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Expressed by half-invariants in’this manver the explicit. form of equation (6) is

g @20 =34, A0+

Bl =R d I gl (e =k ) ) + 1)
A ’

+ 30 (@40 — 104, 1) + 152 @2 + ..

VIII. LAWS OF ERRORS OF FUNCTIONS OF OBSERVATIONS.

§26. There is nothing inconsistent with our definitions in speaking of Iaws of errers
relating to any group of quantities which, though not obtained by repeated observations,
have the like properly, namely, that repeated estimations of a single thing give rise, owing
to errors of one kind or other, to multiple and slightly differing results which are prima
facie equally valid. The various. forms of Iaws of actual errors are indeed only summary
expressions for such multiplicity; and the transition to the Iaw of presumptive errors
requires, besides this, only that the multiplicity is caused by fixed but unknown circum-
stances, and that the values must be mutually independent in that sense that nonme of the
circumstances have connected some repetitions to others in & manner which cannot be
common to all. Compare § 24, Example 6.

It is, consequently, not difficult to define. the law of errors for a fanction of ome
single observation. Provided only that the function is univocal, we can from each of the
observed values o,, o, ... 0, determine the corresponding value of tha function, and

f(0,) flog)s - .. flow)
«ill then be the serjes of repetitions in the law of errors of the function, and can be
treated quite like observations. ’

With respect, however, to those forms of laws of errors which make use of the
ides of frequency (probability) we must make one little reservation. Even though o, and
o, are different, we can have f(o) == f(0s), and in this case the frequencies must evidently
be added together. Here, however, we need only just mentiop this, and remark that the
laws of errors when expressed by half-invariants or other symmetrical functions .ate not
influenced: by it.

Otherwise the frequency is the same for f(o) as for o,, and therefore also the
probability. The ordinates of the curves of errors are not changed by observations with
discontinuous values; but the shecissa o, is replaced by f(o), and lkewise the argument
in the functional law of erors. In continwous functions, on the other hand, it is the

areas between corresponding ordinates which must remain unchanged.
s
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In the form of symmetrical functions the law of errors of functions of observations
may be computed, and not only when we know all the several observed values, and can there-
fore compute, for each of them, the corresponding value of the function, and at last the
symmetrical functions of the latter. In many and important cades it is sufficient if we
know the symmetrical functions of the observations, as we can compute the symmetrical
functions of the functions directly from these. For instance, if f(0) == o®; for then the
sums of the powers &, of the squares are also sums of the powers s. of the observations,
if only constantly m == 2n; &/, ==s,, &, = 8,, &, = 3,, etc.

§ 27. The principal thing is here a proposition as to laws of errors of the lincar
fAmctions by half-invariants.
It is almost self-evident that if o' == a0+ b
#y = ap,+b
Hy = a'n,
Ay = o'y (32)
etc.
Hr = ape (r>1)

For the linest functions can always be considered as produced by the change of
both seco and unity of the observations (Compare (24)).

However special the linear function ao - b may be, we always in practice manage
to get on with the formuls. (32). That we can succeed in this is owing to s happy
ciréumstance, the very same as, in numerical solutions of the problems of exact mathematics,
brings it about that we are but rarely, in the neighbourhood of equal roots, compelled to
smpley the formulm for the solution of other equations than those of the first degree.
Here we aro favoured by the fact that we may suppose the errors in good observations
to be small, so small — to speak more exactly — that we may generslly in repetitions
for. each series of observations o,, o,, ... 0, assign a number ¢, so near them all that
the squares and products and. highgr powers of the differences

0y — € 0g —Cy o0 Og—C
without any peroeptible error may be left out of consjderation in computing the fanction:
L. o, theso differences are trested like differentials. The differential calculus gives a definite
metbod, in such circumstances, for transforming any function f(o) into a linear one
1@ = fe)+1'(c)-(0—0).
The law of errors then becomes
(@) = f()+[' @) (uy(0) — &) == f(m\(0) }

o () = @Ol (3)
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But also by quite elementary means and easy artifices we may often transform
functions into others of linear form. If for instance f(0) == %, then we write

LI | c—(0—9 _1 1
T-c+(o—c)-nc’_(o_,)t_';"';"(0—0)-

and the law of errors is then .
1 1
" (;‘) - ?‘(lﬁ(")-“’)

Hs ("'l;) - %l‘t(")

#r (%) - L:;é):#v(or

§ 28. With respect to functions of two or more observed quantities we may ales,
in case of repetitions, speak of laws of errors, only we must define more closely what we
are to understand by repetitions. For then another consideration comes in, which was out
of the question in the simpler case. It is still necessary for the idea of the law of errors
of f(o,0) that we should have, for each of the observed quantities o and o', a series of
statements which severally may be looked upon as repetitions:

