈ Q,
Rout�q� q′� ⊂ q+C�q′ − q�f∗��q′ − q����(2.19)

Proof. It suffices to restrict attention to q = q�0�. From Lemma 5.2
[see (5.5)] and the Borel–Cantelli lemma, it follows that there is some finite
(random) L0 so that for any geodesic segment qkqk+1 with �qk� ≥ L0� �qk+1 −
qk� ≤ �qk�3/4. Theorem 2.6 is then a consequence of Corollary 2.5 and the
following deterministic lemma.

Lemma 2.7. Let d ≥ 2 and δ ∈ �0� 14�. Suppose �qi� = �q1� q2� � � �� is any
sequence of distinct points in �d with �qi� → ∞ such that for all large j,

�qj+1−qj�≤�qj�3/4 and Dist�qk�0qj�≤�qj�1−δ for 1≤k<j.(2.20)

Then there exists C1 and k∗ > 0 such that

θ�qk� qj� ≤ C1�qk�−δ whenever k∗ ≤ k < j�(2.21)
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Proof. ChooseL large enough thatL3/4 < L1−δ < L/3, and then choose k∗

so that (2.20) holds and �qj� ≥ L whenever j ≥ k∗. Now suppose k∗ ≤ k < j.

Case 1 (�qj� ≤ 3�qk�). First note that we must have θ�qk� qj� < π/2, for
otherwise,

Dist�qk�0qj� = �qk� ≥
�qj�
3

> �qj�1−δ�

which violates the second part of (2.20). It follows then from elementary geo-
metric considerations that

sin θ�qk� qj� ≤
�qj�1−δ
�qk�

≤ 31−δ�qk�−δ�

Using that θ ≤ π
2 sin θ on �0� π2 �, we see that θ�qk� qj� ≤ C1�qk�−δ.

Case 2 (�qj� > 3�qk�). We will construct a subsequence �qi0� � � � � qin� of �qk,
� � � qj� such that qi0 = qk�qin = qj; the �qim � are increasing; �qim+1 � ≤ 3�qim � for
m + 1 ≤ n and, for m + 1 ≤ n − 1� �qim+1 � ≥ 2�qim �. As we shall presently see,
this is possible because, by the first part of (2.20), the sequence �qi� stretches
from qk to qj without any (relatively) large gaps. We then will have �qim � ≥
2m−1�qi0 � = 2m−1�qk� for 0 ≤m ≤ n, with the exponent m− 1 (instead of m) to
accomodate the case m = n. It follows from this and a repeated application of
Case 1 that

θ�qk� qj� = θ�qi0� qin� ≤
n−1∑
m=0

θ�qim� qim+1� ≤
n−1∑
m=0

C1�qim �−δ

≤ C1

( n−1∑
m=0

2−�m−1�δ
)
�qk�−δ ≤ C1�qk�−δ�

where the final inequality holds for a larger C1.

To construct the requisite �qim�, put i0 = k and suppose im has been
selected. If im = j, put n =m and stop. Otherwise, let im+1 = max�i
 im < i ≤
j� �qi� ≤ 3�qim ��. By construction, the �qim � are increasing with �qim+1 � ≤ 3�qim �.
Furthermore, form+1 ≤ n−1 (so also im+1 < j), we must have 2�qim � ≤ �qim+1 �,
for otherwise,

�qim+1+1 − qim+1 � ≥ �qim+1+1� − �qim+1 �

> 3�qim � − 2�qim � = �qim � ≥
�qim+1 �
3

≥ �qim+1 �3/4�

in contradiction to the first part of (2.20). ✷
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2.3. Proof of Theorems 1.8–1.11. Suppose R is a tree whose vertex set
is an infinite countable subset of �d with u and u′ two vertices of R. We
define Rout�u�u′�, as in the last subsection, to be the set of vertices u′′ of R
such that the (unique) path in R from u to u′′ touches u′.

Definition. For f a positive function on �0�∞�, we say that such a tree R
is f-straight at the vertex u if for all but finitely many vertices u′ of R,

Rout�u�u′� ⊂ u+C�u′ − u�f��u′ − u����(2.22)

Theorem 2.6 is the statement that a.s., for every q ∈ Q�R�q� is f∗-straight
for f∗�l� = l−

1
4+ε.

Definition. Q′, a subset of �d, is said to be asymptotically omnidirectional
if for all finite K� �q/�q�
 q ∈ Q′ and �q� > K� is dense in Sd−1.

Proposition 2.8. Suppose R is a tree whose vertex set U ⊂ �d is locally
finite but asymptotically omnidirectional and such that every vertex has finite
degree. Suppose further that for some u ∈ U�R is f-straight at u, where
f�l� → 0 as l→∞. Then R satisfies the following properties:

(i) Every semiinfinite path in R starting from u has an asymptotic direc-
tion.

(ii) For every x̂ ∈ Sd−1, there is at least one semiinfinite path in R starting
from u with asymptotic direction x̂.
(iii) The set V�u� of x̂’s such that there is more than one semiinfinite path

starting from u with asymptotic direction x̂ is dense in Sd−1.

Proof. Let u = u1� u2� � � � be a semiinfinite path inR. Then f-straightness
implies that for large m, the angle θ�un−u�um−u� ≤ f��um−u�� for n ≥m.
Since �um� → ∞ asm→∞ (because U is locally finite), it follows that un/�un�
converges, proving (i). SinceU is asymptotically omnidirectional and each ver-
tex has finite degree, it follows that starting from v1 = u, one can for a given x̂
inductively construct a semiinfinite path v1� v2� � � � in R such that for each j,
Rout�u� vj� contains a sequence (depending on j) u1� u2� � � � with un/�un� → x̂.
But (i) shows that vj/�vj� tends to some ŷ and then f-straightness implies
θ�x̂� vj − u� ≤ f��vj − u�� so that letting j→∞ yields x̂ = ŷ, proving (ii).
Given any (large) finite K, one can consider those (finitely many) ver-

tices v with �v� > K such that no other vertex w on the path from u to v
has �w� > K. By taking a subset of these v’s, one obtains a finite set of ver-
tices v�K�1 � � � � � v

�K�
m�K� with �v

�K�
j � > K such that the Rout�u� v�K�j �’s are disjoint

and their union includes all but finitely many vertices of U. For a given K,
let Gj denote the set of x̂’s such that some semiinfinite path from u pass-

ing through v
�K�
j has asymptotic direction x̂. Then by (ii), ∪jGj = Sd−1. On

the other hand, by f-straightness, each Gj is a subset of the (small) spher-

ical cap �x̂
 θ�x̂� v�K�j � ≤ f��v�K�j − u�� ≤ ε�K�� where ε�K� → 0 as K → ∞
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(since �v�K�j � > K�. Furthermore, by the same arguments that proved (ii),
each Gj is a closed subset of Sd−1. It follows that V�u� contains, for each K,⋃
j≤m�K� ∂Gj, where ∂Gj denotes the usual boundary (Gj less its interior).

Since ε�K� → 0 as K→∞, we obtain (iii) by standard arguments. ✷

Proof of Theorems 1.8, 1.9 and 1.10. These three theorems are all
essentially immediate consequences of Proposition 2.8 and the (easily proved)
fact that Q is a.s. locally finite and asymptotically omnidirectional.

Proof of Theorem 1.11. The only part of Theorem 1.11 that remains to
be proved (i.e., that does not immediately follow from Theorems 1.6 and 1.8)
is that �x̂� ŷ�-geodesics with ŷ �= −x̂ do not exist, even for nondeterministic x̂
and ŷ depending on Q. To prove this, it suffices to show, for each δ > 0, that
this is the case with the further restrictions that θ�ŷ�−x̂� > δ and that the
�x̂� ŷ�-geodesic touches q�0�. Let Ek denote the event that there exist q� q′′ ∈
�d with �q′�� �q′′� ∈ �k� k + k3/4�� θ�q′′�−q′� > δ/2, and with M�q′� q′′� touch-
ing q�0�. By arguments like those in the proofs of Theorem 2.3 and
Corollary 2.4 one can prove that P�Ek infinitely often� = 0 and that this leads
to the nonexistence of �x̂� ŷ�-geodesics passing through q�0� with θ�ŷ�−x̂� > δ.
We leave further details to the reader. ✷

3. Proof of Theorem 2.1. In many respects, our proof of Theorem 2.1
parallels the arguments in [26], where analogous results for lattice FPP are
presented. However, our Euclidean framework presents a host of technical
issues. For such technical reasons we will need to work with certain approxi-
mations of Tl. With  Q any locally finite subset of �d�φ
 �+ → �+ any contin-
uous strictly increasing convex function with φ�0� = 0 (the cost function) and
a and b arbitrary, and possibly random, points in �d, define

T�  Q�φ�a� b� = inf
{ k−1∑
j=1

φ��qj − qj+1��
 k ≥ 2� q1 = a�

qk = b� qj ∈  Q for 1 < j < k

}
�

(3.1)

