MATHEMATICAL EXPECTATION OF PRODUCT MOMENTS OF SAM-
PLES DRAWN FROM A SET OF INFINITE POPULATIONS

By Hyman M. FELDMAN!

Introduction

In the second part of his investigations, “On the Mathematical Expectation of
Moments of Frequency Distributions,”’? Tchouproff presented a method which
may be interpreted as sampling from a set of infinite univariate populations.
In the present paper this method is extended to the study of moments of product
moments of samples drawn from a set of infinite bivariate populations. It is
also shown how this method may be extended to populations of higher order by
deriving some of the simpler formulae for populations of three and four variables.

Tchouproff’s method has been criticised® because of the complicated algebra.
On close examination it is found, however, that it is not the algebra which is
complicated but rather the symbolism. Tchouproff introduced a great variety
of symbols both in his derivations and in his results. As a consequence his work
seems very intricate. If, however, the number of symbols is reduced, and the
symbols themselves are simplified, which can be easily accomplished, the under-
lying idea of Tchouproff’s method is found to be very simple.

Quite a complete study of product moments of any bivariate population has
been made by Joseph Pepper in his “Studies in the Theory of Sampling.””* His
method is essentially an extension of Church’s® method, in his studies of univa-
riate populations, to bivariate populations. He does not, however, derive any
generalized formulae. In the present study generalized formulae for both the
first moment and the variance of product moments of any order are obtained.

It may be noted here, that all of Pepper’s formulae for any infinite population
can be obtained from those of the present study as special cases, by assuming
that all the populations in the set are identical.

1 A dissertation presented to the Board of Graduate Studies of Washington University in
partial fulfilment of the requirements for the degree of Doctor of Philosophy, June 1933.

2 Biometrika, Vol. XXI, Dec. 1929, pp. 231-258.

3 Church, A. E. R. “On the Means and Squared Standard Deviations of Small Samples
from any Population,” Biometrika, Vol. XVIII, Nov., 1926, pp. 321-394.

4 Biometrika, Vol. XXI, Dec. 1929, pp. 231-258.

§ Church, A. E. R., “On the Means and Squared Standard Deviations of Small Samples
rom any Population,” Biometrika, Vol. XVIII, Nov., 1926, pp. 321-394.
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CuaprTER I. Notations and Definitions
Let (X4, Y1), (Xs, Y2), - -+ (X4, Ya) be n bivariate populations each following

any law of distribution whatever. The product moment of order @ in X and b
in ¥ of the kth population will be denoted by P%,. It is defined as

Piy, = E(Xy — an)® (Vi — by)* (1.11)

where ar = E(Xy), by = E(Yy), 1.12)

and where the symbol E signifies the expected value or the mathematical expec-
tation of a quantity.

Regarding each of the n populations of the set as infinite,® samples of n are

drawn, each member of a sample from one of the n populations.” The individual

which is drawn from the k*® population will be denoted by (xx, yz); and the

product moment of order @ in z and b in y, of such a sample will be denoted by
Pap.  This product moment may then be defined as

Pab = 7' 8 (ze — 2)° (Y — @)° (1.13)
where z = nt Sz, y = n"t Sy:. (1.14)
The symbols a and b will now be defined by the equations

a = n! Say, b = n18b. (1.15)
Obviously E(z) = E(n~! Szi) = n 1 SE(X:) = n~1 8Sax = a. (1.16)

Similarly E(y) = b. That is, the mathematical expectation of the mean, of
such a sample as was described above, is equal to the average of the means of all

the populations.?
In order to make the equations as compact as possible the following additional

symbols will be employed:
T — A = Uk, r— a=1u, anduk—u=Uk
1.17)
Yr — by = v, y—>b=nu, and v, — v =V,

alsoak —_a = Ak,bk —_ b = Bk.
From the above definitions it easily follows that

E(us) = E(x) = E(Uy) = E(Vi) = Eu) = E) = 0.  (118)

¢ The term infinite is used here 'in the probability sense. It is defined very clearly by
Church in his ““Means and Squared Standard Deviations of Small Samples,”’ Biometrika,
Vol. XVIII, Nov., 1926, p. 322.

7 It may be easily shown that this is equivalent to drawing a sample of » from a set of
any finite number of populations. The number drawn from each population, however,
must be specified. See Biometrika, Vol. XIII, 1920-21, p. 295, footnote.

8 This, of course, is a result of the Lexis Theory, for Poisson and Lexis Series.
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The notation is now completed with the definition of the symbol Q;; by the
equation:

Qi = S(ar — a)i (b — b)' = SA;B]. (1.19)
Cuarrer II. The Mathematical Expectation of pg

The mathematical expectation of p,» will be denoted by pae. In the terminol-
ogy of moments this would be called the mean or first moment of the distribution

of Pabd.

