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Bayes’ theorem made its appearance as the ninth proposition
in an essay which occupies pages 370 to 418 of the Philosophical
Transactions, Vol. 53, for 1763. An introductory letter written
by Richard Price, “Theologian, Statistician, Actuary and Political
Writer,”! begins thus:

“I now send you an essay which I have found
amongst the papers of our deceased friend, Mr. Bayes,
and which, in my opinion. has great merit, and well

deserves to be preserved.”
A few lines further on Price says:

“In an introduction which he has writ to this Essay,
he says, that his design at first in thinking on the subject
of it was, to find out a method by which we might judge
concerning the probahility that an event has to happen, in
given circumstances, upon supposition that we know

$Read before the American Statistical Association during the meeting of the
American Association for the Advancement of Science in Cleveland, Ohio,
December, 1930.

' These titles are associated with the name of Price in the frontispiece por-
trait of him bound with the December, 1928, {ssue of Biometrika.
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24 BAYES' THEOREM

nothing concerning it but that, under the same circum-
stances, it has happened a certain number of times, and
failed a certain other number of times.”

“Every judicious person will be sensible now that the
problem mentioned is by no means merely a curious spec-
ulation in the doctrine of chances, but necessary to be
solved in order to assure a foundation for all our reason-
ings concerning past facts, and what is likely to be here-
after.”

No one will dispute the importance ascribed to Bayes’ problem
by Price; in- fact, a paper by Karl Pearson on an extension of
Bayes’ problem is entitled “The Fundamental Problem of Prac-
tical Statistics.” Opinions differ, however, as to the validity and
significance of the solution submitted in the essay for the problem
in question. In view of this situation I shall limit myself today
to an exposition of the fundamental characteristics of the prob-
lem Bayes' theorem deals with and shall give 1o consideration to
its interesting applications.

The exposition may be outlined as follows: after specifying
the class of problems to which Bayes’ theorem pertains, I shall:

I. Discuss briefly two problems, each of which will empha-
size one of two kinds of a priori probabilities which should be con-
stantly borne in mind when Bayes’ theorem is under consideration,

II. Partially analyze a certain ball-drawing problem which
will not only serve as an introduction to the algebra of Bayes’
theorem but will later help to throw light on its significance,

III. Present Bayes’ problem and the related theorem.

IV. Make some remarks on the value of the theorem and
the controversies which it raised.

In carrying out this plan I shall find it convenient to ignore
the historic order of events,

When probability is the subject under consideration one an-
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ticipates problems such as: A coin is about to be tossed 15 times;
What is the probability that heads will turn up seven times? A
sample of 100 screwdrivers is to be taken from a case containing
1000 screwdrivers of which 300 are known to be defective: what
is the probability that the sample will contain 25 defectives?

These are direct, or a priori, probability problems. In each
of them the nature of a game, or an experiment, is specified in
advance and then a question is asked relating ‘o one, or more, of
the possible outcomes of the game or experiment. -Problems of
this type have occupied the attention of mathematicians since the
days of Pascal and Fermat, the creators of the mathematical theory
of probability.

An inverse class of problems of great practical significance,
called a posteriori probability problems, came into prominence with
the publication of Bayes’ essay. In these we find specified the re-
sult or outcome of a game which has been played, whereas the
question then asked is whether the game actually played was one
or some other of several possible games. This type of problem
is usually stated as follows:

“An event has happened which must have arisen from
some one of a given number of causes; required the prob-
ability of the existence of each of the causes.”

I

Consider this example: During his sophomore year Tom
Smith played on both the baseball and football varsity teams;
we have been informed that he broke his ankle in one of the
games; what are the a po&terioﬁ probabilities in favor of baseball
and football, respectively, as the baneful cause of the accident?