So, for example, with φ∞�t� ≡ tα, we have Tl = T�Q�φ∞� q�0�� q�lê1��. Our
first approximation to Tl, denoted by T

′
l, is defined by

T′
l = T�Q�φ∞�0� lê1��

It would seem that T′
l is a more natural quantity to study, since the paths

under consideration actually start at 0 and end at lê1. Unfortunately, T
′
l does

not obey a triangle inequality whereas Tl does. For our second approxima-
tion, T′′

l , we will need a collection of subsets Ql ⊂ Q to be defined later [see
above (3.6)] and a family of cost functions φl defined as

φl�t� =
{
tα� if t ≤ hl,
hαl + αhα−1l �t− hl�� otherwise,(3.2)
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where hl = max�h0� h1lκ3� with κ3 = 1/�2α�, and with both h0 ≥ 1 and h1 ≥ h0
to be specified later [see above (3.16) and below (3.28)]. Note that φl�t� ↑
φ∞�t� = tα as l→∞; we will also have Ql ↑ Q. We now define

T′′
l = T�Ql�φl�0� lê1��

These approximations to Q and φ∞ will play a role similar to a truncation
argument allowing T′′

l −ET′′
l to be expressed as the limit of a martingale with

bounded differences.
Throughout this section, we use the following notation. We let

q�0� = r1� r2� � � � � rK = q�lê1��
0 = r′1� r

′
2� � � � � r

′
K′ = lê1

and
0 = r′′1� r

′′
2� � � � � r

′′
K′′ = lê1

achieve the infima in (3.1) corresponding to Tl�T
′
l and T′′

l , respectively. We
use Lk to denote the “link” (i.e., straight line segment) rkrk+1, and we use r̄
to denote the polygonal path L1L2 · · ·LK−1 with analogous interpretations
of L′k�L

′′
k� r

′ and r′′. For any link L; �L� will be its Euclidean length. Also, for
any cost function φ of the form (3.2) and a� b ∈ �d, let

�φ�a� b� =
{
c ∈ �d
 φ��a− c�� +φ��c− b�� ≤ φ��a− b��}

and put � �a� b� = �φ∞�a� b�. A number of properties of these subsets of �d

are gathered in Lemma 5.1 of Section 5 below and used in the proof of the
next lemma.
With an appropriate Ql and hl the random variables Tl�T

′
l and T′′

l are
related as follows.

Lemma 3.1. With κ4 = d/α and for some constants C0 and C1,

P��Tl −T′
l� > x� ≤ C1 exp�−C0x

κ4� for x > 0(3.3)

and

P�T′
l �= T′′

l � ≤ C1 exp�−C0l
κ3��(3.4)

Proof of (3.3). The left side of (3.4) is ill-defined until the Ql and hl are
chosen; we defer its proof. This does not apply to inequality (3.3), which is
easier to prove. Let C�a� = sup��c − a�
 � �a� c� ∩ Q = ��, and set Cl =
C�0� + C�lê1�. Then

T′
l ≤ Tl + �q�0��α + �q�lê1� − lê1�α ≤ Tl + Cαl �

and, similarly, on �K′ ≥ 3�,
Tl ≤ T′

l + �q�0� − r′2�α + �q�lê1� − r′K′−1�α ≤ T′
l + 2αCαl �

while on �K′ = 2�� C�0� ≥ l so

Tl ≤ ��q�0�� + l+ �q�lê1� − lê1��α

≤ �C�0� + C�0� + C�lê1��α ≤ 2αCαl ≤ T′
l + 2αCαl �
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Collectively, these bounds yields �Tl−T′
l� ≤ 2αCαl . We complete the proof of (3.3)

by using the remark following Lemma 5.2 below [see (5.4)] to conclude that,
for appropriate C0 and C1,

P�2αCαl > x� ≤ P�C�0� > x1/α/4� +P�C�lê1� > x1/α/4�
≤ C1 exp�−C0x

d/α��
(3.5)

Our proof of (2.4) divides into the two cases 0 ≤ l ≤ 1 and l > 1. We are
really only interested in the second (much more difficult) case, but proving the
first case illustrates the sort of technical difficulties created by our definition
of Tl. We have the following lemma.

Lemma 3.2. For some constant C1�VarTl ≤ C1l whenever l ≤ 1.

Proof. If we were working with T′
l instead of Tl, this case would be

straightforward since, for l ≤ 1� �T′
l�2 ≤ l2α ≤ l. On the other hand, although

Tl = 0 for l small enough that q�0� = q�lê1�, no matter how small l is, among
those Poisson particle configurations for which q�0� �= q�lê1�� �q�0� − q�lê1��
(and Tl) can be arbitrarily large. Looking a little closer, for any fixed l ≤ 1
let D̃ denote the event �q�0� �= q�lê1��. For ρ > 0, on ��q�0�� = ρ� we have

T2
l ≤ �q�0� − q�lê1��2αID̃ ≤ ��q�0�� + l+ �q�lê1���2αID̃ ≤ �2ρ+ 2�2αID̃�

where ID̃ denotes the indicator of the event D̃. Letting Aρ denote the event
that there is a particle in the annulus �x ∈ �d
 ρ < �x� < ρ+ 2l�, we have

��q�0�� = ρ� ∩ D̃ ⊂ ��q�0�� = ρ� ∩Aρ�

so

E
[
T2
l

∣∣�q�0�� = ρ
] ≤ �2ρ+ 2�2αP[Aρ

∣∣�q�0�� = ρ
] ≤ C1�2ρ+ 2�2α�ρ+ 2�d−1l

and

VarTl ≤ ET2
l =
∫
ρ≥0

E
[
T2
l

∣∣�q�0�� = ρ
]
dP��q�0�� ≤ ρ�

≤ lC1

∫
ρ≥0
�2ρ+ 2�2α+d−1 dP��Q�0�� ≤ ρ� = lC1�

(Recall that according to our conventions, the two instances of C1 in the pre-
ceding equation represent different constants.) ✷

Proceeding with the case l > 1, we define

S′′l =
K′′−1∑
j=1

φ2
l ��L′′j���

We do the case l > 1 in three steps.
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Step 1. For any l > 0�VarT′′
l ≤ 22α+1ES′′l . We note that this inequality is

also illdefined until the Ql and hl are specified. We presently define the Ql;
it turns out that Step 1 holds for any hl. Throughout this paper, for any
length η > 0, the “η-boxes” will refer to the interior-disjoint d-dimensional
cubes whose vertices collectively are η·��d+� 12 � � � � � 12��. For any η, the η-boxes
may be associated with the �d lattice in the natural way: ν ∈ �d is associated
with the box centered at ην. Two η-boxes are called adjacent if they share a
common �d−1�-dimensional face (i.e., if their associated sites in �d are nearest
neighbors). For any Borel subset S ⊂ �d, let � �S� denote the σ-subfield of �
generated by all events of the form �ω
 Q�ω� ∩ B �= �� where B ranges
over all Borel subsets of S. Clearly we may (and do) replace � with the
possibly smaller � ��d�. Now fix any l > 0 and let �Bm
 m = 1�2� � � �� denote
the �ε/3'l(�-boxes (ε is a quantity that depends only on d and is specified in
Step 2 below) enumerated in some order. We note that, in general, if η′ is
an odd integral multiple of η then the η-boxes are nested in the η′-boxes so,
in particular, the �ε/3'l(�-boxes are nested in the ε-boxes. Let qm denote the
leftmost particle in Q ∩ Bm (provided such a particle exists) and let Ql =
�qm� ⊂ Q denote the set of all such leftmost particles.

Let �m = � �B1 ∪ · · · ∪Bm� with �0 = ���I�, so �m ↑ � as m→∞. Set

:m = E�T′′
l ��m� −E�T′′

l ��m−1�
so that

T′′
l −ET′′

l =
∞∑

m=1
:m and VarT′′

l =
∞∑

m=1
E:2m�

This holds since T′′
l is bounded by l

α. Now set �̃m = � ��d\Bm� and define

:̃m = T′′
l −E�T′′

l ��̃m��

Then we have that E:2m ≤ E:̃2m since :m = E�:̃m��m� giving that

VarT′′
l ≤

∞∑
m=1

E:̃2m�(3.6)

In general, if X and Y are L2 random variables with Y measurable with
respect to some σ-field � , then

E
[�X−E�X�� ��2�� ] ≤ E��X−Y�2�� ��(3.7)

Put T�m�
l = T�Ql\Bm�φl�0� lê1�; so T�m�

l is the minimal passage time from 0
to lê1 with respect to the φl cost function using points in Ql other than in Bm,
and T�m�

l is �̃m-measurable. Hence, with Um = �T�m�
l −T′′

l �2 we have

E�:̃2m��̃m� ≤ E�Um��̃m� and E:̃2m ≤ EUm�(3.8)
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Let  Rm denote the event that qm exists and equals r′′i for some i. On the
event  Rm, define the random variable k�m� by the relation r′′k�m� = qm. [Off
of  Rm, the value of k�m� is irrelevant.] Then

0 ≤ T
�m�
l −T′′

l ≤ φl��r′′k�m�−1 − r′′k�m�+1��I Rm
�

so, using Lemma 5.3 in the second inequality below,

Sl 
=
∞∑

m=1
Um ≤

∑
m

φ2
l ��r′′k�m�−1 − r′′k�m�+1��I Rm

=
K′′−1∑
k=2

φ2
l ��r′′k−1 − r′′k+1��

≤
K′′−1∑
k=2

22α�φ2
l ��r′′k−1 − r′′k�� +φ2

l ��r′′k − r′′k+1���

≤ 22α+1
K′′−1∑
k=1

φ2
l ��r′′k − r′′k+1�� = 22α+1S′′l �

(3.9)

Combining (3.6), (3.8) and (3.9) gives VarT′′
l ≤ 22α+1ES′′l .