04, 0gy ..... On
Oy gy oene. on

But here this is not sufficient. Now it makes a difference if, among the special
circumstances by o and o', there are or are not such as are common to observations of the
different series. Wo want a technical expression for this. Here it is not appropriate only
to speak of observations which are, respectively, dependent on one another or independent;
we are led to mistake the partial dependence of observations for the functional dependence
of exact quantities. I shall propose to designate these particular interdependences of
repetitions of different observations by the word “bond", which presumably cannot cause
any misunderstanding. i

Among the repetitions of a single observation, no other bonds must be found than
such as equally bind all the repetitions together, and consequently belong to the pecularities
of the method. But while, for instance, several pieces cast in the same mould may be
fair repetitions of one another, and likewise one dimension measured once. on each piece,
two or more dimensions measured on thé same piece must generally be supposed to be
bound together. And thus there may easily exist bonds which, by community in & cir-
cumetance, as here the particularities in the several castings, bind some or all the repe-
titions of a series each to its repetition of another observation; and if obsecvations thus
connected are to enter into the same calculation, we must generally take these bonds into
sccount. This, as a rule, can only be done' by proposing s theory or hypothesis as to the
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mathematical dependence between the observed objects and their common circumstance,
and whether the number which expresses this is known from observation or quite unknown,
the right treatment falls under those methods of adjustment which will be mentioned
Iater on.

It is then in & few special cases only that we can determine laws of errors for
functions of two or more observed quantities, in ways analogous to what holds good of &
single observation and its functions.

If the observations o, ¢, o” ..., which are to enter into the caloulation of
f(o, 0, ¢", ...), are repeated in such a way that, in general, o, o;, 0;» ... of the i'th
repetition are connected by a common circumstance, the same for each ¢, but otherwise
without any other bonds, we can for each i compute a value of the function y; =
f(or, of, of; ...), and laws of errors can be determined for this, in just the same way as
for o separately. To do so we need no knowledge at all of the special nature of the bonds.

§ 29. If, on the contrary, there is no bond at all between the repetitions of the
observations o, o', 0", ... — and this is the principal case to which we must try to reduce
the others — then we must, in order to represent all the equally valid values of y =
f(o, o, 0", ...), herein combine every observed value for o with every one for o', for o”,
etc., apd all such values of y must be treated analogously to the simple repetitions of one
single observed quantity. But while it may here easily become too great a task to com-
pute y for each of the numerous combinations, we shall in this case be able to compute
y's law of errors by means of the laws of errors for o, o', o" ...

Concerning this a number of jropositions might be laid down; but one of them
is of special importance and will va almost sufficient for us in what follows, vis., that
which teaches us to determine the law of errors for the sum O of the observed quantities
o and 0.

If the law of errors is given in the form of relative frequencies or probabilities,
@(0) for o and (o) for o, then it is obvious that the product ¢(o)¢(o’) must be the fre-
quency of the special sum o+ o'. )

In the calculus of probabilities. we shall consider this form more closely, and there:
some cases of bound observations will find their solution; here we shall confine ourselves
to the treatment of the said case with half-invariants.

If o occurs with the observed values

044 04y, -v - Om
and o' with
0 0 ... o,

then by the mn repetitions of the operation O ==o0-}-0o' we get:



o,+0,0,40), ..... 0,4 d,
o,+0d,,0,+4+0,, ..... o, + o,

~ Oat0),0nt0, ..... ou-t o},
Indicating by M, the half-invariants of the sum O == 0+ o', we get by (18)

ey ﬁtﬂ i"“'"‘

momeoll - LT e (AT .. T (T ... %)

where m and » are the numbers of repetitions of o and o.. Consequently, if ftr Topresent
the half-invariants of o, and 4 of o, we get

», . Bye M e,
.ﬁ"""ﬂ'"""" = TR e

sud finally

..... 4

Employing the equation (17) instead of.(18) we can also obtain fairly simple
expressions for the sums of powers of (0--o') analogous to the binomial formuls. But the
extreme simplicity of (84) renders the hall-invariants unrivalled as the most suitable sym-
metrical functions and the most powerful instrument of the theory of observations.

More generally, for every linear function of obeervations not connected by any bond,

O w=a+tbdo+co4...do",
we obtain in the same manner and by (32)

M) = ot by, 460, +...
M,(0) = ', + ¢ A O L
.......................... (86)
M, (0) = Vu, +Cu, + .o

r>1.

When the errors of observation are sufficiently small, we shall also here generally:
be_able to give the most different functions a linear form. In conseqwence of this, the
propositions (34) and (83) acquire an almost universal importance, and afford neatly the
whole necessary foundation for the theory of the laws of errors of functions.

Example 1. Determine the square of the mean error for differences of the w'th
order of equidistant tabular values, between which thers is no bond, the square of the
moan error for every value being = 2,.
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A4(d4) = Ag{0, —0,) = B2,

24 (4%) == 24(0y —20,}-0,) = 62,

3 (L) = 44 (0g — 804480, —0,) = 202,
24(44) = 24(0,—40, 680y —4d0, +0,) = 702,

.....................................

