1) the formula (1) or
Y - Pl ah g e ST
%) the products of integral algebraic functions by a typical function or (6)

k k -k _ S r—my?
y—k,¢-—~if-D¢+-r_i’-D'¢—-E'D'¢+.... y-—e,!(‘n.).

8) a sum of several typical functions

! g [s—mg\®
Y - ke '-’i.) . (14)
This account of the more prominent among the functional -forms,. which we have st our
disposal for ths representation of laws of errors, may prove that we certainly possess good
instruments, by means of which we can even in more than one form find general series
sdapted for the representation of laws of errors. We do not want forms for the weries,
required in-theoretical speculations upon laws ‘of errors; nor is the-exact representation of
the ‘actual frequencies more than reasonably difficult. If anything, we have too many forms

and too few means of estimating their value correctly.

As to the important transition from laws of actusl errors $o.-those of presumptive
errors, the functional form of the Jaw leaves us quite uncertain. The convergency of the
series is too irregular, and cannot in the least be foreseen.

We ask in vain for a fixed rule, by which we can select the most important and
trustworthy forms with limited numbers of constants, to be used in predictions. And even
# we should have decided to use only the kypical form by the laws of presumptive errors,
we still lack & method by which we can compute its constants. The answer, that the
“adjustment” of the law of errors must be made by the “method of least squares”, may
not be given till we have attained s satisfactory proof of that method; and the attempts
that have been made to deduce it by speculations on the functional laws of .errors must,
I think, all be regarded ag failures.

VL. LAWS OF ERRORS
EXPRESSED BY SYMMETRICAL FUNCTIONS.

§ 21. All constants in a functional law of errors, every general property of a
ourve of errors: or, generslly, of a 1aw of numerical esrors, must 'be symmetrical functions
of the several results of the repetitions, .i.-e. fanctions which are not altered by inter-
changing two or more of the results. For, as all the values found by the repefitions
correspond fo -the same eesential circumstances, ‘no interchanging' whatever can bave any
inflaemos on the law of errors. Conversely, any symmetrical function of the values of the

[
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observations will represen. some property or othér of the law of errors. And we must be
sble to express the whole law of errors itself by every such collection of symmetrical
functions, by which every property of the law of errors can be expressed as unambiguously
a8 by the very values found by the repetitions.

We have such a collection in the coefficients of that equation of the »* degree,
whose roots are the n observed values. For if we know these coefficients, and solve the
equation, we get an unambiguous determination of all the values resulting from the repe-
titions, i.e. the law of errors. But other collections also fulfil the same requirements; the
essontial thing is that the » symmetrical functions are ‘rational and integral, and that one
of them has each of the degrees 1,2... s, and that none of them can be deduced from
the others.

The collection of this sort that is easiest to compute, is the sums of the powers.
With the observed values

Oyy 0g4 04, ... 0q
we have
8, = 0}+0l+..408 w=n
8 =0, -‘:0'+..+0.
8 =~ o +o]+..4 ok (15)

R R L,

and the fractions ';' may also be employed as am expreasion for the law of errors; it is
only important to reduce the observations to a suitable zero which must be an average
value of 0, ...0,; for if the differences between the observations are small, as compared
with their differences from the average, then
w Vau, . V-
8 ' ' 20
may become practically identical; and therefore unable to express more than one property
of the law of errors.
From a well known theorem of the theory of symmetrical functions, the equations
1+awta@t ... (1 —0,0)(l —04a)...(1 ~04m)
- A.tln‘(l-o,-)
- .-(.I.+‘.l..+{'l.‘+"')'
which are identical with regard to every value of w, we learn that the sum of the powers
8, cap be computed without ambiguity, if we know the coefficients «, of the equation,
whese roots are the » observations; and vice versd, by differentiating the last equation



with regard to w, and equating the codfficients we get

0 = a, +s
0w 20, 4a,8;, + 3, l 19

from which the coelficients a, are unambiguously and very easily computed, when the s,
are directly calculated.
§ 22. But from the sums of powers we can easily compute also another service-
able collection of symmetrical functions, which for brevity we shall call #he half-invariants,
Starting from the suma of powers s, these.can be defined a8 4,, py . p1g, by the
equation
# By Bags | g
e B TRTTET A N DR Fa a7
which we suppose identical ‘with regard to r.
As 8, == Jor, this can be written