Step 2. For some constant C1, ES
′′
L ≤ C1L (for L > 1). In fact, with κ5 =

1/�4α+ 2� and for some constants C0 and C1,

P�S′′L > x� ≤ C1 exp�−C0x
κ5� for all x ≥ C1L�(3.10)

As this step is the heart of the proof, we begin by describing the overall
structure of the argument. A main ingredient is Lemma 3.3 below, which gives
a large deviation bound for T′′

L , obtained by constructing a suboptimal path
for the cost function φL. Such arguments do not directly yield bounds such
as (3.10) for S′′L because the definition of S

′′
L involves replacing φL by φ

2
L while

still using the links L′′j that are optimal for φL. So we separate the links L
′′
j

into short and long ones and correspondingly write S′′L = S1+S̃ (with S̃ further
decomposed as S2+S3). The tail of S1 is directly estimated by that of T

′′
L , but

the analysis of S̃ requires more work. We will choose an appropriately small ε,
relate the path r′′ to a kind of path formed from ε-boxes and then control the
tail of S̃ by a combination of percolation and lattice animal estimates for the
path formed from ε-boxes. Now, to work.
We will call any finite sequence of distinct η-boxes an “η-box path” if the

first box contains the origin and the boxes are sequentially adjacent; the path’s
“length” will refer to the number of boxes on the path. We call an η-box “occu-
pied” if it contains a Poisson particle. Pick 0 < ε ≤ 1 small enough so that (1)
as in the proof of Lemma 3 of [18], the events

Fx = �∃an ε− box path of length m ≥ x with at least m/2d occupied boxes�
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satisfy PFx ≤ �1 − e−1�−1e−x, and (2) 17ε
√
d is strictly less than the criti-

cal radius R∗
c for continuum percolation (discussed just before Conjecture 1

in Section 1.2). The strict positivity of R∗
c can be shown by standard argu-

ments; see, for example, Theorem 3.2 of [29]. [We remark that for any L, by the
construction of QL an ε-box is occupied (by a Poisson particle in Q) if and only
if it contains a particle in QL.] Consider the ε-box path β = �β1� � � � � βM̃�Lê1��
from 0 to Lê1 constructed as follows: β1 is the ε-box that contains 0; if r′′ does
not end inside of βk, βk+1 is the (a.s. adjacent) ε-box that r′′ enters when it
last exits βk. Here M̃�Lê1� is the random number of boxes along this box path.
It follows as in the proof of Lemma 3 of [18] that, for large x,

T′′
L ≥

φL�ε�x
3d

= εαx

3d
on Fc

x ∩ �M̃�Lê1� ≥ x�

(the equality above holds since ε ≤ 1 ≤ hL) and hence,

P�M̃�Lê1� ≥ x� ≤ PFx +P
[
T′′
L ≥

εαx

3d

]
≤ �1− e−1� exp�−x� +P

[
T′′
L ≥

εαx

3d

]
�

(3.11)

The ε-box path β covers the midpoint of any sufficiently long link in r′′. To
see this, let ab = r′′kr

′′
k+1 be any link in r′′ and let c be its midpoint. Suppose βi∗

is the last ε-box along β that touches either ac or any link that precedes ab
on r′′. If i∗ = M̃�Lê1�, put ρ = βi∗ ; otherwise put ρ = βi∗ ∪ βi∗+1. Then ρ
touches c∗ and c∗∗ satisfying at least one of the following:

c∗ ∈ ac and c∗∗ ∈ cb�(3.12)

c∗ ∈ L∗ and c∗∗ ∈ cb where L∗ is a link on r′′ preceding ab,(3.13)

c∗ ∈ ac and c∗∗ ∈ L∗∗ where L∗∗ is a link on r′′ succeeding ab,(3.14)

c∗ ∈ L∗ and c∗∗ ∈ L∗∗ with L∗ and L∗∗ as in (3.13) and (3.14).(3.15)

Now (3.12) implies that c ∈ ρ. On the other hand, by the no doubling back
proposition of [17] (stated below as Lemma 5.5), (3.13) implies

1
2 �a− b� = �a− c� ≤ �a− c∗∗� ≤ 16�c∗ − c∗∗� ≤ 16ε

√
d+ 3�

while (3.14) similarly implies

1
2 �a− b� = �c− b� ≤ �c∗ − b� ≤ 16�c∗ − c∗∗� ≤ 16ε

√
d+ 3�

and (3.15) implies

�a− b� ≤ �ending point of L∗ − starting point of L∗∗�
≤ 33�c∗ − c∗∗� ≤ 33ε

√
d+ 3�

It follows that c ∈ ρ provided �a− b� > 33ε
√
d+ 3.
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Choose λ to be an odd integral multiple of ε (so the ε-boxes are nested in
the λ-boxes) with λ large enough that the probability that any fixed λ-box
contains no Poisson particle (equivalently, no QL particle) is below the criti-
cal probability for site percolation on the nearest neighbor �d lattice. If the
midpoint of a link L′′k is touched by the ε-box path β, then a.s. it is touched
by only one of the ε-boxes on β; let ν�L′′k� denote the λ-box that contains this
ε-box. [If the midpoint of L′′k is not so touched, ν�L′′k� is undefined.] For any
λ-box ν, let ��ν� denote the size (i.e., the cardinality) of the nearest-neighbor
cluster �ν of unoccupied λ-boxes at ν. The quantity y0 in (3.18) below will be
specified later but depends only on d. We choose h0 sufficiently large such
that �L′′k� > h0 implies

ν�L′′k� is defined�(3.16)

if L′′j �= L′′k is another link with �L′′j� > h0 then ν�L′′j� �= ν�L′′k��(3.17)

and

ν�L′′k� is unoccupied; moreover ��ν�L′′k�� ≥ y
1/�2α�
0 �L′′k��(3.18)

We can ensure (3.16) by the preceding discussion and (3.17) also follows easily
for large h0 from the no doubling back proposition (Lemma 5.5). Since the inte-
rior of the region �φL

�r′′k� r′′k+1� contains no QL particles, Lemma 5.4 furnishes
(3.18) for h0 sufficiently large (depending on y0).
We split S′′L into three pieces as follows:

S′′L = S1 +S2 +S3�

where
S1 =

∑
k
�L′′k�≤h0

φ2
L��L′′k���

S2 = I�M̃�Lê1�≥x�
∑

k
�L′′k�>h0
φ2
L��L′′k��

and
S3 = I�M̃�Lê1�<x�

∑
k
�L′′k�>h0

φ2
L��L′′k���

Now S1 ≤ hα0T
′′
L , so

P�S1 > x� ≤ C1 exp�−C0x
κ1� for all x ≥ C1L(3.19)

will follow with κ1 = min�1� d/α� from the following lemma.

Lemma 3.3. There exist constants C0 and C1 such that, for T = TL, T = T′
L

or T = T′′
L , P�T > x� ≤ C1 exp�−C0x

κ1� for x ≥ C1L.

Proof. We first prove (in detail) the case T = T′
L. For a ∈ �d and t ≥ 0,

let

�t�a� = �a+ b ∈ �d
 0 ≤ b1 ≤ t�0 ≤ σibi ≤ b1 for 2 ≤ i ≤ d��
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where

σi = −1 if ai ≥ 0� 1 otherwise.