2 8 -2,
L -3.8.0.14 02,

Example 2. By the observation of a meridional transit we observe two quantities,
vis. the time, ¢, when a star is coverod: behind.s thread, and the distance, f, from the
meridian at that instant. But as it may be assumed that the time and the distance are
not conneoted by a bond, and as the speed of the star is constant and proportional to the
known value sin p (p = polar distance), we always state the observation by the one quan-
tity, the time when the very meridian is passed, which we compute by the formula 0 ==
-+ f cosec p.

The mean error is

2,(0) = 2, () + cosec® p 1, (f).

Example 8. A scale is constructed by making marks on it at regular intervals,
in such & way that the square of the mean error on each interval is == 2,.

To measure the distance between two objects, we determine the distance of each
object from the nearest mark, the square of the mean error of this observation being == 2;.
How great is the mean error in & measurement, by which there are n intervals between
the marks we use?

2, (length) == wi, 4 24;.

Example 4. Two points are supposed to be determined by bond-free and equally
good (4, = 1) measurements of their rectangular co-ordinates. The errors being small in
proportion to the distance, how great is the mean error in the distance 4?

4,(4) - 2.

Example 5. Under the same suppositions, what is the mean etror in the inclina-
tion to the x-axis?

(B -.7?,-.

Example 6. Having three points in a plane determined in the same manner by -
their rectangular co-ordinates (z,,y,), (£5:¥s)s (%4, ¥,)s find the mean error of the angle
at the point (z,,y,)

n St 8+ 8
4,(F) = LTS,
44

4y, 4y 4, being the sides of the triangle; 4, opposite to (z,,y,).
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Examples 7 and 8. Find the mean errors in determinations of the areas of a
trisngle and a plane quadrangle.

4, (riangle) = | (43 + 43+ 4); 4, (quadrangle) = } (4" + ).

§30. Non-linear functions of more than one argument present very great difficulties.
Even for integral rational functions no general expression for the law of errors can be found.
Nevertheless, even in this case it is possible to indicate a method for computing the half-
invariants of the function by means of those of the arguments. To do so it seems indis-
ponsable to transform the laws of errors into the form of systems of sums of powers. If
) = f(o, 0',...0"%) be integral and rational, both it and its powers O can be written as
sums of terms of the standard form Sko®- o®...0"™" and for every such term the sum
resulting from the combination of all repetitions is ks, -4, ... s&” (including the cases
where a or b or d may be = 0), ” being the sum of all ctb powers of the repelitions of
&9, Thus if S, indicates the sum of the 4 powers of the function O, we get

Sr - 2.7:8.-8’.,..:“"’.

Of course, this operation is only practicable in the very simplest cases.

Example 1. Determine the mean value and mean deviation of the product 0o’ == O
of two observations without bonds. Here S, == s,s, and generally S, — 3 &), consequently
the mean value M, ==, ., and

M, = p, iy +p it + p i
M, already takes the cumbersome form
M, = pfy + o, Bpy + 1)+ pop, Bpy + 1)) 4 Spypu, gl
Exampie 2. Express exactly by the half-invariants of the co-ordinates the mean

value and the mean deviation of the square of the distance 1* w= 2 -1-y®, if z and y are
observed without bonds. Here

2, (r?) = 80(L) %0 ()

A (1Y) -k () 5o (y) + 20 (2) 24 (y)

89 (r2) = 8, (r) %o (9) + 285 (D) 2y (9) | 350 (2) 8, (y)
and

200 (%) = py (1) -F (g (D) pe () + (g ()2

2 () ~ py () + ey (@) o (0) - 2(pg (2))* + g (2) (2, (2))* +

Fra @) + 4s @) () + 2( g (9))* + dus (9) (2, (9))%.
§ 81. The most important application of proposition (35) is cortainly the deter-

mination of the law of errors of the mean value itself. The mean value

ry - jl;("l +0, +...04)



is, we know, a linear function of the observed values, and we may treat the law of errors
for p, according to the said proposition, not only where we look upon o,, ... 0a 88 per-
fectly unconnected, but.also where we assume that they result from repetitions made
sccording to the ssme method. For, just like such repetitions, o,, ... o, must not have
any other circumstances in common as connecting bonds than such as bind them all and
characterise the method.

As the law of presumptive errors of o, is just the same as for o, ... 0w, With the
‘known half-invariants 2,, 2y, ... & ..., Wo got according to (35)

D) = L 2 = 2

Ay (py) = ;}i(la"i‘----l-lg) - ':T" 87

and in general
‘f(l‘n) - dp.

