EDITORIAL

FONDAMENTALS OF THE THEORY OF SAMPLING

1{I. DisrkiBUTION OF SAMPLE m TH MOMENTS ABOUT
THE ORIGIN OF THE PARENT POPULATION

As in section I, we shall be concerned with the (%) possible
samples, each consisting of ,~ variates, that can be selected from the
parent population of s variates x,, x,, .. . x,, . . . %,. The m th
moment of each sample, computed in each case about the origin of the
parent population, may be written
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Tf we write —‘E,.i= Y; » it will be observed that the above dis-
tribution may be written
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and therefore may be regarded as a distribution of the algebraic sums
of the respective samples withdrawn from the parent population
Y, Yar o+ - Ygohe Ze, Z . 22 Consequently, since
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it follows from formulae 1, 2, . . . of section I that
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etc.

For the case of sampling from an unlimited supply, we have,
permitting s to approach infinity, that corresponding to formulae (18)
of section I
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The distribution of sample means may be ubtained by placing
m=1, yielding
M! = MS
/".‘l‘ .;/-'#0:

(6) ul:l- %n #U:z

/ 3(r-1 2
I‘q.(" r? Hae:x + ——(;-:T)/"z:a;
etc.

These results may be written corresponding to formulae (19) of
section I,
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The distribution of sample means withdrawn from an infinite par-
ent population is therefore characterized by means of the semi-invariant
relation
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and the standard semi-invariants by the relation

o
(8;3) rn:g =—,.”.’7':;-_I

- An interesting result is obtained by considering the special case
of formulae (8) for which 2 = 2, and assuming that the parent popu-
lation is normal. Since for a normal distribution
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and for any distribution
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it follows that for a normal distribution
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and therefore for the distribution of sample second moments about a
fixed point in the case of withdrawals from an unlimited “normal”
supply, we have, from (5)

1 See formulae 23 and 24, page 117, Vol. I, No. 1, of ANNALS.
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1 Formulae (21), Section I. Page 116, Vol. I, No. 1, of ANNALSs.
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Apparently the general expression is

(13) A, ZeeT (M ]
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If the parent population be normal, and if furthermore M_=0,
then
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and the standardized semi-invariants would likewise be

15) w5253 Y.

Again, since

%2
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formula (15) may be written

(16) (3‘1) Y

On page 196 of Vol. I, No. 2 of the ANNALS it was shown that
the standard moments for Pearson’s Type III function

y=y (1+% ORAP

are defined by the recurring relation
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The standard semi-invariants of Type III are
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etc.

Comparing these results with formula (16) it appears, thereiore,
that if the parent population be normal and its mean zero, the distribu-
tion of sample second moments computed about the fixed mean of the
parent population will be Pearson’t Type III, for , finite. As »
approaches infinity, the Type 111 distribution will approach the Normal
Curve as a limit.

To illustrate: If from an infinite population of spherical balls
whose diameters formed a normal distribution characterized by A,
and oy , samples of r balls each were withdrawn, then if the average
area be determined for the balls in each sample, the distribution of these

areas, from formula (13), would be described by the relation
oy ” 2
2" (-9 Oy M
Amie = s {1+n(F) }
and if one could conceive of negative diameters of the balls so that

M= 0, then the distribution of areas would be Type III.

If one were to succeed in finding the function whose 2 th semi-
invariant agrees with the above expression, then the law of distribu-
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tion for the sample areas would be available. Again by likewise inves-
tigating the cases of formulae (5) where m = 3, 4, 5, etc., other semi-
invariant relations can be found, and these in turn may lead to the
discovery of new and important frequency functions. At all events,
such sample moments and semi-invariants will generally permit one
to express as an infinite series, such as the Gram-Charlier series, the
unknown law of distribution.