Evidently the answer depends on the number of baseball and
football games played during their respective seasons and also on
the likelihoad of a man breaking an ankle in one or the other of
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these two games. As a concrete case assume that:

1. At Smith’s college an equal number of baseball and football
games are played per season;

2. Statistical records indicate, that if a student participates in a
baseball game the probability is 2/100 that he will break an
ankle and that, likewise, the probability is 7/100 for the same
contingency in a football game.

In view of the first of these two assumptions our conclu-
sions as to the cause of the accident may be based entirely on the
information contained in the second assumption. The odds are
two to seven, so that the a posteriori probabilities regarding the
two admissible causes are:

For baseball, 2/(2+7) = 2/9.
For football, 7/(2+7) =7/9.

Now consider this other example. A lone diner amused him-
self between courses by spinning a coin. We elicited from the
waiter that in 15 spins heads turned up seven times. Moreover,
from our point of observation, the size of the coin indicated that
it was either a silver quarter or a ten-dollar gold piece. What are
the a posteriori probabilities in favor of the silver quarter and the
gold piece, respectively? ‘

If the lone diner were a professor from one of our eastern
universities we would not hesitate a moment in declaring that the
coin spun was a quarter. But it happens that the gentleman was
a member of the Cleveland Chamber of Commerce. dining at the
Bankers’ Club. We must, therefore, give the matter more careful
consideration. The number of quarters and gold pieces usually
carried by a banker and the probabilities of obtaining the observed
result by spinning coins are relevant; let us assume, therefore
that:

1. The small change purse of a Cleveland financier contains, on
the average, ten-dollar gold pieces and quarters in the ratio of
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Moreover, we may assume (in fact we know) that:

2. If either a quarter or a gold piece is spun 15 times, the prob-

ability that heads will turn up seven times is approximately 1/5.

The second of these two items of information makes the a

posteriori probabilities depend entirely on the first item. Clearly
the odds are eight to three and we conclude:

For a quarter, a posteriori probability=3/(3+8) = 3/11.
For a goldpiece, a posteriori probability=8/(3+8) = 8( 11.

Now regarding the general a posteriori problem,

“An event has happened which must have arisen
from some one of a number of causes; required the prob-
ability of ‘the existence of each of the causes,”

what do the two examples we have just considered suggest? In

both problems we inquired into:

L

The frequency with which each of the possible causes is met
BEFORE THE OBSERVED EVENT HAPPENED. This frequency
is called the a priori existence probability for the correspond-
ing cause.

The probability that a cause, if brought into play, would re-
produce the- observed event. This probability will hereafter
be referred to as the a priori productive probability for the
cause in question,

In the case of the broken ankle, the a priori existence prob-

abilities were equal and took no part in our conclusion; we based

the a posteriori probabilities entirely on the a priori productive

probabilities. We did just the opposite with reference to the coin

spun by the Cleveland financier; on account of the equality of the

a priori productive probabilities we deduced a posteriori prab-
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abilities in terms of the unequal a priori existence probabilities.

It is apparent that our two examples represent extreme cases.
In general, the solution of an inverse or a posteriori problem, in-
volving a number of causes, one of which must have brought about
a certain observed event, depends on both sets of direct, or a priors
probabilities, Those of the first set give the frequency with which
the various causes were to be expected before the observed result
occurred ; those of the second set give the frequencies with which
the observed result would follow ¥rom the various causes if each
were brought into play.

IT

Bearing in mind the two distinctly different sets of a priori
prababilities required in arriving at a posteriori conclusions re-
garding the possible causes of an observed event, we must now
give some thought to the algebra of the subject before taking up
Bayes’ problem and theorem. For this purpose consider the fol-
lowing bag problem:

A bag- contained /M balls, of which an unknown number
were white. From this bag IV balls were drawn and of these T~
turned out to be white. What light does this outcome of the
drawings throw on the unknown ratio of the number of white
balls to the total number of balls, M , in the bag? Let ax be
this unknown ratio.

Two cases of this problem may be considered:

Case 1.—After a ball was drawn it was replaced and the bag was
shaken thoroughly before the-next drawing was made.
Case 2.—A drawn ball was not replaced before the next drawing.