While, consequently, the presumptive mesn of 8 mean value for m upaihom is
the presumptive mean itself, the mean error on the mean value u, is reduced to 7’_ of
the mean error on the single observation. When the number m is large, the formation
of mean values consequently reduces the uncertainty considerably; the reduction, however,
is proportionally grester with small than with large numbers. While already 4 repetitions
bring down the uncerfainty to half of the original, 100 repetitions are necessary in order
to add one significant figure, and s million to add 3 figures to those due to the single
cbeervation.

The higher half-invarisnts of x, are reduced still more. If the i, 4,, etc., of
the single observation are so large that the law of errors cannot be called typical, no very
great numbers of m. will be necessary to realise the conditions A4(u,) = 0 == 2,(u,) with
an approximation that is sufficient in practice. It ought to be observed that this reduction
is not only abeolute, but it holds good also in relation to the corresponding power of the
mean error V2, (p,)'; for (37) gives -

r r L4
R 4@ = T eaal),
which, for instance when m == 4, shows that the deviation of A, from the typical form
which appears by means of only 4 repetitions, is halved; that of 2, is divided by 4, that
of 4, is divided by 8, etc. This shows clearly the reason why we attach great importance
to the typical forss for the law of errors and make arrangements to sbide by it in practice.
For it appears now that swe possess in the formation of mean values a means of making
the laws of errors typical, even where they were mot so originally. Therefore the standard
rule for all practical observations is this: Take care mot to neglect any opportunities of
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repeating observations and parts of observalions, so that you can directly form the mean
values which should be subslituted for the observed results; and this is to be done espe-
cially in the case of observations of & novel character, or with peculiarities which lead us
to doubt whether the law of errors will bu typical.

This remarkable property is peculiar, however, not to the mean only, but also,
though with less certainty, to any linear function of several observations, provided only
the coefficient of any single term is not so great relatively to the corresponding deviation
from the typical form that it throws all the other terms into the shade. From (35) it is
seen that, if the laws of errors of all the observations o, o', ... o™ are typical, the law
of errors for any of their linear functions will be typical too. And if the laws of errors
are not typical, then that of the linear function will deviate relatively less than any of the
observations o, o', ... Om.

To avoid unnecessary complication we represent two terms of the linear function
simply by o and o'. The deviation from the typical zero, which appears in the rt» half-
invariants (» > 2), measured by the corresponding power of the mean error, will be less
for O ==o0+0' than for the most discrepant of the terms o and o'.

The inequation ,

b=
§7

says only that, if the laws of errors for o and o' deviate unequally {rom the typical form,
il is the law of errors for o that deviates wost. But this involves

(2)s &)
L) >\

rl'r ; Rln‘

or more briefly

where 7' is positive, » >> 2.
When we introduce a positive quantity U, so that
T - Ut SR,
it is evident thal (U4-1)* S (K- 1)%, and it is easily demonstrated that (T 1)" >
(U4 1)
Remembering that = + .« 3 2, ii £>>0, we gel by ine vinvmial formuia
1 1\r
(vr4 v sU+ U —2>W U
Consequently ‘
T+1y>U+1)sS B2
or
EANGTE RN
( ) > (3 )
“O
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and

B Uk ) (O

L7 @+ Aoy
but this is the proposition we have asserted, for the extension to any number of terms
causes no difficulty.

" But if it thus becomes.a general law that the law of errors of linear functions
must more or less approach the typical form, the same must hold good also of all mode-
rately complex observations, such as those whose errors arise from a considerable number
of sources. The expression *source of errors” is employed to indicate circumstances which
undeniably influence the result, but which we bave been obliged to pass over as unessential.
If we imagined these circumstances transferred to the class of essential circumstances, and
substantiated by subordinate observations, that which is now counted an observation would
ocour a8 a function, into which the subordinate obscrvations enter as independent variables;
and a8 we may assume, in the case of good observations, that the influence of each single
source of errors is small, this function may be regarded as linear. The approximation to
typieal form which its law of errors would thus show, if we knew the laws of errors of
the sources of error, cannot be lost, simply because we, by passing them. over as unessen-
tial, must consider the sources of error in the compound observation as unknown. More-
over, we may take it for granted that, in systematically arranged observations, every such
source of error as might dominate the rest will be the object of special investigation and,
if necessary, will bo included smong the essential circumstances or removed by corrective
calculations. The result then is that great deviations from the typical form of the law of
errors are rare in practice.

§ 32. It is of interest, of course, also to acquire knowledge of the laws of errors
for the determinations of 1, and the higher half-invariants as functions of & given number
of repeated observations.