Then the d-dimensional volume of �t�a� is
∫ t
0 s

d−1 ds = td/d. Also, for b ∈
�t�a� we have

max
2≤i≤d

�bi� ≤ max�t� max
2≤i≤d

�ai���(3.20)

Let q0 = 0 and define qn and Rn inductively for n ≥ 1 (See Figure 1 for the
picture when d = 2) by the relation

R̃n = inf�t > 0
 there exists a Poisson particle qn �= qn−1 in �t�qn−1���
and let R̃∗

n = max1≤m≤n R̃m.
Now �qn−1−qn� ≤ R̃n

√
d and it follows from (3.20) that �qN− Lê1� ≤ R̃∗

N

√
d

where

N = min�n 
 R̃1 + · · · + R̃n ≥ L��
Hence

T′
L ≤ �q0 − q1�α + · · · + �qN−1 − qN�α + �qN − Lê1�α

≤ �R̃1

√
d�α + · · · + �R̃N

√
d�α + �R̃∗

N

√
d�α

≤ 2dα/2�R̃α
1 + · · · + R̃α

N��

Fig. 1. An example of the construction of the sequence q1� q2� � � � � qN in the Proof of Lemma 3.3.
Here d = 2 and N = 7.
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It follows that for any n > 0,

P�T′
L > x� ≤ P�2dα/2�R̃α

1 + · · · + R̃α
n� > x� + P�n < N�

≤ P�2dα/2�R̃α
1 + · · · + R̃α

n� > x� + P�R̃1 + · · · + R̃n < L��
(3.21)

Now the R̃i, and hence the R̃
α
i , are i.i.d., with P�R̃α

i > r� = P�R̃i > r1/α� =
exp�− 1

d
rd/α�. Taking n = )cx* in (3.21), it follows from [30] that, for sufficiently

small c, there exist C0 and C1 such that

P�2dα/2�R̃α
1 + · · · + R̃α

)cx*� > x� ≤ C1 exp�−C0x
κ1� for all x�

Also, for this choice of c, it follows from elementary large deviation results for
i.i.d. random variables (see, e.g., Section. 1.9 of [13]) that, for possibly largerC1
and smaller C0, we have

P�R̃1 + · · · + R̃)cx* < L� ≤ C1 exp�−C0x� for x ≥ C1L�

The lemma therefore follows for T′
L.

This extends easily to T = TL (with the same exponent κ1) by applying
the first part of Lemma 3.1. To apply the T′

L result to T
′′
L , note that the fact

that φL�t� ≤ φ∞�t� = tα is helpful, so the only difficulty is that the sequence
of Poisson particles q1� � � � � qN constructed above are not necessarily in QL.
However, there is always a QL particle q̃i within a distance �ε/3L�

√
d ≤ √d of

each qi constructed above. It is not hard to see that the sequence �q̃i� produces
a path whose passage time has a distribution with the requisite tail, again
with the same exponent κ1. ✷

We bound the tail of S2 by the simple estimate

P�S2>x� ≤ P
[
M̃�Lê1�>x

]
≤ �1−e−1�exp�−x�+C1 exp

(
−C0

(
εαx

3d

)κ1)
for

εαx

3d
≥C1L

≤ C1 exp�−C0x
κ1� for all x≥C1L�

(3.22)

Here we use (3.11) and Lemma 3.3; the final inequality holds for possibly
larger C1 and smaller C0 since κ1 ≤ 1.
Finally, we bound the tail of S3. Let ξ′′ denote the collection of λ-boxes that

contain an ε-box on β. If N0 = �all �d lattice animals containing the origin�,
then ξ′′ ∈ N0 in the sense that the sites in �d associated with the boxes
in ξ′′ form a lattice animal containing the origin. Then, using (3.16), (3.17)
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and (3.18),

S3 ≤ I�M̃�Lê1�<x�
∑

k 
 �L′′k�>h0
�L′′k�2α

≤ I�M̃�Lê1�<x�
∑

k 
 �L′′k�>h0
y−10 ��ν�L′′k��2α

≤ I�M̃�Lê1�<x�
∑
ν∈ξ′′

y−10 ��ν�2α�

and hence, using that �ξ′′�, the number of sites (boxes) in ξ′′, cannot exceed
M̃�Lê1�, we have for any γ < 1,

�S3 > x� ⊂
{
�ξ′′� < xγ and

∑
ν∈ξ′′

��ν�2α > y0x

}

∪
{
xγ ≤ �ξ′′� ≤ x and

∑
ν∈ξ′′

��ν�2α > y0x

}
⊂
{
∃ν ∈ �−xγ� xγ�d ∩ �d with ��ν� > y

1/�2α�
0 x�1−γ�/�2α�

}
∪
{
∃ ξ ∈ N0 with �ξ� ≥ xγ and

1
�ξ�
∑
ν∈ξ
��ν�2α > y0

}
�

(3.23)

However, for some constant b > 0, P���ν� > x� ≤ exp�−bx� for all x (see,
e.g., [15]), so

P
[
∃ ν ∈ �−xγ� xγ�d ∩ �d with ��ν� > y

1/�2α�
0 x�1−γ�/�2α�

]
≤ �2xγ + 1�d exp�−by1/�2α�0 x�1−γ�/�2α���

(3.24)

By Theorem 5 of [19] (proved by combining percolation arguments with results
for greedy lattice animals [12, 14]), provided y0 is sufficiently large (depending
only on d and the distribution of the ��ν�, which in turn depends only on d),
we also have for some a > 0 and a possibly smaller b:

P

[
∃ ξ ∈ N0 with �ξ� ≥ xγ and

1
�ξ�
∑
ν∈ξ
��ν�2α > y0

]
≤ a exp�−bxγ/�2α+2���

(3.25)

The exponents �1 − γ�/�2α� in (3.24) and γ/�2α + 2� in (3.25) are both made
equal to κ5 by taking γ = �α + 1�/�2α + 1�. For this choice of γ, combining
(3.23), (3.24) and (3.25) gives that

P�S3 > x� ≤ C1 exp�−C0x
κ5� for all x(3.26)

for possibly some larger C1 and smaller C0. Noting that κ5 < κ1, combining
(3.19), (3.22) and (3.26) yields that

P�S′′L > 3x� ≤ C1 exp�−C0x
κ5� for all x ≥ C1L�
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which proves (3.10) for possibly larger C1 and smaller C0. Step 2 is completed
as follows:

ES′′L =
∫ ∞
0

P�S′′L > x�dx

≤ C1L+
∫ ∞
C1L

C1 exp�−C0x
κ5�dx

= C1L+ o�L� as L→∞�

Step 3. VarTL ≤ C1L for L > 1. Steps 1 and 2 show that, for appropri-
ate C1, VarT

′′
L < C1L for L > 1. Now

StdTL ≤ StdT′′
L + Std�T′

L −T′′
L � + Std�T′

L −TL�
≤ C

1/2
1 L1/2 + Std�T′

L −T′′
L � + Std�T′

L −TL��
It follows from (3.3) that Std�T′

L − TL� is bounded in L. On the other hand,
since 0 ≤ T′

L�T
′′
L ≤ Lα, we have �T′

L−T′′
L � ≤ LαI�T′L �=T′′L� so, assuming (3.4) holds,

Var �T′
L −T′′

L � ≤ E��T′
L −T′′

L �2� ≤ L2αP�T′
L �= T′′

L � = o�L� as L→∞�

yielding that, for possibly larger C1, VarTL < C1L for L > 1. In view of
Lemma 3.2, (2.4) will be proved once we complete the following.

Proof of (3.4). For an a > 1 (to be chosen momentarily), let B�aL� =
�−aL� aL�d. If B is any cube containing 0 and Lê1 such that r′ ⊂ B, r′′ ⊂ B,
Q∩B = QL ∩B, and no link on r′′ exceeds hL in length, then T′

L = T′′
L . Hence,

P�T′
L �= T′′

L � ≤ P�r′ �⊂ B�aL�� +P�r′′ �⊂ B�aL��
+P�∃ an �ε/3'L(� − box touching B�aL� with two

or more Poisson particles �
+P�∃ a λ− box ν touching B�aL� with ��ν� ≥ y

1/�2α�
0 hL��

(3.27)

where we used (3.16) and (3.18). First, we bound the term P�r′′ �⊂ B�aL��.
If r′′ �⊂ B�aL�, then either β �⊂ B�aL/2� or else β ⊂ B�aL/2� and for some
�r′′i1� r′′i1+1� � � � � r′′i2� � � � � r′′i3� we have that r′′i1 r′′i1+1 exits an ε-box βk on β, r′′i2 �∈
B�aL�, and r′′i3−1 r

′′
i3

re-enters βk. By the no doubling back proposition
(Lemma 5.5), in the latter case we must have that r′′i1+1 and r

′′
i3−1 are within

Euclidean distance 16ε
√
d of βk ⊂ B�aL/2� and also that �r′′i1+1 − r′′i3−1� ≤

33ε
√
d. It follows also (since r′′ is minimizing) that �r′′i − r′′i+1� ≤ 33ε

√
d

for i1 < i < i3 − 1. These together would imply that there is a cluster of
overlapping balls of radius 17ε

√
d centered at particle locations in Q touch-

ing both B�aL/2� and B�aL�c. Since 17ε√d is less than the critical contin-
uum percolation radius R∗

c, this latter event occurs with probability bounded
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byC1 exp�−C0L�, a consequence of Theorem 3.5 and Lemma 3.3 of [29] (hereC0
and C1 depend on d, ε and a). It follows that

P�r′′ �⊂ B�aL�� ≤ P�β �⊂ B�aL/2�� + C1 exp�−C0L��
We take C1 as in the rightmost expression of (3.22) and then for sufficiently
large a, we have from the definitions of β and M̃�Lê1� that �β �⊂ B�aL/2�� ⊂
�M̃�Lê1�� > C1L� so, as in (3.22), P�β �⊂ B�aL/2�� ≤ C1 exp�−C0L

κ1�. Since
κ1 ≤ 1, this yields P�r′′ �⊂ B�aL�� ≤ C1 exp�−C0L

κ1�. The first term on the
right side of (3.27) may be similarly bounded for a possibly larger a.
With a now fixed, there are O�Ld3Ld� �ε/3'L(�-boxes and O�Ld� λ-boxes

touching B�aL�. Since the probability that any particular �ε/3'L(�-box has two
or more Poisson particles in it is bounded by �ε/3'L(�2d, the third term on the
right side of (3.27) is of order Ld3−Ld ≤ C1 exp�−L� for possibly larger C1.
Finally, by our earlier choice of λ, the probability that any particular λ-box
ν has ��ν� ≥ y

1/�2α�
0 hL is bounded by exp�−by1/�2α�0 hL� yielding that the fourth

term in (3.27) is bounded by C1 exp�−C0L
1/�2α�� for possibly larger C1 and

smaller C0 since h1 > 0. Collectively, this proves (3.4) since κ3 = 1/�2α� <
κ1 ≤ 1. ✷

This completes the proof of (2.4). We finish the proof of Theorem 2.1 with
Step 4.

