BAYES’ THEOREM '

By

Josepa BERKSON

As for all established sciences, the typical problems ,of practical
statistics have become inveterately attached to their several neat and
convenient formulary solutions. .To recall consideration of the basic
reasoning underlying every-day statistical practice that applies to an
elementary question may appear in the nature of an unnecessary dis-
turbance of prevailing peace. If the experience of the writer is typical,
however, vagueness or dubiousness of the premises inherent in a rule
applied by rote will emerge to plague one in the conclusions, and a
periodic return to fundamentals is as salutary for mental comfort as
for the integrity of science itself. In what follows, an attempt will be
made to go over the ground covered by Bayes’ Theorem, and to point
out its import for sound statistical reasoning. No claim is laid to
mathematical originality at any specific points, but in the approach and
synthesis will be found, we hope, a measure of instructive novelty,

A large class of statistical problems is typified in the following.
A standard machine is known, from long experience, to produce a cer-
tain fraction P of imperfect products. What is the probability that
in the next issue of » products, a fraction p will be imperfect?

We now present a related but not identical question. There is
no available knowledge concerning the general practice of a machine;
n products are examined and a fraction p found to be imperfect.
What is the probability that the machine turns out generally a fraction
P of imperfect products? The distinction between the two questions
may be schematized as in Figure 1.
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The values P, B, B, E, represent serially all the various frac-
tions of imperfect products which might characterize particular ma-
chines, each one, let us say, determined by some definite combination
of mechanical defects. Values p, , p,, 2, etc, are the fluctuating
fractions of imperfect products that might appear in the samples pro-
duced by these machines. Connected by arrows with 2 are the ran-
domly varying values of » that might result from 2 , with 2 those
that might result from 2, , etc., the weight of the arrows being pro-
portional to the probability of the particular » concerned. It is to
be noticed that each 72 may give rise to any of a number of p ’s and
that some of the p’s may result from any of a number of P ’s.

The first question in terms of the diagram is: “Given 2 , how
probable is it that p, shall result?”’ The secondis: “Civen p, , how
probable is it that £ has been its source?” Answering the first, we
calculate in the realm of the p’s connected with Z . In the second
we calculate in the realm of the 2 ’s connected with p, .

An answer to the first is given directly in terms of our every-day
statistical reasoning. We say that the »’s which result from £ can be
adequately described as a normal distribution with o= ”_ ,
and from this the probability of any particular p calculated. The
answer to the second is more difficult, and was given in general terms
first by Bayes (1) in the theorem known by his name. Bayes’ Theo-

rem is not frequently used in applied statistics; yet the problems that
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arise in practical situations would often seem to demand just such
an answer as it provides. More often than not do we have a specific
sample and inquire about the probable character of the universe from
which it was drawn, in contra-distinction to the situation in which the
universe is known, and the questions concern the possible samples.

The method of presenting the theorem here given will not follow
rigidly any historical demonstration. Actually the calculation quan-
titatively of an “inverse probability” or the “probability of causes,”
was first given by Bayes. But he considered a purely geometric set-up
and his solution was in terms of this conception. By implication he
utilized a general principle first clearly stated later by Laplace, and
furthermore, Laplace generalized the solution still more by arguing
from the probability of a cause given by a particular sample, to the
probability of the next sample. With this realized, then, that Bayes is
to be credited with the original demonstration and Laplace for an im-
portant extension, we may proceed to a demonstration which is not
exactly that of either.