Hero the method indicated in § 30 must be applied. But though the symmetry
of these functions and the identity of the laws of presumptive errors for o, 0y, ... 0u
afford very essential simplifications, still that method is too difficult. Not even for ,, have
1 discovered the general law of errors. In-my “Almindelig lagttagelsesiere”, Kobenhuvn
1889, I have published tables up to the eighth degree of products of the sums of powers
8 % ..., oxpressed by sums of terms of the form o, 0%, o"*; these ure here directly appli-
cable. In W. Fiedler: “Elemente der neueren Geometrie und der Algebra der bindren
Formen”, Leipeig 1862, tables up to the 10th degree will be found. Their use is more
difficult, because they require the preliminary transformation of the x, to the coefticients
up of the rational equations § 21. There arc such tables also in the Algebra by Meyer
Hirsch, and Cayley has given others in the Philosophical Transactions 1857 (Vol. 147,
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p- 480). 1 have computed the four principal half-invariunts of s, :
miy(py) = (w0 —1)d,
T mddy(py) = o — 1)%2, 4 2m(m — 1) A

WO y(py) == (i — 1)32y + 120 (e — 1)22, 4, + 4 (w0 — 1) (s — 23] +
<+ 8m? (m — 1)4;

WA, () =~ (06— 1)0dy + 2 (w — 1)3444, + 32w (i — 1)* (w — DA, dy +

-+ B (s —~ 1) (4?2 — Om + 6)2} 4 144m? (m — 1)22,2] 4

+ 96m? (m — 1) (18 — 2)A12, 4 48m® (m —- 1) 2;.

Here m is the number of repetitions.

Of yy and u, only the mean values and the mean errors have been found:

W2 (pny) = (m—1)(m—2)2,,
w8 dy(113) == (w = 1)* (m —2)%2g -+ Om (m — 1) (m —2)* (4,2, + 2}) +
+ 6w (s — 1) (m — d3;
and
WA, (1) == (w0 — 1) (w? — 6o -+ G)A, — Bin ( -=1)2]
WId, () = (w— 1)* (w? — 6w - 6)*d, +
-+ 8 (m — 1) (m? — Gms + 6) (2m? — 16m + 15)2,4, +
- 18 (4 — 1) (0 — 2) (m — 4) (m* — Bm 4 6)2,4, +
+- 2m (m — 1) (1Tm¢ — 204m® - 852m® — 1404m - 828)4]
+ 24m? (m— 1) (Bus® — 88m* 4 150m — 138)2,43 +
+ 44w (= 1) (1 — 2) (e — 4) (w —3) 232, +
+ 24w (e — L) (m? —Om + 24)4!) .
Further 1 know only that
WA (pg) — (== 1) (n — 2 {(w* — 120 4 124, —60m A4, ) |
M2, (ug) = (m— 1) (m* -~ 30m3 -|- 150m® — 240m + 120)d, —
— 30 (m — 1) (Twe? — B - 33)d, 4, —
— GOm(m -- V) (m-- 2) (3m--8) 2 —
— 60w (1) (m—6)A;,
mEA () = (w0 —1) (i —2) (mst — GOm* |- 420m* — 720m + 360)4; —
— G30m (s — 1) (W — 2) (m* — 8w +8)A 2, —
— 210m (w — 1) (s — 2) (Tw? — 48+ 60)A, 4, ~
= 1260w (n —1) (w — 2) (w — 10)2,27,

(38)

39

40

“n

4?)

(49)
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mIA () = (m—1) (n® — 126m® -+ 1806m¢ — 8400m* + 16800m* — 15120m + 5040)4 —
— 56m (in—1) (31m* —540im? -1-2340m* — 3600m - 1800)A42, —
— 1680m (m—1) (m — 2) (3m® — 40m* 4 120m — 96)A,4, —
— T0m (m — 1)(49m* — 720m* +- 3168m* — 5400m + 3240)4; —
~- 840m? (m — 1) (1m® -— 150m* - 5T6m — 540)2,4] —
— 10080m? (m — 1) (m — 2) (m* — 18m + 40)234, —
— 840m? (m— 1) (m* — 30m +90) 2} . (44)

Some 2,'s of products of the p,, iy, and u, present in general the same charac-
teristics as the above formule. The most prominent of these characteristics are:

1) It is easily explained that 2, is only to be found in the equation 2, (py) = 23
indeed no other half-invariant than the mean value can depend on the zero of the obser-
vations. Jn my computations this characteristic property has afforded a system of multiple
checks of the correctness of the above results.

2) All mean 2, (u,) are functions of the Oth degree with regard to m, all squares
of mean errors A, (ur),are of the (— 1)t degree, and generally each A(u) is a function
of the (1 —s)* degree, in perfect accordance with the law of large numbers.

3) The factor m —1 appears universally as a necessary factor of A (u), il only
r>1. If r is an odd number, even the factor m —2 appears, and, likewise, if r is .an
even number, this factor is constantly found in every term that is multiplied by one or
more A's with odd indices. No obliquity of the law of errors can occur unless at least three
repetitions are under consideration.

4) Many particulars indicate these functions as compounds of factorials
(m--1)(m—2)...(m—r) and powers of m.