SectioN 1V

The problem of the distribution of sample moments about the
origin of the parent population’ is unfortunately often confused with
the problem of the distribution of sample moments computed about
the means of the respective samples. The latter problem is more briefly
termed sampling about the mean. 1f M, and A, designate the means
of the first two samples respectively, and 2, and =z, the second mo-
ments of these two samples computed about A, and A, respectively,
then for m=2

re _M 2
z’= Z(l;. ’)

- fz(I’Mz) 2

Z, =

’"" . . .
where, as before, £ indicates that the summation extends over the
r variates occurring in the ¢ th sample.

In order to sum all values of #,and 2/ it is necessary to obtain
first another expression for the second moment about the mean, which,
although of value in algebraic manipulations, is practically of no value
in arithmetic computation. Thus,

r:4 2 "
2, z (-f'“ M)

re o red 2
L x*-2M ExerM;
- r

1 Also referred to as the distribution of sample moments about a fived point.
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where L x; x; designnates the sum of all the terms formed by tak-
ing the products of all the variates in the ¢ th sample two at a cime.

Then Z £, |

by employing the method employed in section I. The above reduces
easily as follows: '
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Whereas the expected value of a sample mean is equal to the mean
of the parent population and the expected value of a sample » th
moment about a fixed point is equal to the n th mcment of the parent
population’, it appears that the expected value of a samnle second mo-
ment is less than the second moment of the parent population.

A slight digression at this point is desirable. In formula (6) of
Section IIT we found that for the distribution of sample means with-
drawn from an infinite parent population,

/
Man™ FHMazx

That is, the standard error of the mean

1 Formula (1), Section III.
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where O denotes the standard deviation of the infinite parent popula-
tion. By formula (18) above it appears that the expected value of the
second sample moment is for s=co

_ -/ r-/ .2
My = —F HKax T 5 O

Designating the square root of the expected sample moment by
&z , we have that

4 [r=1 ’ r
Cr= Ouyiyr , OF = d,\/’.—_/

and therefore formula (19) may be written

I,

(20) Ty =

Since the probable error is defined as .6745 o , we have that the
probable error of the mean

’

- Ox_ 6745 Z=
(21) PE=.6745 7%= . 6745 2=

It should be observed that the expressions for both the standard
and probable errors of the miean are expected values when o is
employed. If one obtains but a single sample and computes its mean
and standard deviation, he still has no accurate knowledge regarding
the true value of the standard deviation of the parent population. Con-
sequently even the expression

’,

O.
P.E.,~ 6745 22

is merely an approximation. So far as I know, the true value of the
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probable error of the mean has never been found—even upon the as-
sumption that the parent population is normal. Since we have shown
that for s~oco the skewness of the samples is only # times the
skewness of the parent population, the fact that the parent population
is not normal is of no importance compared to the fact that where
only functions of the single sample are available, these must be sub-
stituted as the expected values of the corresponding functions of the
unknown parent population

Returning to our problem of describing further the distribution
of sample second moments about the mean:

Corresponding to formula (17), one can show by employing sym-
metric functions that
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For s=co this becomes

r-/
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In a thesis, C. H. Richardson' has shown that when s=

1 Submitted in 1927 to the University of Michigan. The balance of this section
is a synopsis of one part of this thesis.
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If the parent population be normal, that is if

X zpys=0
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the preceding formulae yield on reduction
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For the corresponding standard semi-invariants
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96 o’
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- These results show that so far as the sixth standard semi-invariant
the distribution of sample second moments about the mean is Type
111, irrespective of the mean of the paremt population.

Tt is to be regretted that many of the results presented here have
never been generalized for moments of any order. The methods pre-
sented have been chosen for two reasons: first, they permit one with
no knowledge of calculus to achieve somewhat of an understanding
into the theory of sampling ; and secondly, they yield results of sampling
from a finite parent population——a-problem of considerable practical
importance.

The results of sampling from an infinite population may be ob-
tained more readily and with far greater elegance and rigor by employ-
ing the method of semi-invariants.