I. Problem. We have an urn containing three balls. Each ball
is colored black or white, and each color is equally likely. We draw
one ball and it is black. What are the probable contents of the urn?
We argue—the following are the possibilities:

I 11 111 v
wWww wwb wbb bbb

All of these possibilities, we say, are equally likely a priori and
we have for the probabilities of the sample the following:

B 1, the probability of a black sample from I = 0

B 11, the probability of a black sample from Il = 1/3

FE 111, the probability of a black sample from III = 2/3
B 1V, the probability of a black sample from IV = 3/3

where B I is the probability of the samiple 5 being drawn from urn
I, B II from urn II, etc. We say now that the relative probabilities
of the various urns are in proportion to the probabilities of the sample
drawn, and we have

(a) 21:PI1:PIIL:PIV=0:1/3:2/3:3/3
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where P11 is the probability that, having drawn the ball, urn I was its
source, PII that urn II was the source, etc.

Also, since the ball must have been drawn from some one of the
urns, the total probability of one or another of the urns is unity and
we have

(b) PI+PII+PII+PIV=1

From (a) and (b) we have therefore

Pl = 0
Pl = 1/6
PIIl = 2/6
PIV = 3/6

We nuw extend 4lie problen: to the case where the a prior: prob-
abilities of the various possible urns are not equal.

Suppose we say that there are many urns of the description I,
11, I1I, IV in a large chamber, and that these are in proportion
I:I1:II1:IV=1:2:3:4. We now pick an urn at random and
draw from it a ball, which turns out to be black. What is the prob-
ability that the urn is of some particular description? Proceeding as
before, we have for the probabilities of the sample being drawn from
the various urns the following:

ps1 = 1/10x 0=0 (Probability of urn x probability
of sample)

p, 11 =2/10x 1/3 = 2/30

2 111 = 3/10 x 2/3 = 6/30

ps IV = 4/10 x 3/3 = 12/30

where g, I is the probability that such a sample 5 be drawn from
urn I, etc.

And again on the principle that the probabilities of the urns are
in proportion to the probabilities of the sample drawn, we have

PI1:PII:PII:PIV=0:2/30:6/30:12/30

and as preceding
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PI+PII+PII+PIV =1

Therefore
Pl = 0
Pl = 2/20
PIIl = 6/20
PIV = 12/20

We shall now generalize this solution.

Let m,, m, ., m,, etc. be the a priori probabilities of the various
possible universes from which a sample is to be drawn. Let 5 , »,,
P, » etc., be the probability of the sample being drawn from the re-
spective universes. Then, a sample s having been drawn, the prob-
ability that its source is universe » is given by

7P
= Ll
z Znp

If all the universes are equally likely (our first case above),
m = m = 1, = 1, ' and we have

Pr
(1) £ = LR

If the equally probable universes are infinite in number, the P ’s
varying by infinitesimal gradations from zero to unity, and » may
assume any positive value less than 1, we may extend the last for-
mula (1) by use of the calculus as follows:

Let a = any possible P between Q and 1. From a universe x
I draw a sample containing »r + s individuals, designated hereafter
as a sample (r, 3 ). The probability that it will contain » successes
and s failures is given by

Piroy=Epyx™(1-2)°

where P, ., is the probability that the sample ( 7, 5)
coefficient of the (r+/ )th term in the Bernoulli expansion = —7_-’_(11".*5.3” .

The probability of the sample of ( r,s) coming from a universe



J. BERKSON 47

the P of which lies between & and ( x + dx) is therefore

x+dx

P

4 (I'a) .

Ere x(/-2)dx
xt+d=
where - r, 9 is the probability that the sample (r, s ,
emanates from a universe whose 2 lies between x and (x +du ).
If the universe from which the sample is drawn may have a P any-
where between & and b, the probability of the sample ( 75 ) is
4

@) 7

(r,s)

b
o fx'(l—.r)’d.z'
a

and the probability that x is between @ and & is therefore as in (1)
b

xT(/-x)’ dx
3) P

f xV-xPdx

where P is the probability that the universe from which the sample
(r, s) was drawn has a P between @ and b . This is Bayes’ Theo-
rem in terms of the integral calculus.

Now, we ask the further question, what is the probability of a
second sample containing 7, successes and 7 failures' being drawn?