If, supposing the presumed law of errors to_be typical, we put 2, = 2, ==... == 0,
then some further inductions can be made. In this case the law of errors of u, may be

‘ﬁi‘ll"!f+5.(é_‘!)_ﬂ+... - (l __2_1"%!).‘::: - .;20)',01'40‘ 45)

As to the squares of mean errors of u, we get under th. same supposition:

Ag(p) = .i.l:
2;(p1g) = ;’.“:
l:(l‘a) bad ;’;1: 46)
N (I‘q) - :‘.‘,1: ’
indicating that generally )
dy(pr) = Sz
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This proposition is of very great inferest. If we have a number m of repetitions
at our disposal for the computation of a law of actus! errors, then it will be seen that
the relative mean errors of p,, sy, sty ... g, 8r6 by no means uniform, but increase with
the index r. If m is large enough to give us y, precisely and u, fairly well, then s, and
po can be only approximately indicated; and the higher half-invariants are only to be
guessed, if the repetitions are not counted by thousands or millions.

As all numerical coefficients in .A,(y,) increase with r, almost in the same degree
as the coefficients 1, 2, 6, and 24 of 1], we must presume that the law of increasing
uncertainty of the half-invariants has a general character.

We have hitherto been justified in speaking of the principal hall-invariants as the
complete collection of the ,..'s or A's with the lowest indices, considering a complete series
of the first m half-invariants to be necessary to an unambignous determination of a law of
errors for m repetitions.

We now accept that principle as a system of relative rank of the hali~invariants
with 'incrouing uncertainty and consequently with a decreasing importance of the hali-
invariants with higher indices, .

We need scarcely say that there are some specisl exceptions to this rule. For
instance if A, == — 1}, a8 in alternative experiments with equal chances for and against
(pitch and toss), then 1, (u,) is reduced to = >0 2, which is only of the (—2)s order.

§ 33. Now we can undertake to solve the main problem of the theory of obser-
vations, the transition from laws of actusl errors to those of presumptive errors. Indeed
this problem is not s mathematical one, but it is eminently practical. To reason from the
artual state of a finite number of observations to the law governing infinitely numerous
presumed repuusions is an evident trespass; and it is a mere atlempt at prophecy to
predicl, by means of a law of presumptive errors, the results of future observations.

The struggle for life, howover, compels us to consult the oracles. But the modern
oracles must be scientific; particularly when they are asked about numbers and quantities,
mathematical science does not renounce its right of criticism. We claim -that confusion
of ideas and every ambiguous use of words must be carefully avoided; and the necessary
sct of will must be restrnined to the acceptation of fixed principles, which must agree
with the lw of large numbers.

It in hardly possible to propose more satisfactory principles than the following:

The mean value of all avaslable repetitions can be taken direetly, withont any
change, as an approrimation to the presumplive mean,

If only one observation. without repetition is kmawn, it must itsell, consequently,
be considered an approximation to the presumptive mean value.

The solitary value of any symmetrical and univacal function of repeated observationn
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must in the same way, as an isolated observation, be considered the presumptive mean of
this function, for instance p, == 1, (u¢).
Thus, from the equations 37—41, we get by m repetitions:

Ay =y
m’
b= wonm—gn @
m? 6
A= (m—l)_(;ntﬁm+§)(’“‘ +m—l‘“')

me

- ( 60 .
m-D) m—2) (m* —12m F19) f‘"+m-—1""")’

as t0 A 4y, 4y it is preferable to use the equations 42—44 themselves, putting only
Ay(pe) = prar (ps) = prg, 80d. 2, (ptg) = pr4. )

Inversely, if the presumptive law of errors is known in this way, or by adoption
of any theory or hypothesis, we predict the future observations, or functions of observations,
privcipally by computing their presumptive mean values. These predictions however, though
univocal, are never to be considered as exact values, but only as the first and most impor-
tant terms of laws of errors.

If necessary, we complete our predictions with the mean errors and higher half-
invariants, computed for the predicted functions of observations by the presumed law of
errors, which itself belongs to the single observations. These supplements may often be
useful, nay necessary, for the correct interpretation of the prediction. The ancient oracles
did not release the questioner from thinking and from responsibility, nor do the modern
ones; yet there is a difference in the manner, If the crossing of a desert is calculated to
last 20 days, with a mean error of one day, then you would be very unwise, to be sure,
if you provided for exactly 20 days; by so doing you incur as great a probability of dying
as of living. Even with provisions for 21 days the journey is evidently dangerous. But
if you can carry with you provisions for 23—25 days, the undertaking may be reasonable.
Your life must be at stake to make you set out with provisions for only 17 days or less.

In addition to the uncertainty provided against by the presumptive law of error,
the prediction may, be vitiated by the uncertainty of the data of the presumptive law itself.
When this law has resulted from purely theoretical speculation, it is always impossible to
calculate its uncertainty. It may be quite exact, or partially or. absolutely false, we are
left to choose between its admission and its rejection, as long as no trial of the prediction
by repeated observations has given us a corresponding law of actual errors, by which it
can be improved on.