1. The Mathematical Expectation of p;;. According to the above notation

the expected value of py is pu. By definition
pu = E(pu) = En~'8(z: — 2)(y: — v), (2.11)

and obviously En—18(z; — 2)(y: — y) = n 1SE(x: — x)(y: — v).
Writing

:c;—x:[(x.-—a.-)— (x—a)]+[a.»—a]= U; + A;

yi—y=[@:i—b) — =0l +[b:—-b=7Vit By
equation (2.11) may be written as

pu = nSEWU: + 4)(V: + B)
= n8E(UV;) + n~'SA:E(V,) + n'SB;E(U;) + n'SE(A:B).

Since for any given population 4; and B; are constants, it follows that

E(A.B,) = A.'B.‘. Hence
n“lSE(A .‘B,‘) = n~184 .‘B § o= ’n—lQu .

Making use of (1.18), it is seen that the terms n~'SAE(V) and n='SB:E(U )
are zero. The only term left to evaluate is therefore n~1SE(U.;V;). Since U;
and V; are symmetric functions of the corresponding small letters, their product
is symmetric in uw;. There is therefore no loss in generality if attention is

concentrated on a single subscript, say 1.
We may therefore write

n*SE(U:V:) = nE(U\Vy) + n'SE(U;V ).
2

Remembering that U; = u; — u = u; — n~'Su;, we may write,
U;=u;—u=u;—n“‘(ul+m+ cee +u”)
= ’n‘-l['nlu.‘ - (u1 + ’u,g-'- e + Ui_1 + Uil + e + un)]

*The 2 at the bottom of the S simply indicates that the summation begins with 7 = 2.
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where n; = n — 1. In general, n; will denote the number n — 7. Similarly
Vi=nmou — 40+ - + v+ v+ -0 4 0]
Thus
nISEU V) = n3E(muy — ug — - — un)(mavy — v — -+ — v,)

+n38E(mus — Uy — -+ -0 — Uiy — Uigr — - Un)
2

(mv; — o1 — «o — Vi — Vg — - V).

When the right hand side of the last equation is expanded the only terms which
appear are of the form E(uw;) and E(uw;). The last one must vanish for u;
and v; are independent and hence E(uw;) = E(u;)E(v;) = 0. From the last
equation above it is easily seen that the coefficient of E(u;v,) is

3 4 m) = n3ming + 1) = n2ng

and because of the symmetry this is obviously the coefficient of any term of
that form. Hence

nISE(UV:) = n~*mSE(uw;) .
Since u; = z; — a;,v; = y; — b;, then
E(uws) = E(xi — a)(yi — b)) = E(X: — a))(Y: — b)) = P,
and in general,
E(ujv}) = P% ;. (2.12)
We thus get the formula
Pu = n*mSP;, + n"'Qu . 1)

Now suppose all the » populations are identical. Then all the A’s and also
all the B’s vanish and therefore, Q1 = 0. The formula (1) thus becomes

_ n—1
Pn = " Py. (1')
This is exactly Pepper’s formula for y, for an infinite population.?

2. The Mathematical Expectation of py;. By definition
Pa = En18(z; — z)*(yi — v) - (2.21)

 Biometrika, Vol. XXI, p. 233, Eq. A, N = », As was already stated in the introduc-
tion, all the formulae of the present study reduce to Pepper’s when the above assumption
is made.
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Proceeding as above it is seen that
En7'8(z: — 2)*(yi — y) = n7'SE(zs — 2)*(ys — ¥)
=nSE(U; + A)XV: + B.) = n'SE(UV,) + 2n'SE(U;V:A.)
+ nSE(U%B;) +n'SE(V;A%) + 2n—'SE(A;:B;U;) + n—'SE(A%B;) - - - - (2.22)

It is quite evident that the two terms before the last vanish. To evaluate the
remaining terms, we employ the reasoning of section 1 of this chapter and write:

SEU;V:) = E(UIVY) + SE(ULV))
2
=n3Emjuy —us — -+ Yy — 3 — «--) + n3SE(mui — wg — ---)
2

(s — v — -+ ).