Step 4 [Proof of (2.5)]. Our strategy here is to invoke Lemma 5.6 for
large L, using �m, :m, and Um from the previous section, that is,

:m = E�T′′
L ��m� −E�T′′

L ��m−1� and Um = �T�m�
L −T′′

L �2�
We also therefore take S = SL as given in (3.9). We presently show that the
hypotheses of the lemma are satisfied for appropriate x0, c and γ.
First, we observe that 0 ≤ T

�m�
L −T′′

L ≤ 2αhαL . The first inequality is trivial
and the second follows from Lemma 5.3. Since T�m�

L is independent of � �Bm�
we see that E�T�m�

L ��m� = E�T�m�
L ��m−1�. It follows that �:m� ≤ 2αhαL . We

therefore take c = 2αhαL in Lemma 5.6.
Next, we verify that E�:2m��m−1� ≤ E�Um��m−1� as follows:

E�:2m��m−1� = E��E�T′′
L ��m� −E�T′′

L ��m−1��2��m−1�
≤ E��E�T′′

L ��m� −E�T�m�
L ��m��2��m−1�

= E��E�T′′
L −T

�m�
L ��m��2��m−1�

≤ E�E��T′′
L −T

�m�
L �2��m���m−1�

= E��T′′
L −T

�m�
L �2��m−1� = E�Um��m−1��

The first inequality uses (3.7) with � = �m−1, X = E�T′′
L ��m� and Y =

E�T�m�
L ��m−1� = E�T�m�

L ��m�. The second inequality follows from the condi-
tional Jensen’s inequality.
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Additionally, by (3.9) and (3.10) and with κ2 = 1/�4α+3� < κ5 = 1/�4α+2�,
we get

P�S > x� ≤ P�S′′L > 2−�2α+1�x�
≤ C1 exp

(−C0�2−�2α+1�x�κ5
)

for x ≥ 22α+1C1L

≤ C1 exp�−xκ2� for x ≥ 22α+1C1L�

(3.28)

where the last inequality holds for a possibly larger C1. This gives (5.15) with
γ = κ2 and x0 = 22α+1C1L.
Finally, we must have x0 ≥ c2 ≥ 1. The first inequality holds if hL ≤

�2C1L�1/�2α�. Recalling that hL = max�h0� h1L1/�2α�� where h0 has already been
specified, we take h1 = �2C1�1/�2α�. We will then have x0 ≥ c2 for L large
enough that hL = h1L

1/�2α�. The second inequality (c ≥ 1) is equivalent to
hL ≥ 1/2 which holds since h0 ≥ 1.
Lemma 5.6 implies that there are constants C0 and C1 such that, for L large

enough, hL = h1L
1/�2α�,

P��T′′
L −ET′′

L � > x
√
L� ≤ C1 exp�−C0x� for x ≤ C0L

κ2�

which can be made to hold for all L by increasing C1. Now

�T′′
L −TL� ≤ �T′′

L −T′
L� + �T′

L −TL� ≤ LαI�T′′L �=T′L� + �T′
L −TL��

so it follows from Lemma 3.1 that �ET′′
L−ETL� is bounded by some constant b̃.

Also, using that

�TL −ETL� ≤ �TL −T′
L� + �T′

L −T′′
L � + �T′′

L −ET′′
L � + �ET′′

L −ETL��
we get, for L > 1 and b̃ ≤ x ≤ C0L

κ2 , that

P��TL −ETL� > 3x
√
L� ≤ P��TL −T′

L� > x
√
L� +P�T′

L �= T′′
L �

+P��T′′
L −ET′′

L � > x
√
L�

≤ C1 exp�−C0�x
√
L�κ4� +C1 exp�−C0L

κ3�
+C1 exp�−C0x��

(3.29)

On the one hand, (3.29) produces for appropriate C0 and C1 and for L > 1 and
b̃ ≤ x ≤ C0L

κ2 ,

P��TL −ETL� > 3x
√
L�

≤ C1 exp�−C0x
κ4� +C1 exp�−C0x

κ3/κ2� +C1 exp�−C0x�
≤ C1 exp�−C0x

κ1��
with the last inequality holding for possibly larger C1 since κ1 = min�1� κ4�
and κ3/κ2 > 1. By possibly increasing C1 still further and decreasing C0 we
can ensure that

P��TL −ETL� > x
√
L� ≤ C1 exp�−C0x

κ1� for all L and x ≤ C0L
κ2�

proving (2.5). ✷
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4. Proof of Theorems 2.2 and 2.3. Our plan is to show thatETL exhibits
the following sort of weak superadditivity.

Lemma 4.1. For some constant C1 ∈ �0�∞� we have
ET2L ≥ 2ETL −C1

√
L�log L�1/κ1 for all large L�(4.1)

Before proving this lemma, which constitutes the bulk of this section, we
show how this gives Theorems 2.2 and 2.3. First, we need the following easy
lemma; it will be applied with a�L� = ETL and g�l� = C1

√
L�log L�1/κ1 .

Lemma 4.2. Suppose the functions a
 �+ → � and g
 �+ → �+ satisfy
the following conditions: a�L�/L → ν ∈ �, g�L�/L → 0 as L → ∞, a�2L� ≥
2a�L� −g�L� and ψ ≡ lim supL→∞ g�2L�/g�L� < 2. Then, for any c > 1/�2−ψ�,
a�L� ≤ νL+ cg�L� for all large L.

Proof. It is easily verified that, for c > 1/�2 − ψ�, ã�L� ≡ a�L� − cg�L�
satisfies ã�2L� ≥ 2ã�L� for all large L. Iterating this n times yields ã�2nL� ≥
2nã�L� or ã�2nL�/�2nL� ≥ ã�L�/L. Under our hypotheses on a and g, ã�x�/x→ ν
as x→∞, so letting n→∞ shows that ã�L�/L ≤ ν for all large L. ✷

Proof of Theorems 2.2 and 2.3. Based on general subadditivity consid-
erations, we have that (see [18])

0 < µ ≡ inf
L>0

ETL

L
< ∞ and lim

L→∞
TL

L
= µ (a.s. and in L1)�(4.2)

Taking a�L� = ETL and g�L� = C1

√
L�log L�1/κ1 in Lemma 4.2 (so that limsupL

g�2L�/g�L� = √2 < 2), we get that, for appropriate C1,

µL ≤ ETL ≤ µL+C1

√
L�log L�1/κ1 for large L�(4.3)

The second part of Theorem 2.1 then immediately implies that

P��TL − µL� > 2x
√
L� ≤ C1 exp�−C0x

κ1� for C1 �log L�1/κ1 ≤ x ≤ C0L
κ2 �

Substituting λ = 2x
√
L yields (2.7) for large L, with this latter restriction

lifted by adjusting C0 and C1, which proves Theorem 2.2. On the other hand,
substituting x = 1

2�log L��1+ε�/κ1 , where ε > 0, yields

P��TL − µL� >
√
L�log L��1+ε�/κ1� ≤ C1L

−C0�log L�ε for large L�

This and the Borel–Cantelli lemma together imply that, a.s., the event
�∣∣T�0�w�−µ�w�∣∣ > √�w��log �w���1+ε�/κ1� occurs for only finitely many w ∈ �d.
Theorem 2.3 follows from this together with an application of Lemma 5.2 and
the Borel–Cantelli lemma. Further details are left to the reader. ✷