4
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If the law of presumptive errors had been computed by means of a law of actual
errors, we can, according to (37), employ the values 2,, 4, ... and the number m of
actusl observations for the determination of A.(s,). In this case the complete half-invari-
ants of a predicted single observation are given analogously to the law of errors of the sum
of two bondless observations by

4
2y + 24 (py)

A+ Ar(py)

Though we can in the same way compute the uncertainties of 2, 4,, and 2, it
is far more difficult, or rather impossible, to make use of these results for the improvement
of general predictions.

Of the higher half-invariants we can very seldom, i ever, get so much as a rough
estimate by the method of laws of actual errors. The same reasons that cause this
difficulty, render it & matter of less importance to obtain any precise determination.
Therefore the general rule of the formation of good laws of presumptive errors must be:

1. In determining 1, and A,, rely almost entirely upon the actual observed values.

2. As to the half-invariants with high indices, say from 1, upwards, rely as
exclusively upon theoretical considerations.

3. Employ the indications obtainable by actual observed values for the intermediate
half-invariants as far as possible when you have the choice between the theories in (2).

From what is said above of the properties of the typical law of errors, it is evident
that no other cheory can fairly rival it in the multiplicity and importance of  applications.
It is not only constantly applied when A,, A,, and 1, are proved to be very small, but it
is used almost universally as long as the deviations are not very conspicuous. In these
cases also great efforts will be made to reduce the observations to the typical form by
modifying the methods or by substituting means of many observed values instead of the
non-typical single observations. The preference for the typical observations is intensified
by the difficulty of establishing an entirely correct method of adjustment (see the following
chapters) of observations which are not typical.

In thoso particular cases where 4, or i, or i, cannot be regarded as small, the
theoretical considerations (proposition 2 above) as to 1, and the higher half-invariants ought
not to result in putting tho latter == 0. As shown in “Videnskabernes Selskabs Oversigter”,
1899, p. 140, such lawa of errors correspond to divergent series or imply the existence of

imaginary observations. The coefficients k,..of the functional law of errors (equation (G))
1
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have this merit in preference to the half-invariants, that no term implies the existence
of any other. -
This series
. k, k, k, k,
(@) = Ekyp(z) — 5 D'p (@) + 3 D'p(a) — 5 DPp(2) + 5 D¢ () .-

where ,(z)_._‘_'.:él (the direct expression (31) is found p, 35), is therefore recommended
as perhaps the best general expression for non-typical laws of errors. The functional form
of the law of errors has here, and in every prediction of future results, the advantage of
showing directly the probabilities of the different possible values.

The skew and other non-typical laws of errors esem to have some very interesting
applications to biplogical observations, especially to the variations of species. The scientific
treatment of such variations seems altogether to require a methodical use of the notion of
laws of errors. Mr. K. Pearson hag giverr a series of skillful computations of biological and
other similar laws of errors (Contributions to the Math. Theory of Evolution, Phil. Trans.
V.186, p.343). Hero ho makes very interesting efforts to develop the refractory binomial
fanctions into & basis for the treatment of skew laws of errors. But there are evidemtly
no natural links between these functions and the biological problems, and the above formuls
(31) will prove to be essier and more powerful instruments. In cases of very abnormal
or discontinuous laws of errors, more refined methods of adjustment are required.

Example 1. From the 500 experiments given in § 14 are to be calculated the
presumptive half-invariants up to 2, and by (31) the frequencies of the special events out
of 8 number of s, = 500 new repetitions. You will find 2, == 1186, 2, == 4:1647, 1, =
4708, 2, ~= 3895, and 2, = — 26-946. A comparison of the computed frequencies with
the observed ones gives: '

Frequency
Eveats computed  observed o—c
4 00 0 - 00
5 —01 0 + 01
(] —03 0 + 038
1 16 3 4 14
8 123 1 — 58
9 3946 35 - 46
10 782 101 + 228
1 1041 89 — 161
12 977 M - 87
13 69-4 70 + 08

14 428 46 + 52
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Frequeney
Events computed  observed o0—¢
15 26:7 30 + 38
16 16-0 15 — 10
17 80 4 — 40
18 30 5 + 20
19 08 1 + 02
20 02 0 — 02
21 00 0 00

Example 9. Determine the law of errors by experiments with alternative results,
either “yes" observed m times and every time indicated by 1, or “no" observed m» times
and indicated by 0. What is the square of the mean error for the single experiment?

A S
N TR R T
for the probability determined by the whole series?
"e .
) = e mea =D’
and for the frequency of “yes" in the m - # experiments?