0 By ;,
n,c%""?""'f""'"‘—c"'+a°"+...¢"". 18)
By developing the first term of (17) as Ik, r, and equating the coefficients of each
power of r, we get each %'— expressed as & function of u, ...pu:
0

8, = 8,u,
8, = 3,(p, +pj) I
8, =3, ("t + 3/‘71‘- + I‘:) (19)
0 = 2, Gy e, + 8 + Gl + ) l
Taking the logarithms of (17) we get
Mrrie et g+ DEABSLRE L @

and hence
pn, = 88,
fy = (8,8, —8)): 4}
py v (8,80 — 38,22, 4 28)) 22} 1)
#e = (8,80 —48,8,8] — Ba) 2] + 128,808, —61}) : 2]
The. general law of the relation between the u and s is more easily understood
through the equations
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By = 118 + fisd I

8y o= py 8+ 2ue8 + a8 (22)
8 = g8y + Bugty +3uys it l

where the numerical coefficients are those of the binomial theorem. These equations can
be demonstrated by differentiation of (17) with vegard to 7, the resulting equation
8 Ay . R g 8 [}
N e (,,, +Hirerle s ...)(a, +E'f+t;r*+...) (@3)
being satisfied for all values of r by (22).
These half-invariants possess several remarkable properties. From (18) we get
[ S .} - -
,.’T!f +-Wﬁ+~-- - G(": Ih)f+ .”+‘(°h mT
consequently any transformation o' == o + ¢, any change of the zero of all observations
0,...0,, affects only g, in the same manner, but leaves uq, py, pys ... unaltered; any
change of the unit of all observations can be compensated by the recipracal change of the
unit of r, and becomes therefore indifferent to u,r*, uyr®, ...
Not only the ratios

(24)

o8 s

2 8"
but also the half-invarianta have the property which is so important in a law of errors,
of remaining unhanged when the whole series of repetitions is repeated unchanged.

We have seen that the typical character of a law of errors reveals 'itself in the
elegant funetional form

1 (zrm\?
o) = 6305 .
Now we shall see that it is fully as edsy to recognize the typical laws of errors by means
of their half-invarianis. Hero the criterion is that u, ==0 if r= 8, while u, = m and
g = n¥. This remarkable proposition has originally led me to prefer the half-invarianta
to every other system of symmetrical functions; it is easily demonstrated by means of (5),
if weo take ¢ for the zero of the observations.

We begin by forming the sums of powers s, of that !aw ‘of errors where the fre-
quency of an observed x is proportional to ¢ (¥) == e~ '?("::) ; a8 this law is continuous
we get

'+ o
8 - Sm:p(z)dz.
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Por every differentisl coefficient D™y (x) we have
+»
Dmp(z)-dz we D*"~'p(0) ~ D" p(— ) == 0,

osasequently we learn from (5) that a4, == 0, but

8y == 1.n%s,

8, = 1:8:n%,

2y = 1:3:5.ns,
(compare problem 3, § 18). Now the balf-invariants can be found by (22) or by (17). If
we use (22) we remark that sy = n*(2r —1)sy_o; then writing for (92)

, aall 20 -0
83 — a8 = 4y -0
8y — 2uety = Ryt pahe -0
8, —3ugsy = it + Bpat, + pi8 -0
8y —4ugty == 1,8, + Bugry + dut + pyrg -0

g — Bugty = py2y + 10py2 + 10,8y + Spoty + pe2e = 0
we oo that the solution is us == n® aNd p, ==y o= py o' oo == O

By (17) we get
Ay . .
Rk Lk Dk (%{T)""(:z.“""
nie!
- 0T ..

Equating the coefficients of " we get here also s, w= O wo m, gy v 8%, g == 0
frss.