These two cases become essentially identical when the total
number of balls in the bag is very large compared with the num-
ber drawn. Case 1 will serve as an introduction to Bayes’ prob-
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lem; later we will find it highly desirable to consider Case 2.
We are confronted with ( M +1) possible hypotheses or
causes before the drawings took place:

1 - the unknown value of o is 2, = 0/ M,
2 - the unknown value of o is 2, = 1/M,
3 - the unknown value of x is o, = 2 / M,

k+ 1-the unknown value of a is x, = /M,

M +1 - the unknown value of x 15 X, = M/ = 1.

Let w (2,) be the g priori existence probability for the & ’th
hypothesis ; by this is meant the probability in favor of the & 'th
hypothesis based on whatever information was available regarding
the contents of the bag prior to the execution of the drawings.

Let B(T N, a,)be the a priori productive probability
for the A 'th hypothesis; by this is meant the probability of ob-
taining the observed result ( 7" whites in /Y drawings) when the
value of x is k//.

Then, the a posteriori probability, or probability after the
observed event, in favor of the &#’th hypothesis is

M . -
2. wix) B(T N, x:)

&0

For Case 1 of our bag problem we have

(1 A=

B(T N, xk)., (#) 'ikr (/-=x,) T

3 This is the Laplacian generalization of Bayes' formula, although in some
textbooks it is referred to as “Bayes’ Theorem.” A relatively short dem-
onstration of it is given by Poincaré in his Calcul des Probabilités, See
also Fry, Probability and its Engineering Uses, Art. 49.
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* where { -',-" ) represents. the number of combinations of N
things taken 77 at a time. Substituting in (1), we obtain,
after canceling from numerator and denominator the common

factor ( f".’) ,

2) 2, - w(x) z,” (1-x,) "'f
w(xe) &7 (r-2x.) "7

&20

If in equation (2) we give A successively the values «a ,

a+l, a+ 2 ... b6- 1, b and add the results, we
have i

or

r=b

O iy gy Bl (e
Wl ) x, (/- 2) "7

for the a posteriori probability that the unknown ratio of white
to total balls in the bag lies between @//7 and &//7, both

inclusive.

II1
BAYES’ PROBLEM

Consider the table represented by the rectangle 48C £ in
Fig. 1. On this table a line @S was drawn parallel to, but at
an unknown distance from, the edges AL and B8C . Then
a ball was rolled on the table &/ times in succession from the
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edge AD toward the edqge BC . As indicated in the figure
it was noted that 7 times the ball stopped rolling to the right
of the line OS5 and AN-T times to the left of that line,
What light does this information shed on the unknown dis-
tance from AD to O3S ? In more technical terms, what is
the @ postoriori probability that the unknown position of the line
O3S lies between any two positions in which we may be interested ?

C S D
I
/ ~v-T) 2
© .0 © T
2 . / RS
© ©
) 7o) A
Fig. 1.

Each rolling of the ball was executed in such a manner that
the probability of the. ball coming to rest to the right of OS is
given by the unknown ratio of the distance OA4 to the length
B A of the table; likéwise, the probability of the ball stopping
to the left of O S is given by the ratio of the distance 80 to
the length BA .

Set o= OA/BA, 1-x=B80/8BA,.

The only difference between this problem and the bag of balls
problem is that now the possible values of I are not restricted
to the finite set 0 /M, 1 /M, 2/M, . . . (M-1)/M, M/M
in the table problem & may have had any value whatever between
the limits of 0 and 1. Therefore eqiation (3) will answer the
question asked provided we substitute definite integrals in place
of the finite summations. This substitution gives us, for the de-
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sired a posteriori probability that a had a value between a2, and