Proof of Lemma 4.1. Fix γ with 0 < αγ < 1/2. Define the event

F̃L ≡ �there exists an x ∈ �d with �x− Lê1� ≤ 3L and �q�x� − x� ≥ Lγ��
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Next, take x1 = Lê1 and pick x2� � � � � xn�L� on ∂��0� L�, the Euclidean sphere
of radius L centered at the origin, so that every x ∈ ∂��0� L� is within
(Euclidean) distance Lγ of one of the xi. We may arrange that n�L� ≤ C1×
L�1−γ��d−1� as the following constructive sketch shows. Take x1 = Lê1 and sup-
pose x1� � � � � xk have already been selected. Choose xk+1 ∈ ∂��0� L� \ �⋃k

i=1,
��xi� Lγ�� if this latter set is nonempty, and stop otherwise. The Euclidean
balls ��xi� Lγ/2� cover disjoint patches of ∂��0� L� with �d − 1�-dimensional
area of order Lγ�d−1�. Since ∂��0� L� has total area of order Ld−1, it follows that
the process must stop after order L�1−γ��d−1� steps.
Also, take x′i = 2Lê1 − xi so each x′i is on ∂��2Lê1� L� and every x ∈

∂��2Lê1� L� is within distance Lγ of one of the x′i. The x
′
i are simply the xi

radially reflected about x1 = Lê1 and they bear the same spatial relation to
each other as do the xi.
We claim that for some constant C1, for large L we have

T2L ≥ min
1≤i≤n�L�

T�0� xi� + min
1≤j≤n�L�

T�2Lê1� x′j� − C1L
γα on F̃c

L�(4.4)

To see this, let r = �qk� denote the path from q�0� to q�2Lê1� that realizes T2L.
Let q̃ = qk∗ denote the first qk on r not in ��0� L� and put q = qk∗−1. (Since r
ends with q�2Lê1� and, on F̃c

L, �q�2Lê1� − 2Lê1� < Lγ < L, such a k∗ exists;
furthermore, k∗ �= 0 since r begins with q�0� and �q�0�� < L on F̃c

L.) Similarly,
let q′ denote the first qk on r such that q′ and all subsequent qk’s on r lie
within ��2Lê1� L�. Then clearly,

T2L ≥ T�0� q� +T�q′�2Lê1��

Now let x = q q̃ ∩ ∂��0� L�; it follows from (5.3) of Lemma 5.2 that, for
some C1, on F̃

c
L we must have �q−x� ≤ C1L

γ for all large L. Picking xi∗ so that
�xi∗ − x� ≤ Lγ, we get that

�q�xi∗ � − q� ≤ �q�xi∗� − xi∗ � + �xi∗ − x� + �x− q� ≤ �2+C1�Lγ�
It follows that T�0� xi∗ � ≤ T�0� q� + �2+C1�αLαγ and hence,

T�0� q� ≥ min
1≤i≤n�L�

T�0� xi� − �2+C1�αLαγ�

Similarly,

T�2Lê1� q′� ≥ min
1≤j≤n�L�

T�2Lê1� x′j� − �2+C1�αLαγ�

yielding (4.4) for an appropriately larger C1. Since x1 = x′1 = Lê1, it follows
that

min
1≤i≤n�L�

T�0� xi� + min
1≤j≤n�L�

T�2Lê1� x′j�

≤ T2L +C1L
αγ +T�0� Lê1�IF̃L

+T�2Lê1� Lê1�IF̃L
�
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Taking expectations and using the symmetry of our construction together
with the Cauchy–Schwarz inequality yields

2E�min
i

T�0� xi�� ≤ ET2L +C1L
αγ + 2

√
E�T2

L �P�F̃L��(4.5)

Now E�T2
L � = �ETL�2 + VarTL, where the second summand is of order L by

Theorem 2.1 and the first term is of order L2 by general subadditivity argu-
ments [see (7) in [18]].
It follows from (5.2) of Lemma 5.2 (for possibly different C0 and C1) that

P�F̃L� ≤ C1 exp�−C0L
γd�. Hence,√

E�T2
L �P�F̃L� = o�1� = o�Lαγ� as L→∞

and

ET2L ≥ 2E
[
min

1≤i≤n�L�
T�0� xi�

]
−C1L

αγ

= 2ETL − 2E
[
max

1≤i≤n�L�

(
E�T�0� xi�� −T�0� xi�

)]
−C1L

αγ�

The equality above uses that E�T�0� xi�� = E�T�0� x1�� = ETL. Since αγ <
1/2, Lemma 4.1 will be proved if we establish that

E

[
max

1≤i≤n�L�

(
E�T�0� xi�� −T�0� xi�

)]
≤ C1

√
L�log L�1/κ1 �(4.6)

To conclude the proof of Lemma 4.1, take Y�L�
i = T�0� xi�/

√
L in Lemma 4.3

below and note that the hypotheses are satisfied with a = 1
2 + ε, ã = �1− γ�×

�d− 1� + ε, b = κ1, b̃ = κ2 and C0 and C1 as in Theorem 2.1.

Lemma 4.3. For L ≥ L0 > 1, let Y�L�
i for 1 ≤ i ≤ n�L� be nonnegative random

variables on a common probability space such that, for some a� ã� b� b̃�C0�C1 ∈
�0�∞�,

E�Y�L�
i � ≤ La and n�L� ≤ Lã(4.7)

and

P��Y�L�
i −E�Y�L�

i �� > x� ≤ C1 exp�−C0x
b� for x ≤ C0L

b̃�(4.8)

Then, for some C2 = C2�L0� a� ã� b� b̃�C0�C1�,

E

[
max

1≤i≤n�L�
�E�Y�L�

i � −Y
�L�
i �
]
≤ C2 �log L�1/b for all L ≥ L0�(4.9)
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Proof. Let M�L� denote max1≤i≤n�L��E�Y�L�
i � − Y

�L�
i � and put f�L� = Ĉ×

�log L�1/b where we take Ĉ so that C0Ĉ
b = a+ ã. Note thatM�L� ≤ La since the

Y
�L�
i are nonnegative, so

M�L� ≤
{
f�L�� if Y�L�

i −E�Y�L�
i � ≥ −f�L�, for all i ≤ n�L�,

La� otherwise.

For large L, f�L� ≤ C0L
b̃ and we have

E�M�L�� ≤ f�L� + La
n�L�∑
i=1

P
(
Y
�L�
i −E�Y�L�

i � ≤ −f�L�
)

≤ f�L� + La+ãC1 exp�−C0f�L�b�
= f�L� + C1 ≤ C2 �log L�1/b�

where the equality follows from our choice of Ĉ and the final inequality holds
for an appropriate C2. The second inequality above holds only for large L,
but since EM�L� ≤ La we can ensure that EM�L� ≤ C2�log L�1/b for all L ≥ L0 by
making C2 larger if necessary. ✷

5. Technical lemmas. Throughout this section, φ is any cost function of
the form

φ�t� =
{
tα� if t ≤ h,
hα + αhα−1�t− h�� otherwise,

with α > 1 and h > 0. Recall our notation that, for any cost function φ of this
form and a� b ∈ �d,

�φ�a� b� = �c ∈ �d
 φ��a− c�� +φ��c− b�� ≤ φ��a− b���(5.1)

and that � �a� b� = �φ∞�a� b�, where φ∞�t� = tα. We provide below in Lemma
5.1 some elementary geometric properties of these regions.

Lemma 5.1. The region �φ�0� Lê1� is closed and convex, contains 1
2Lê1 in

its interior and is invariant with respect to rotations about the first coordinate
axis. Also, �φ�a� b� is the set �φ�0� �a− b�ê1� rigidly moved so that 0 is moved
to a and �a−b�ê1 is moved to b. [By the rotational invariance of �φ�0� �a−b�ê1�
about the first coordinate axis, any such rigid motion will do.] In the case
φ = φ∞, � �0� Lê1� = L� �0� ê1� and L′ < L implies that � �0� L′ê1� ⊂ � �0� Lê1�.

Proof. Much of this lemma is self-evident. We prove only the convexity
claim and the statements about the case φ = φ∞. The convexity of �φ�0� Lê1�
follows from the facts that φ is convex and increasing as follows. For c,
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c′ ∈ �φ�0� Lê1�, and λ ∈ �0�1�,
φ�L� ≥ λ�φ��c�� +φ��c− Lê1��� + �1− λ��φ��c′�� +φ��c′ − Lê1���

≥ φ�λ�c� + �1− λ��c′�� +φ�λ�c− Lê1� + �1− λ��c′ − Lê1��
≥ φ��λc+ �1− λ�c′�� +φ��λ�c− Lê1� + �1− λ��c′ − Lê1���
= φ��λc+ �1− λ�c′�� +φ��λc+ �1− λ�c′ − Lê1����

so also λc+�1−λ�c′ ∈ �φ�0� Lê1�. That � �0� Lê1� = L� �0� ê1� follows from the
(degree α) homogeneity of φ∞. If L′ < L, � �0� L′ê1� = L′� �0� ê1� ⊂ L� �0� ê1� =
� �0� Lê1�, where the containment follows since 0 is in the convex � �0� ê1�. ✷

Lemma 5.2. For γ ∈ �0�1�, let Aγ� L ≡ �∃a ∈ �d with �a� ≤ 2L and �a −
q�a�� ≥ Lγ�. Then, for some C0 and C1,

P�Aγ� L� ≤ C1 exp�−C0L
γd��(5.2)

and furthermore, for large L, on Ac
γ� L,

sup��a− b� 
 �a� ≤ L� b ∈ �d� � �a� b� ∩Q = �� ≤ C1L
γ�(5.3)

Remark. If C ≡ sup��a�
 a ∈ �d� � �0� a� ∩ Q = ��, then (for large L)
C ≤ C1L

γ on Ac
γ� L. By the substitution x = C1L

γ, it follows that

P�C > x� ≤ C1 exp�−C0x
d�(5.4)

(for possibly different C0 and C1). Also, on Ac
γ� L, if �q� q′� is any geodesic

segment with �q� ≤ L (or �q′� ≤ L), then �q− q′� ≤ C1L
γ. It follows (for possibly

different C0 and C1) that

P�∃ geodesic segment �q� q′� with �q� ≤ L or �q′� ≤ L and �q− q′� > Lγ�
≤ C1 exp�−C0L

γd��
(5.5)

While Lemma 5.2 gives (5.4) and (5.5) for large x and L, respectively, this
restriction is removed by increasing C1.