If we wish to- demonstrate this important proposition witheut change of -the zers,
and without the use of the equations (3) whose general demonsiration is somewhat diff-
oult, we can commence by the lemms that, for each integral and positive value of r, and
also for == 0, we have for the typical law of errors

byt == Ml - TS0y

The function $(z) w n'z.'a“"f("z‘-). is equal to sero both for 3 == 20 ARd for £ w= — o3
if we now between these limits integrate its differential equation

dg(:) - (,,l.«-u_,(,_.),)g‘l'(. TL

we got ‘
0w —tpyyt-Mar o rntany.,



9
where
+8 g m\
8 wm \Z'¢ T T) dz.
If we now from (22) subtract, term by term, the equations

4y == ma,
8y = ms, + n's,
¥y == Mg, + 2%,

8y = m3, + 3n's,

it is obvious that ,u,—m-,-o. ftg == B prg wmpry - - .

By computation of u, and u, we find consequently, in the simplest way, the
oonstants of a typical law of errors.

If the law of errors deviates only a little from the typical form, u,, p,, etc., will
also, all of them, be relatively small numbers; and each of them may be either positive
or negative.

On the whole, a law of errors can be determined without ambiguity by the values
ft1+ fgy « -+« piry 7 being the number of repetitions. From any such u's we can compute
the sums of the powers s unambiguously, and from these again the coefficients of the
equation whose roots are the observed values.

But for real laws of errors it is a necessary condition that no imaginary root
can be admitted. If an infinite number of repetitions is considered, the equation ceases
to b algebraic, and then the convergency of the series necessary for its solution is &
farther condition.

§ 28, The mean value p, = %.'- - '3'—*—"’—'-';‘—'4&' is always greater than the
least, less than the greatest of the observed values o,, o,, ... 0.; under typical ciroum-
stances we shall find almost the same number of greater and less values of the obsarvations.
The majority of them lie rather near to u,; only few very -distant from it. The mean
value is the simplest representative of what is common in a series of values found by
repetition ; its application as such is most likely exceedingly old, and marks in the history
of science the first trace of a theory of observations.

The mean deviation, whose square is = p,, measures the magnitude of the devia-
tions, the unceértainty of the repeated actusl observations. The square of the mean deviation
‘s the mean of the squares of the deviations of the several observations from their mean
value. By addition of ‘

‘.



(0. ;'I‘l)' hanl 0: —20|I1.+I‘:
(0: "I‘l)‘ - 0: - 20:,‘|+/‘:
) (0n — )" w= 08 — 2000, + !
we got
)'.(0"'I‘|,. -~ %, I’ + .u/‘: .
8
and as Uy -~ ;i
‘y(o'_"l)' - S8 — ’:
s s

-, (25)

The computation of yu, by this formula will often be essier than by the equalion
(21), because s, in the latter must frequently be computed with more figures. There is
however a middle course, which is often to be preferred to either of these methods of com-
pulation. As a change in the zero of the observations involves the same increase of every
o and of p,, it will, according to (24), have no influence at all on u,. We select therefore
as xero a convenient, round number, c, very near ui,, and by reference to this zero the
observed values are transformed to

0} == 0,~C, 0] mm 0,—€ ... Up == Og—&
When &, and 4, indicate the sums of the transformed observations, and u) ==y, —c, then

wo have u, —c+ﬂ‘—:—‘:——c—)md

A
_ ';.(0_(:)} (@6)
”n

—p—o).

We have still to mention a theorem concerning the mean devistion, which, though
not useful for computation, is useful for the comprehension and further development of the
idea: The square of the mean deviation g, is equal to the sum of uquares of the difference
between each observed value and each of the others, divided by twice the equare of he
number. The said squares are:

0y — 0))% (04 — 0,)%, ... (04 — 0))"
(0, -~ 04)% (04 — 05)%, .... (0n-—04)*

(0, - - 0.)%, (0g —04)% .... (0n — 0)%;

devaloping each of thess hy the formula (0, — 0,)* - A~ 20uns 4 0}, and first adding ench
column separately, we find tho sums
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%,0) - 0, 8,

80} —2,0, + 5,

a8 — 28,04+ 3,
“and the gum of thess

Y4y — 2’0’! + 8,3, == 2(s,9, — )
vonsequently,
22(0, —0,)" = 2lp,. 7

The mean deviation is greater than the least, less than the greatest of the deviations of
the values of repetitions from the mean number, and less than V1 of the greatest deviation
between two observed valuos.