x, , the formula

X,
wix)x” (1-x) " Tdx

) plx,x)- = .
"wlx)xT (1-2)" A x

Equation (4) is useless until the form of the a priori exis-
tence function w(x) is specified; this depends on the way in
which the line © S was drawn, Bayes assumed that the line
OS , of unknown distance from A D, was drawn through the
point of rest corresponding to a preliminary roll of the ball. This
amounts to postulating that all values of ar, between 0 and 1
were a priori equally likely. In other words, with Bayes, the
a priors existence function w(x)was a constant which, therefore,
did not have to be taken into consideration.! Thus, instead of
equation (4), Bayes gave the equivalent of the following restricted
formula:

xl r . ”‘7d
) plx,x,)- { xC-x) dx
/' xT(r-x) " Tdx

(]

I say “the ‘equivalent of” (5) because in Bayes’ day definite
integrals were expressed in terms of corresponding areas.

Equation (5) constitutes Proposition 9 of the essay, but is
usually referred to as Bayes’ theorem,

3 The existence function w () does not appear either explicitly or implic-
itly anywhere in Bayes’ essay. This fact raises the question as to whether
or not Bayes had any notion of the general problem of causes.
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Iv.

Equation (5) is a very beautiful formula; but we must be
cautious. More than one high authority has insinuated that its
beauty is only skin deep. Speaking of Laplace’s generalization
and extension of the theorem, George Chrystal, the English math-
ematician and actuary, closed a severe attack on the whole theory
of a posteriori probability! with the statement that “Practical peo-
ple like the Actuaries, however much they may justly respect
Laplace, should not air his weaknesses in their annual examina-
tions. The indiscretions of great men should be quietly allowed
to be forgotten.”

Chrystal’s advice as to the attitude one should assume toward
“the indiscretions of great men” is excellent, but in the case under
consideration, it was the plaintiff rather than the defendant who
committed indiscretions; this is discussed in a paper by E. T.
Whittaker? entitled “On Some Disputed Questions of Probability.”

The discussions and disputes, which began shortly after the
birth of the formula in 1763 and which have not as yet subsided,
may be divided into two classes:

1. Discussions concerning problems in which it is known that the
a priori existence function is not a constant.

2. Discussions concerning problems in which nothing whatever
is known concerning the a priori existence function.

The discussions of Class 1 are out of order in so far as
Bayes’ theorem is concerned; recourse should be had to formula
(4), Laplace’s generalization of the Bayes’ theorem, when it is
known that w( b4 ) is not a' constant. Failure to differentiate

140On Some Fundamental Principles in the Theory of Probability,” Trans-
actions of the Actuarial Society of Edinburgh, Vol. 11, No. 13.

? Tyansactions of the Faculty of Actuaries in Scotland, Vol. VIII, Session
1919-1920.
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explicitly between equations (4) and (5) has created a great deal
of confusion of thought concerning the probability of causes. The
discussions of Class 2 have centered on what Boole called “the
equal distribution of our knowledge,' or rather of our ignorance,”
that is to say “the assigning to different states of things of wl/lich
we know nothing, and upon the very ground that we know noth-
ing, equal degrees of probability.” Regarding the legitimacy of
this procedure Bayes himself. contributed a very important schol-
ium, which appeared in his essay on pages 392 and 393. The
argument in this scholium, based on a corollary to Proposition 8
of the essay, may be summarized as follows:

Assuming that all values of x are a priori equally likely and
that the A throws of a ball on the table have #ot yet been made,
the probability that 7~ times the ball will rest to the right of 0.5
and that the remaining -7 times it will rest to the left of
©S is (as shown in the corollary)

(6) p=j ()X (0" dx= 507

a result in which 7 does not appear. In other words, any as-
signed outcome for the throws is no more, or no less, likely than
any other outcome, if a priori-all values of o¢ are equally likely.
But, wrote Bayes in the scholium, when we say that we have no
knowledge whatever a priori regarding the ratio o, do we not
really mean that we are in the dark as to what will be the out-
come when we proceed to make ~/V throws? If so, then equa-
tion (6) justifies the assumption that a priori all values-of o are
equally likely.