Since terms of the form E(u2v;) vanish, only the coefficient of the term E(ulv;)
must be found. Again considering the subscript 1, the coefficient of E(u}v,) is
easily found from the last equation to be

n3m} — n) = n=3n(m + 1)(m — 1) = n~2n, .
Thus
n~SE(U? V) = n~2mnSE(u? v;) = n~2mmneSP}, . (2.23)
For the second term of (2.22) we have
SE(U.V:A;) = E(U\V14y) + A'?E(UiViA Q)
=n2Emu — ug — -+ Yy — v — - )A; + 0 8E(mu; — uy — ---)
(s — v — -+ )As

The coefficient of E(uv:) in the first term of the right hand side of the last

equationisn—2n}A,. Inthesecond termitisn—28A; = —n~24,,since SA; = 0.
It therefore follows that ’
2n1SE(UVA;) = 2nn,SP} (A (2.24)
Quite similarly
2 1SE(UB;) = n—,SP;,B;, (2.25)

and it is obvious that
n~'SE(A%B;) = n7'Qu. (2.26)

* Note that the u which has the coefficient n; does not occur among the u’s which have
the negative sign.
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We thus get the formula
Pa = nmn SP;, + n2my 8(2P}, A; + P;B,) + n'Qa. (2)

3. The Mathematical Expectation of p; and ps,.
Pa = En18(z; — 2)¥(y: — y) = n'SE(x; — 2)*(y: — )
= n1SE(U; + AP(V: + By) = n'S{E(UV, 4 U?B, 4 3UV, A4,

+ 8UIA;B; 4+ 3U,V;A? + 3U;AIB; + V. A? + AIB))}. (2.31)
The two terms before the last are zero. The last term is
n1SE(A%B;) = n1Qs. (2.32)

By (2.23) and (2.24) and some slight manipulation
3n-1SE(U%A;B; 4+ U,V,;A%)
= 3n*m8(P;o4;B; + P{,A}) + 3n~%(QuSPi, + Q508P5,), (2.33)
and by (2.22)
n1SE(UiB; + 3UV;A;) = n~*(n} + 1)S(Pi,B; + 3Pi,A). (2.34)

The only new term which is to be evaluated is SE(U?V;). This may be
written as follows:

SE(U?V‘) =n*SE(mus — uy — -+ YP(mv;— vy — - ).

When the right hand side is expanded it is found that the only non-vanishing
terms are of the form E(U3V;) and E(uluv;). Only two subscripts, therefore,
have to be considered. Without any loss in generality these may be taken as
1 and 2, and the right hand side of the last equation may then be written as
follows:

SE(mu; — ug — «-- ¥(nw; — 03— -+ ) = E(nquy — up — «++ 3wy — 03 — +-.)
+ E(mus — uy — '°~)3(’n101—-02— “')+SE(nlui—ul—u2_"')3
3
(nlv;—vl—-vg— con )

From this last expansion it is easily seen that the coefficient of E(ulv;) is (ni + n,)
and that of E(u}up;), (6n} + 3ns) = 3(2n? + ns). We thus finally obtain

SE(UV)) = n~{(n} + n)SE(uiv,) + 3(2n} + n)SE(uiu;v)}.

But by (2.12) E(ulv;) = P;,, and since u; and u; and w; and v; are independent
Elu;v;)) = Ew?)E(u;v;) = PjoPi,. Whence

E(UV) = n*{(n} + n,)SP}, + 3(2n? 4+ n)SPi,Pi,}.  (2.35)
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From (2.31) and the succeeding equations we finally get
Pa = n{(n} + n)SP;, + 3(2n} + m))SP*; P}
+ n~4{(n} + 1)S(Pi,B; + 3P;,4)} + 3n*{(n] — 1)S(P;,4;B; + Pi,4%)
+ QuSPjo + @oSPi .} + n'Qau. 3
The derivation of ps, is so similar to that of {s, that it would be mere repetition
to go through the details again. We shall therefore merely write down the
formula for ps which is
Pz = n—s{(n: +n1)SP;2 + (2”'? + nz)S(P;osz + 4P{1P{1)}
+ 2”—4{(”': + I)S(P; 1B: + P{zAi)} + "‘—3{(”? - I)S(P;oBf + 4P{ +4.:B;

+ P§,AY) + QuSPiy + QuSPio + 4Q,SP1 ) + n1Qe. 4

4. The Mathematical Expectation of the General Product Moment p..
So far, formulae for the mathematical expectation of pg, for particular values
of @ and b, have been derived. The method used in deriving these is, however,
perfectly general, and now, that it has been sufficiently illustrated, it can be
easily generalized.

By definition we have

Pas = En7'S(z: — 2)°(y: — ¥)*l.
Making use of the notation of Chapter I this may be written as
a,b n
npas = ES(Us + A)*(Vi+ BP = S CICISE(Ui Vi "A%B;) (241)
q,r=0 1
where
a _ a! b __ b!
Cq T ql(a—q)!’ C’—r!(b—r)!'