As to the higher half-invariants it may here be enough to state that they indicate
various sorts of deviations from the typical form. Skew curves of errors are indicated by
the us.s being different from zero, peaked or fattened (divided) forms respoctively by
positive or negative values of u, and inversely by ue4s.

For these higher half-invariants we shall propose no special names. But we have
already introduced double names “relative frequency™ and “probability” in order to accen-
tuate the distinction between the laws of actual errors and those of presumptive errors,
and the same wo ought to do for the half-invariants. In what follows we shall indicate
the half-invariants in laws of presumptive errors by the signs A instead of u, which will
be reverved for laws of actual ervors, particularly when we ushall treat of the transition
from laws of actual etrors to those of presumptive onmes. For special reasons, to be
explainod Iater on, the name mean value can e used without confusion both for x, and
Ay, for ackal  well as for prosumptive means; but instead of “mean deviation” we say
i error”, when we spoak of laws of prosumptive errors. Thus, if » -3,

Ay == Limymn ()
i eslled the square of the mean error.

In spocubations upon ideal taws of arrors, when the laws are supposed to be con-
tinuous or to relale to infinite numbers of observations, this distinction is of conrse
insignificant.

Kxamples:

1. Professor Jul. Thomsen found for tho constant of a calorimeter, in experiments
with pake walar, in seven repetitions, the values

2649, 2647, 2645, Nid3, NiBB, A6, 2649
Il we tako hore 2650 as zero, wd read the obuervations as
— 4 ~8 =5 +8 +8 —4 ~1



8o that
8, o= T, & = —8, and ¥, = 70;

consequently

7y - 2650—-7:- - 2040,

[t = ."i!“ "':)' -9
The mean deviation is consequently 4 3.

2. In an alternative experiment the rosult is either “‘yes”, which counts 1, or

“no”, which counts 0. OQut of m 4 n repetitions the m have given ‘“yes", the » ‘*no™
What then is the expression for the law of errors in half-invariants?

mn win (n — m) mn (3 — dmn 4 n*)

: L - - -
Angwer: 41, Twmrat T gy o (m 4w (m +- w)*
8. Determine the law of errors, in half-invariants, of a voting 'in which « voters

have voted for 4 motion (- 1), ¢ against (— 1), while b have not voted (0), and examine
what values for i, b, and ¢ give the nearest approximation to the- typical form.

a—c ab + 4ca -+ be (c— a) (ab + 8ca -+ be —b*)
MTaxeFe M7 @b Fa T T ey
e (@) @4bF0) — 4(a =) @+ b+0) Qo —b+2) + Ba—a)*
e w+b+o '

Disregarding the case when the vote is unanimous, the double condition sy ==y,
=0 is ‘only satisfied when one sixth of the votes is-for, another sixth against, while two
thirds- do not give- their votes. If u, is to be =0, without a being = e, 4* —b(a-¢)
—8ac must be~=0. But then u, = — 2y, (ﬁ—i——r)'. ‘which does not’ disappear unless
iwo of the numbers «, b, and c, and consequently u,, are == 0.

4. Six repetitions give the quite symmetrical and almost typical law of errors,
fty =0, pty ==}, prg == pty ==pry =0, but gy == —3. What are the observed values?

Answer: —1, 0, 0, 0, 0, + 1.

VII. RELATIONS BETWEEN FUNCTIONAL LAWS OF ERRORS
AND HALF-INVARIANTS.

§ 24. The multiplicity of forms of the laws of errors makes it impossible to write
a Theory of Observations in a short manner. For though these forms ure of very different
value, none of them can be considered as absolutely superior to the others. The functional
form which has been universally.employed litherto, and by the most prominent writers, has
in my opinion proved insufficient. I shall here endeavour to replace it by the half-invariants.