Proof of Lemma 5.2. For large L, we have that

Aγ� L ⊂ �∃a ∈ �d with �a� ≤ 2L and �a− q�a�� ≥ Lγ/2��
This larger event has probability bounded by C1L

d exp�−C0L
γd�, which, for

smaller C0 is bounded (for large L) by C1 exp�−C0L
γd�. By increasing C1 if

necessary, (5.2) will hold for all L.
To get (5.3), we take C1 large enough so that

�
( 1
2 ê1�C1

−1) ⊂W�0� ê1��(5.6)

Suppose L is large enough so that L > C1L
γ and so that, for a configuration Q,

we can find a� b ∈ �d satisfying: �a� ≤ L, �a − b� > C1L
γ, with � �a� b� devoid

of particles from Q. If �b� < 2L, put b̃ = b; otherwise put b̃ = ab ∩ ∂��0�2L�.
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Then, since �a− b̃� ≥ L and � �a� b̃� ⊂ � �a� b� (by Lemma 5.1), a and b̃ satisfy
��a+ b̃�/2� < 2L; �a− b̃� > C1L

γ, with � �a� b̃� devoid of Poisson particles. Since,
using (5.6), ���a+ b̃�/2�C1

−1�a− b̃�� ⊂ � �a� b̃�, it follows that∣∣∣∣q(a+ b̃

2

)
− a+ b̃

2

∣∣∣∣ ≥ C1
−1�a− b̃� ≥ Lγ�

that is, the configuration Q belongs to Aγ� L. ✷

Lemma 5.3. For any a� b� c ∈ �d we have

φ2��a− c�� ≤ 22α�φ2��a− b�� +φ2��b− c���(5.7)

and

φ��a− c�� −φ��a− b�� −φ��b− c�� ≤ 2αhα�(5.8)

Proof. First we prove (5.7). If t ≤ 2h then

φ�t�
φ�t/2� =

φ�t�
�t/2�α ≤

tα

�t/2�α = 2α�

If t > 2h, put t = �1+ y�2h where y > 0. Then

φ�t�
φ�t/2� =

1+ α�1+ 2y�
1+ αy

= 1+ α
1+ y

1+ αy
≤ 1+ α ≤ 2α�

with the latter two inequalities holding since α > 1. Thus φ�t� ≤ 2αφ�t/2�
for all t ≥ 0. Now suppose, without loss of generality, that �a − b� ≤ �b − c�
so �b− c� ≥ 1

2 �a− c� and
φ��a− c�� ≤ 2αφ� 12 �a− c�� ≤ 2αφ��b− c���

giving that

φ2��a− c�� ≤ 22αφ2��b− c�� ≤ 22α�φ2��a− b�� +φ2��b− c���
and verifying (5.7). To establish (5.8), we first show by examining cases that,
for x�y ≥ 0,

φ�x+ y� −φ�x� −φ�y� ≤ 2αhα�(5.9)

This clearly holds if x+ y ≤ 2h. If x+ y > 2h with x > h and y ≤ h, then

φ�x+ y� −φ�x� −φ�y� ≤ φ�x+ y� −φ�x� = αhα−1y ≤ αhα ≤ 2αhα�

A symmetric argument works for x + y > 2h with x ≤ h and y > h. Finally,
if x > h and y > h, then

φ�x+ y� −φ�x� −φ�y� = �α− 1�hα ≤ 2αhα�

To complete the proof of (5.8), let b′ be the orthogonal projection of b onto
the line passing through a and c. Then the left side of (5.8) is dominated
by φ��a − c�� − φ��a − b′�� − φ��b′ − c��. If b′ �∈ ac, this quantity is negative.
If b′ ∈ ac, then (5.9) yields (5.8). ✷
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Lemma 5.4. For any E > 0 and a� b ∈ �d, let 	E�a� b� denote the set
	E�a� b� =

{
c ∈ �d
 ∃ a point p on the line segment connecting

3
4a+ 1

4b and
1
4a+ 3

4b such that �c− p� ≤ E
}
�

and define �φ�a� b� as in (5.1). Then for any E > 0, there is an h0 > 0 such
that 	E�a� b� ⊂ �φ�a� b� whenever �a− b� > h0 and h > h0.

Proof. Clearly it suffices to prove this for a = 0 and b = Lê1 where L > 0.
Let c be any point whose ê1 coordinate is L/2 and put u = �c− �L/2�ê1�. First,
by examining cases, we calculate how large u may be while keeping c inside
�φ�0� Lê1�. Since �c� = �c − Lê1�, to have c ∈ �φ�0� Lê1� we need 2φ��c�� ≤ φ�L�
for which it is sufficient to have

2φ
(
L

2
+ u

)
≤ φ�L��(5.10)

If L < h, to have (5.10), it suffices to have 2� L2 + u�α ≤ Lα or

u ≤ �2−1/α − 2−1�L�(5.11)

On the other hand, if L > 2h, (5.10) will obtain provided

2
(
hα + αhα−1

(
L

2
+ u− h

))
≤ hα + αhα−1�L− h��

which reduces to

u ≤ α− 1
2α

h�(5.12)

Finally, if h ≤ L ≤ 2h, it suffices to have

2
(
L

2
+ u

)α
≤ hα + αhα−1�L− h��

or, equivalently,

u ≤
[
2−1/α

(
1+ α

(
L

h
− 1
))1/α

− 1
2
L

h

]
h�

One verifies by calculus that the quantity in brackets, viewed as a function
of L, is increasing on the interval �h� α+1

α
h� and decreasing on �α+1

α
h�2h�. It

therefore suffices for the case h ≤ L ≤ 2h to have

u ≤ min�2−1/α − 2−1�2−1/α�1+ α�1/α − 1�h�(5.13)

(Note that this minimum is strictly greater than 0 since α > 1.) Using (5.11),
(5.12) and (5.13), we see that to ensure that c ∈ �φ�0� Lê1� it suffices to have

u ≤ Cmin�L� h��
where

C = min
(
α− 1
2α

� 2−1/α − 2−1� 2−1/α�1+ α�1/α − 1
)
�
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That is,


E�L� = �c ∈ �d
 c′sê1 coordinate is L/2� and �c− �L/2�ê1� ≤ E�
satisfies 
E�L� ⊂ �φ�0� Lê1� if E ≤ Cmin�L� h�. It follows from the convexity
of �φ�0� Lê1� that the suspension of 
E�L� defined by

�E�L� =
⋃

p≤ρ≤1

[
ρ
E�L� ∪ �ρ
E�L� + �1− ρ�lê1�

]
also satisfies

�E�L� ⊂ �φ�0� Lê1� for E ≤ Cmin�L� h��(5.14)

Elementary geometric arguments show that 	E�L� ⊂ �4E�L� if L ≥ 8E. It
follows from this and (5.14) that

	E�L� ⊂ �φ�0� Lê1� for L ≥ 8E and �C/4�min�L� h� ≥ E�

proving the lemma for h0 = max�8E�4E/C�. ✷

The next purely geometric lemma (proved in [17]) states, roughly speaking,
that if �q0� � � � � qn� is a minimizing path with respect to the cost function φ
and a segment L = qi qi+1 passes near a segment L′ = qi′ qi′+1 where i < i′,
then this must happen near the end of L and the beginning of L′.

Lemma 5.5 (No doubling back proposition [17]). Under the above arrange-
ment, if a ∈ L and b ∈ L′, then �qi+1 − a� ≤ 16�a− b� and �qi′ − b� ≤ 16�a− b�.
Also, therefore, �qi+1 − qi′ � ≤ 33�a− b�.

The following lemma is a modification of Theorem 3 of [26].