If x be the p of the universe frous which the sample (m, =)
is drawn, and if 2 may vary from 0 to 1 we have analogously with (2)

(4) ' !
Bmnr = Emyn S 1-x)"dz
o

o

where P(,,,',.)IS the probability that a sample (m,2) be drawn from
universes whose P’s vary between 0 and 1, and

_ (m+n)!
mn min!

E

1. Designated hereafter as the sample (m, ).
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The probability of the event (m,n) occurring from any par-
ticular universe is given by the product of the probability of that uni-
verse and the probability of the event. The total probability of the
event (. n), i. e., the probability that the event (7, »n) occurs at all
from any u. ..verse, is, therefore, given by the product of form (3)
with 0 and 1 substituted for & and » and (4), as follows:

!

(5) B , jra__run(/_x)sﬁndx
p (m+ n)! 2

(m,n)(r,s)~ Il §
/.:c" (/-x)°dx
°

where R,, »,.(rs) is the probabiliy of a second sample (m;n)
after a f 'st sample (r, 5) has been drawn.

This is Laplace’s extension of Bayes’ Theorem, somewhat
modified.

Bayes’ Solution.

It will be illuminating to derive this result by the method of Bayes.
We shall follow his proof except to simplify his notation and to use
the integral calculus where he used geometric demonstration.

A B
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ABCD is a square billiard table. A ball is thrown and comes to
rest at 2°, through which a line is. drawn parallel to AC . A second
ball is thrown; if it stops to the left side of the line a’, we designate
a success, to the right, a failure. Before the first ball is thrown, what
is the probability of the second ball succeeding » and failing 5 times
in r plus s trials?

If the first ball conues to rest at &, the gr('»bability of a saccessful
second throw is Z%)r =p and of failure 55 =¢ . The probability
of » successes and s failures with the first ball at = is then

(r+s)! . s
ris! -

Let us erect at each pomt x’along CD a distance ¥’, so that

(6) Yy () prg
D ris! ¢
and conuicct the sununits forming a figure as shown n tigure 2. At
X

each 2‘l)oipt, of course, \y ‘will be different because p = 75° and
q= C‘g will be different, but for any particular case, r and 8

remain constant.

The probability that the first ball shall fall between a and (2+d'x)
is dx and that the second ball shall therefore succeed » and fail s

times is E}II)_ . That both shall happen is therefore

¥ dx’
cp *Cp

and if & is t be between @’ and &', the total probability is

. 5’
o = L [yox
& (r,s)” cpt g ox
4

o
where P . ) is the probability that the first ball fall between a
& ’ .
and &' and that a ball thrown subsequently 7+s times, succeed r
and fail s times.

3
But CD®=Arca of AD and /y'dx'—‘:- Area of the shaded
portion, @’<J4’. Therefore a’
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&’ ’ ’
7 _Arez aJb
“) o™ Area 4D

The probability that the first ball fall between € and D and
thereafter there occur 2 successes and 3 failures is similarly ﬁ—"',%—gig.
But the first ball must fall somewhere between € and D ; therefore
the total probability of the second throws having r successes and 5.
failures is given by

GJD
® LIRS oy

With this established, the analysis proceeds.

Given the result of a series of throws to be » successes and s
failures, what is the probability that the first ball has fallen between
a’and 5'? This we may obtain by the use of the solution already
derived and the principle of compound probability'.

Let x be the desired probability that the first ball fell between
&'and 5. We have seen that the probability of » successes and s
failures in the second series of throws is

Area CJD

Area AD from (8)

therefore the probability of the first falling between &' and b"and
the experience (r,s) following is

x - -Area &JD
Arez AD

But we have shown that this combined probability is equal to

Area aJb'

Area AD from (7)
Therefore
N = Area aJb’
®) Area CJD

1. This step is very elaborately proved in Bayes’ original paper by a circuitous
demonstration.
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This is Bayes’ Theorem, as its author gives it. The additional
part of his work is concerned with the quantitative estimate of the
ratio.