To clinch his argument it must be shown that the converse
of equation (6) is true. That is, it must be shown that, if any
outcome of throws not yet made is as likely as any -other, then
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any value of x is a priori as likely as any other. This converse
theorem was submitted to Dr., F. H, Murray, who obtained an
elegant proof based on a theorem of Stieltjes.!

In view of Bayes’ corollary and his scholium, an analysis of
our bag problem with reference to the “equal distribution of our
knowledge, or ignorance” is in order.

Consider again Case 1 where each drawn ball is replaced in
the bag before the next drawing is tade.

Assuming each of the ( A +1) permissible hypotheses to be
a priori equally likely, the probability that /N drawings, not yet
made, will result in 7 white and N - 7 black balls is

(D& 8"

- |/
7) =
( ‘PéjM”

Equation (7) is not, in general, independent of 7 2 so that
any one assigned outcome of N drawings is not as likely as any
other outcome. This result is disturbing; at first sight it seems
to discredit Bayes’ scholium. We must, therefore, look into the
the matter more closely.

Bayes’ problem corresponds to drawings from a bag con-
taining an infinite number of balls. Therefore, even if drawn
balls are replaced, the chance of a particular ball being drawn
more than once is zero. But when N drawings with replace-
ments are made from a bag containing a finite number, M, of
balls, we are by no means certain of drawing N different balls;

* Bulletin of the American Mathematical Society, February, 1930.

* Consider, for example, the case of M =2, Equation (7 reduces to
AR &
P-%(%) (7)

a result which is not independent of 7.
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a particular white ball may be drawn several times over, and, like-
wise, a particular black ball may appear more than once. It is not
surprising, therefore, that Case 1 of the bag problem does not
confirm Bayes’ corollary.

Consider now Case 2, where the drawn balls are not returned
to the bag. If A& of the total balls are white and the rest black,
the probability that a sample of #/ balls from the bag will con-
tain 7 white and A/- 7 black is

(k ( - k) ( M)
T N-T N

Hence, if the permissible values 0,1, 2,3, . . . M for k
are all equally likely a priori, we obtain instead of (7),

M. , )
® o B AN ) ()

a result independent of any assigned value for 7 and identical
with the result in the corollary to Proposition 8 of the essay.

SUMMARY-

Bayes’ theorem is the answer to a special case of the general
problem of causes. The special case- postulates that the a priori-
existence probabilities for the various admissible causes of an ob-
served event are equal.

In the essay Bayes recommends that his theorem be adopted
whenever *we find ourselves confronted with total ignorance as
to which one of several possible causes preduced an observed
event. To justify this recommendation Bayes takes the attitude
that: A state of total ignorance regarding the causes of an ob-
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served event is equivalent to the same state of total ignorance as
to what the result will be if the trial or experiment has not yet
been made. This interpretation is a generalization of the fact
that in his billiard table problem, the assumption of equal likeli-
hood for all possible positions of the line O3S , gives equal prob-
abilities for the various possible outcomes of a set of A/ ball
rollings not yet made.

Laplace, Poincaré and Edgeworth! have shown that the ¢
priori existence function wv(x) , which appears in the Laplacian
generalization of Bayes’ theorem, is of negligible importance when
the numbers /¥ and 7 are large. Therefore, when this con-
dition holds, one need not hesitate to use Bayes’ restricted formula
for the solution of a problem of causes.

The transmission, by Price, of Bayes’ posthumous essay to
the Royal Society marked an epoch in the history of the literature
on probabhility theory. As mentioned at the beginning of this
paper, Karl Pearson has called the extension of Bayes’ problem
the “Fundamental Problem of Practical Statistics.”

1Laplace: “Oeuvres,” Vol. 9, p. 470. Poincaré: “Calcul des Probabilités,”
2d edition, p. 255. Bowley: “F. Y. Edgeworth’s Contribution to Math-
ematical Statistics,” pp. 11 and 12.
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