Lemma 5.6. Let �Mk
 k ≥ 0�, M0 ≡ 0, be a martingale with respect to the
filtration �k ↑ � . Put :k =Mk−Mk−1 and suppose �Uk
 k ≥ 1� is a sequence of
� -measurable positive random variables satisfying E�:2k��k−1� ≤ E�Uk��k−1�.
With S =∑∞

k=1Uk, suppose further that for finite constants C
′
1 > 0, 0 < γ ≤ 1,

c ≥ 1 and x0 ≥ c2 we have �:k� ≤ c and

P�S > x� ≤ C′1 exp�−xγ� when x ≥ x0�(5.15)

Then limk→∞Mk =M exists and is finite almost surely and there are constants
(not depending on c and x0) C2 = C2�C′1� γ� < ∞ and C3 = C3�γ� > 0 such
that

P��M� ≥ x
√
x0� ≤ C2 exp�−C3x� when x ≤ x

γ
0 �

Proof. The proof of this lemma largely parallels the proof of Theorem 3
of [26].
Throughout the proof, C2�C′1� γ� will denote a constant whose value depends

only on C′1 and γ. As the proof progresses, C2 will be made possibly larger
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several times, each occurrence of which is indicated by a “+” superscript:
C+2 �C′1� γ�. Similarly, C3�γ� will be made possibly smaller when indicated by
a “−” superscript.
Following Kesten, put

A =
∞∑
k=1

E�:2k��k−1��

ν = inf
{
L 


∞∑
k=L+1

E�Uk��L� > z
}

�where inf � = ∞�

and

Ã =
ν∑

k=1
E�:2k��k−1��

Here z > 0 is arbitrary, but a specific choice will be made later. Then it follows
exactly as in Kesten’s Step 2 that

P�A ≥ y� ≤ P�ν <∞� + P�Ã ≥ y�(5.16)

and that, for any positive integer r; E�Ãr� ≤ r!zr−1ES. Next, we estimate

ES =
∫ ∞
0

P�S > s� ds ≤ x0 +C′1
∫ ∞
0
exp�−sγ� ds = x0 +C2�C′1� γ��

so E�Ãr� ≤ r!zr−1�x0 + C2�C′1� γ��. Also, as in Kesten’s (5.8), by taking r =
'y/z( where y ≥ z, we get

P�Ã ≥ y� ≤ C′ · �x0 +C2�C′1� γ��
1
z
exp
(
− y

2z

)
≤ C+2 �C′1� γ� exp

(
− y

2z

)(5.17)

with the second inequality holding for y ≥ z ≥ x0 since also x0 ≥ 1. [C′ comes
from Stirling’s formula and the fact that

√
y/z ≤ constant · exp�y/2z�.]

Next, as in Kesten’s Step 3, we estimate P�ν < ∞�. Let Sm = ∑m
k=1Uk

and Sm�L = E�Sm��L�. If g�s� = exp� 12sγ� then g′�s� = 1
2γs

γ−1 exp� 12sγ� > 0
for s > 0 and g′′�s� = 1

2γs
γ−2 exp� 12sγ�� 12γsγ+γ−1� > 0 when sγ > 2�1−γ�/γ =

2β. Hence g̃�s� = �eβ ∨ exp� 12sγ�� is convex giving that
(
g̃�Sm�L�
 L ≥ 0

)
is a

submartingale. Also, for z ≥ z�γ� = �2β�1/γ, g̃�s� > exp� 12zγ� if and only
if s > z. So, for z ≥ z�γ�,

P�ν <∞� ≤ lim
m→∞ lim

n→∞P
[
max
L≤n

Sm� L > z
]

= lim
m→∞ lim

n→∞P
[
max
L≤n
{
g̃�Sm�L�

}
> exp

( 1
2z

γ
)]

≤ lim sup
m→∞

lim sup
n→∞

exp
(− 1

2z
γ
)
E�g̃�Sm�n�� (by Doob’s inequality)
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≤ lim sup
m→∞

lim sup
n→∞

exp
(− 1

2z
γ
)
E�E�g̃�Sm���n��

(by Jensen’s inequality)

≤ lim sup
m→∞

exp
(− 1

2z
γ
) (
eβ +E�g�Sm��

)
= exp

(− 1
2z

γ
) (
eβ +E�g�S��)�

Now

E�g�S�� ≤ g�x0�P�S ≤ x0� −
∫ ∞
x0

g�s�dP�S > s�

= g�x0� +
∫ ∞
x0

g′�s�P�S > s�ds�

≤ exp
( 1
2x

γ
0

)+C′1
γ
2

∫ ∞
x0

exp
(− 1

2s
γ
)
ds �since sγ−1 ≤ 1 on �x0�∞��

≤ exp
( 1
2x

γ
0

)+C+2 �C′1� γ�
(
by replacing

∫ ∞
x0

with
∫ ∞
0

)
�

Hence, for z > z�γ�,
P�ν <∞� ≤ exp

(− 1
2z

γ
)(
C+2 �C′1� γ� + exp

( 1
2x

γ
0

))
≤ C+2 �C′1� γ� exp

(− 1
2�zγ − x

γ
0�
)
�

(5.18)

Following Kesten again by letting y→∞ and then z→∞, (5.17), (5.18) and
(5.16) give that P�A = ∞� = 0. But limk→∞Mk =M exists and is finite almost
surely on �A <∞� (See, e.g., Theorem 4.8 of [13].)
Next, as in Step 1 of Kesten and pages 154 and 155 of [31] (this is where

the boundedness of the martingale differences is used), for y ≥ cx > 0,

P�M ≥ x� ≤ P�A ≥ y� + exp
(
− x2

2ey

)
�(5.19)

Combining (5.16), (5.17), (5.18) and (5.19), we get that

P�M ≥ x� ≤ C+2 �C′1� γ�
[
exp
(
−z

γ − x
γ
0

2

)
+ exp

(
− y

2z

)
+ exp

(
− x2

2ey

)]
�

whenever

y ≥ cx� y ≥ z ≥ x0 and z ≥ z�γ��(5.20)

Now, as in Kesten’s Step 4, take z = �xγ0 + xa�1/γ where a = 2γ/�1 + 2γ�,
and y = xz1/2. Then 2z1/2 ≤ 21/γ�x1/20 + xa/�2γ�� so, with C3�γ� = 2−1/γ/e,

y

2z
= x

2z1/2
≥ C3�γ�

x

x
1/2
0 + xa/�2γ�

and
x2

2ey
= x

2ez1/2
≥ C3�γ�

x

x
1/2
0 + xa/�2γ�

�
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Also, since a = 1− a/�2γ� and C3�γ� < 1/2,

�zγ − x
γ
0�/2 = xa/2 = x/2

xa/�2γ�
≥ C3�γ�

x

x
1/2
0 + xa/�2γ�

�

Presently we verify that for some constant C4�γ�, (5.20) holds provided x ≥
C4�γ�√x0. The relation y ≥ cx is equivalent to z ≥ c2, but z ≥ x0 ≥ c2,
giving two inequalities in (5.20). To get z ≥ z�γ� = �2β�1/γ, it suffices to have
x ≥ �2β�1/a which, since x0 ≥ c2 ≥ 1, will hold if x ≥ �2β�1/a√x0. Finally,
y ≥ z is equivalent to x2γ ≥ x

γ
0 + xa which will hold provided

1
2x

2γ ≥ x
γ
0 and 1

2x
2γ ≥ xa�

or, equivalently, when

x ≥ 21/2γ
√
x0 and x ≥ 21/�2γ−a��(5.21)

Since 1/�2γ − a� = �1 + 2γ�/4γ2 ≥ 1/2γ and x0 ≥ 1, both conditions in (5.21)
will hold provided x ≥ 2�1+2γ�/4γ

2√
x0. It therefore suffices to take C4�γ� =

max��2β�1/a�2�1+2γ�/�4γ2��.
Letting d = d�γ� = 2γ + 1, we get

P�M ≥ x� ≤ C+2 �C′1� γ� exp
[
−C3�γ�

x

x
1/2
0 + x1/d

]
�

whenever x ≥ C4�γ�√x0. Now, for C4�γ�x1/20 ≤ x̃ ≤ x
d/2
0 we also have x̃1/d ≤

x
1/2
0 , so

P�M ≥ x̃� ≤ C2�C′1� γ� exp
[
−C−3 �γ�

x̃√
x0

]
�

Substituting x̃ = x
√
x0, we get that, for C4�γ� ≤ x ≤ x

γ
0,

P�M ≥ x
√
x0 � ≤ C2�C′1� γ� exp�−C3�γ�x��

But for x < C4�γ�, the exponential is bounded away from zero by exp�−C3
�γ�C4�γ��. Hence,

P�M ≥ x
√
x0 � ≤ C+2 �C′1� γ� exp�−C3�γ�x� for x ≤ x

γ
0 �

The lemma follows by a further application of this to the martingale �−Mk

k ≥ 0�. ✷
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Press.

[28] Licea, C. and Newman, C. M. (1996). Geodesics in two-dimensional first-passage percola-
tion. Ann. Probab. 24 399–410.

[29] Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge Univ. Press.



FIRST-PASSAGE PERCOLATION 623

[30] Nagaev, S. V. (1979). Large deviations of sums of independent random variables. Ann.
Probab. 7 745–789.
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