We may now show that his solution is the same as that given in
(3), as follows:

(10) y'=COx £, C%,),,( - C%')’ from (6)

where
x =distance from C to x’

Er _ (r+s)!

ss”

ris!

Now
a=zax CD
b'= bx CD

4 and & having the meaning of equation (3). Assume the relationship

11) x'=CDxx
(12) dx'=CDxdx
Then
x'=p’
Azrea aJb =/y'o’.z~’
x'=q’

<&
= COXE,, | x(/-x)*dx
X =

(Substituting from (11) and (12)).

Similarly
=1
Area GID=CD*xE,, [x*(12)dx

X0
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Therefore

-3
/-
b &/ x x)° dx

Area 7
J =7 V-z)°dx
[

which is the same as formula (3) previously derived.

To be directly applicable to statistical problems formula (5) must
be numerically evaluated. This is accomplished exactly for most prac-
tical instances only with a great amount of labor, and methods of
approximation have been resorted to. For a few simple special cases
the solution may be easily derived as follows:

An event has been tried NV times with p successes and q failures.
What is the probability that in the next single trial it will succeed?

Applying formula (5) to this instance, we have

r=p m =1

s =q n =0
and the desired probability is given by

f .zy *( /-x)%dx
P - 0

Fertryae
o
Now
[
a0, -\ __alb!
/x (7-x)?dr Grb+ 1)
From which we have

_ m+/ _ m+/

m+n+2 N+2

So that if nothing is known concerning an event except that it has
been tried three times and succeeded twice, the probability that it will
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succeed in the next trial is 3/5, not 2/3 as the more usual procedure
would indicate. Again, if an event has occurred a thousand times
without a failure, and we know concerning it nothing except that fact,
the probability that it will fail next instance is 1/1002. If an event
has never been tried at all, the probability that it will succeed on the
first trial is 1/2.

An event has been tried V times and succeeded each instance.
What is the prcbability that in the next & trials it will again succeed
each time? Here

r=N m=d

3 =0 n =0

and tne desired probability is given by
/ x**dx

P= -
xodx

o

_ N+/
" N+d+/

From this we conclude that if an event has succeeded 25 times
and never failed, the probability that in 25 further trials it will again
not fail even once is 26/51, or in general if an event has never failed
in V trials, the probability that AF further trials will yield no failure
is about 1/2.

Discussion.

To precisely what position in the methodology of applied statistics
Bayes’ Theorem will eventually become adjusted, it is impossible at this
point in its development to say with certainty. The literature on the
subject, as soon as it leaves the realm of purely hypothetical situations,
is rife with disagreement, and clarification remains a contemporary
oroblem. In this brief presentation, no attempt can be made to ade-
quately summarize the various views concerning the questions at issue.
We may, however, consider a few points that have disciplinary value
for statistical thinking rather than any immediate practical utility.

It is basic to the aims of statistical calculations to estimate the
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probability of given experiences from assumptions of pure randoni
variation. A consideration of the logic involved in the development
of Bdyes’ Theorem is useful in bringing out the inadequacy of the
reasoning by which our most ordinary statistical procedures attempt
to accomplish this. If, having observed a probability p , we esti-
mate the standard deviation of succeeding samples of 7 by V-EL