A (8,) - wFa—1"

§ 84. If observations are made and repeated, although their presumptive mean
value is previously known, exactly or very accurately, the law of presumptive ervors of
the half-invariants py, pg ... must be computed by reducing the zero of the observation
to tho known 2,. Putting thus s, == 0 and g, = O in the equations (19) and (21) we
obtain in analogy to (38)—(41) the following modified equations, the number of repetitions
being = m:

A,(p1g) = fy = 2,
Ai(py) = py = 2y
m—3 ]

A(pg) = pg = ™) l"';‘: 48)
L) = o = 25200, - B,

From the first of these equations we deduce the very important principle, that
every mean of the squares of differences between repeated bond-free observations and their
presumptive mean value is approximately equal to the square ef the mesn error

S(o:l,)_' -1, .
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Consequently, for any isolated observed value we must expect that
(0—24,0)* = 4,(0). (50)

~ § 35. In the following chapters, and in almost all practical applications, we shall
work only with the typical law of errors as our constant supposition. This gives simplicity
and clearness, and thus a 4-& may be recommended as a short statement of the law f
errors, a = 4, indicating a result of an observation found directly or indirectly by compu-
tation with observations, and b = J'4, expressing the mean error of the same result.

By the “weights” of observations we understand numbers inversely proportional to
the squares of the mean errors, consequently v — :. The idca presents itself when we
speak of the means of various numbers of observed values which have been obtained by
the same method, as the latter numbers here, according to (37), represent the weights
When v, is the weight of the partial mean value m,, the total mean value m must be
computed according to the formula

mo, +mo, ...+ meo,

m = o, F+v,+...40 ' 61
which is analogous to the formula for the abscissa of the cemtre of gravity, if m, is the
abacissa of any single body, v, its weight. We speak also of the weights of single obser-
vations. according to the above definition, and particularly in cases whery we can only
estimate the relative goodness of several observations in comparison to the trustworthiness
of the means of various numbers of equally good observations.

The phrase probable error, which we still find frequently employed by authers and
observers, is for several reasons objectionable. It can be used only with typical or at any
rate symmetrical laws of errors, and indicates then the magnitude of errors for which the
probabilities of smaller and larger errors are both equal to §. The simultaneoas use of
the ideas “mean error” and “probable error" causes confusion, and it is evidently the latter
that must be abandoned, as it is less commonly applicable, and as it can only be computed
in the cases of the typical law of errors by the previously computed mean error as
06745 V1, , while. on the other hand the computation of the mean error is quite
independent of that of the probable error. As errors which are larger than the probable
ons, still frequently occur, this idea is not so well adapted as the mean error to serve as
a limit between the frequent “small” errors and the rarer “large” ones. The use of the
probable error tempts us constantly to overvalue the degree of accuracy we have attained.

More dangerous still is another confusion which now and then occurs, when the
very expression mean error is used in the sense of the average error of the observed values
according to their numerical values without regard to the signs. This gives no sense,
except when we are certain of a law of typical errors, and with such a one this ,mean
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error” is V: A,. The only reason which may be advanced in defence of the use of this
idea is that we are spared some litlle computations, viz.some squarings and the extraction
of a square root, which, however, we rarely peed work ont with more than three signi-
_ficant figures.

IX. FREE FUNCTIONS.

§ 36. The foregoing propositions concerning the laws of errors of functions —
especially of linear functions — form the basis of the theory of computation with observed
values, a theory which in several important things differs from exact mathematics. ' The
result, particularly, is not an exact quantity, but always a law of errors which can be
represented by its mean value and its mean error, just like the single observation. More-
over, the compntation must be founded on a correct apprehension of what observations
we may consider mutually unbound, another thing which is quite foreign to exact mathe-
matics. For it is only upon the supposition that the result B == r,0, 4 ...7.0, = [ro)
— observe the abbreviated notation — is a linear function of unbound observaticns only,
0y ...0, that we have demonstrated the rules of computation (35)

44(R) = rd,(0,) -+ ... + 1rady(00) = [r2,(0)] (52)
A5(B) = rid(0,) + ... + rids(0a) = [r*24(0)). (63)

While the results of computationy with observed quantities, taken singly, have laws
of errors in the same way as the observations, they also resemble the observations in the
circumstances that there can be bonds between tﬁom. and, unfortunately, there can be
bonls betwees “‘results”, even though they are derived from unbound observations, If
only some observations have been employed in the computation of both R' = [r'0] and
R" = |/"0], these results will generally be bound to each other. This, however, does not
prevent us from computing a law of errors, for instance for aR’ 4 bR". We can, at any
rate, represent the function of the results directly as a function of the unbound observations,
0, ,.... 04,

' > aR 4 bR" = [(@’ + br")o). (54)

This possibility ix of some importance for the treatment of those cases in which
the single observations are bound. They must be treated then just like results, and we
must fry to represent them as functions of the circumstances which they have in common,
and which must be given instead of them as original observations. This may be difficult
to do, but as & principle it must be possible, and functions of bound observations must
therefore always have laws of errors as well as others; only, in general, it is not possible
to compute these laws of errors correctly simply by means of the laws of errors of the