we imply tacitly that in the universe from which the sample was
drawn, the chance of a success is the p of our observation. The rea-
soning leading to, and formula (3) itself, indicate how unwarranted
this is. Our knowledge of the universe which generated the sample is
never given with certainty by the sample. Indeed, formula (3) states
a probability for any particular universe that may be assumed. With
only a sample as the source of knowledge, and without Bayes’ Theorem,
we have no clue as to the nature of the generating universe. But,
if we do not know the universe, how are we to calculate the character
of its samples? One answer is to take refuge in formula (5), i. e.
use Bayes’ Theorem. As a practical solution of the difficulty this has
two major objections: first, there are no existing tables for making
the necessary calculations without prohibitive arithmetic labor ; second,
even if the evaluation could be effected there are reasons to doubt
the validity of its application. For the formula in question rests on
the assumption that all the probabilities from zero to unity which might
characterize the universes from which we draw samples are a priori
equally likely, the socalled assumption of the equal disttibution of ignor-
ance. Now this is an exceedingly questionable assumption, and it is
partly on these grounds that Keynes rejects outright the possibility
of applying probability to actual experience. It must be admitted, we
think, that it is difficult to see what there is to justify the assumption
that every sort of general universe from which arise the events of
experience is equally likely. Would it not appear the more reasonable
hypothesis that these universes are themselves “events,” samples of
some larger universe; and why should this be extremely different in
the distribution of its probabilities from the universes that we ordin-
arily meet? There are writers, however, who, admitting that the as-
sumption is to be questioned, believe it may be subjected to experimental
test, and have essayed to actually sample at random the probabilities
that characterize the universes of our experience. It would be im-
pertinent to assert that an experimental investigation is bound to be
futile, but the utility of this sort of procedure seems to us exceedingly
dubious. We doubt indeed that any clear meaning can be assigned to
the concept of “the universes of our experience,” of which random
samples are to be obtained. Dut granting the existence of such a
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distribution of a priori probabilities we doubt the relevancy of its
estimation to any practical problem. In any actual investigation, we
deal with a definite slice of possible experience; an anthropologist is
not concerned with the universes dealt with in. the investigation of an
economist or an epidemiologist. If a priori probabilities are of inter-
est to him, they are those that obtain in his peculiar world of observa-
tion. Tt appears to us guite as wide of the mark aimed at, to call in
a formula which obtains its a priori probability from experience in
general, as to obtain it from the unique experience at hand, and indeed
it may be argued that, as between the two, the latter is the more
reasonable.

What then does all this come to? Does it mean that the entire
structure of established statistical procedure rests on quicksand, to he
toppled over by anyone armed with a reading of Bayes’ Theorem}
We are inclined to the belief held by Keynes that, so far as logic is
concerned, this is substantially true. As regards this, however, it is
at bottom in no worse plight than any current scientific procedure
when its fundamental assumptions are hard pressed. But we do not
rest the matter here. All this admits is that applied statistics, like
all applied science, is not founded on unquestionable premises and in-
vulnerable logic. It is perfectly consistent to add that in general its
formulae are good approximations. How good? This is a question
permitting no dogmatic comprehensive answer. Differently good for
different situations. Some idea of the degree of approximation may
be obtained for given assumed conditions by direct calculation. It
may be shown, for instance, that under certain conditions results ob-
tained by way of Bayes’ Theorem or the more usual “normal” dis-
tribution render not very different results, and these conditions, indeed,
approach the ones we most frequently encounter. But, in general, a
more satisfactory answer is furnished in the pragmatic consideration
that our formulae have in fact been widely used and experience has
not violated their anticipations. This is the fact that we would stress,
because it throws into relief the experimental as opposed to the math-
ematical ‘foundation of statistics. Comforted on the one hand that
experience in general supports our procedures, the considerations we
have elicited in this discussion will emphasize equally their shifting
approximation. The clear minded and careful worker will keep this
constantly in mind and shun literal interpretation of conclusions drawn
from formulae applied to extreme cases. No scientist worth his salt
will permit himself the use of formulae the premises of which he has
not examined. But the statistician, because of the great variability of



56 BAYES' THEOREM

the data with which he is likely to deal, stands in special need of this
precaution. Where statistics run counter to what appears to be the
general experience, it is a wise rule to re-examine the statistics rather
th-n to indict forthwith the dependability of the experience. Such an
attitade would modify considerably much that is found in current
statistical literature and it would modify it in the direction of greater

soundness.
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