Expressing the U’s and V’s in terms of the u’s and v’s and settinga — ¢ = 1,
b — r = m; we may write for a particular pair of values ¢ and r:
n“'"‘SE(UfV’(‘A'{B:) = SE(nlu, —_ U — - ~)’(nlv; -V - - -)mA%B:. (2.42)

Consider, now, the general term in the expansion of the right hand side of
(2.42). Itis of the form:

N'm! a a a r
ITE.%E;.—' (=D)"*™(—m) WP E(nyu3t - ukofl ... 0§ AIB]), (2.43)

where Hap! = aylas! -+ - ay!

* In this case, and also in the formulae that follow, whenever two or more indices
appear in a summation, it will be understood that no two of them can have the same
value simultaneously.
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For particular sets of values ji, jo, - - - j, o1, @2, - -+ ax, and By, Bs, - - - B, this
term will appear in every member of the summation of the right hand side of
(2.42), and its coefficient will differ only in the exponent of (—x,) and in the
subscript ¢ of A4B”. Because of the symmetry there is no loss in generality if
we take for ji, jo, - - - jx, the first k integers. We now break up the summation
of the right hand side of (2.42) as follows:

%E(nlu; —u — ) (mv; — v, — ... )"AYB;
=E(mu — ug — ---)(mvy — v, — ...)"AIBI
+ E(miug — us — - ) (mve — vy — - )"ABy + - -« + E(myug — ug — ---)*
(Mo — vy — --)™A2B; + c=%+1 E(mu; — wy — ---)}
(mv; — v, — ... )"A4B:. (2.44)

From (2.44) we easily get for the total coefficient (excluding the numerical
factor) the expression

k n
S (—n)**"Br4iB; + S AIB;.

h=1 h=k+1
Writing

k
S AiB; = SA“B,, - SA’B,, = @, — SA}B;,
E+1 1
the general term, (2.43), together with the total coefficient, may then be written
as

1116, !

Since u; and u;, v; and v;, and u; and v; are independent while u; and v; are
not, we have:

1. E’Huh Vp = IIE'uh Vp = HP:M”

II. Any term in which ax 4+ B» = 1 must vanish.

From II it follows that the maximum number of subscripts which can appear
in any term in the expansion of (2.42), i.e. the upper limit of k, which will be
denoted by ¢, cannot exceed (I 4+ m)/2. In fact when !4 miseven,t = (14m)/2,
while when ! 4 m is odd, ¢ is the largest lnteger less than (I 4+ m)/2.

Making use of (2.41), the equations following it, and the reasoning of the last
paragraph, we finally get the formula:

k
(_1)z+m_’__"‘_—-{ 8 [(—n)o+sm — 1] ASB] + Q,,} E b,
h=1

atr a—q,b—r t
n(—n)Pp, = (a!) (b)) S S (=n) S
i1 gr=0 Q! 7! apm0,p=0 k=1

i

{S [(—n)=w+m — 1] A9, B] +Q«}H Py ®)

A1 ap! B
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The following restrictions on the a’s and 8’s must be observed

@atast- - Fa=0a¢-—4gq
b)B+B+ - +B=b—r
() an + B # 1.

In case the n populations are identical (5) reduces as follows: For ¢
= 0,4% =1, B! = 1, and Qu = n; while in every other case A%B;

Q. = 0. The summations with respect to ¢ and r, therefore disappear.
Consider now the summations

I
oo

S S ... § Parpi...Pi,
i1=1 ji=1 i1

Since all the populations are the same we may drop the j by actually carrying
out the indicated summations. If, then, there are ¢ repetitions among the %

pairs of integers axBs, in which 81, ass, - - - a.f., are repeated I, I, --- I,
times respectively, then we have;

n n k ! Cﬂ*

S ... 8 Pite = — % T Pag.

1 e MR RTRT

We thus arrive at the following corollary: The mathematical expectation,
Pan, of the product moment, pas, in samples of n from a single infinite population
having any law of distribution is given by

b (al) () ‘ [ :| k! Ci
—n)*tp S e i S (—mny)onthh 4 ————"—HP: . (5
n(—n)*Pa = o Tlan TRy 1oy h_l( 1) + N Al aene (8)
Note: In deriving these general formulae it was assumed that » > . There
is however, no loss in generality in this assumption. For, if ¢ > n, we may
suppose that, Z,41 = 42 = - -+ = 2. = 0, and hence P3§' = .. = P,, =0,
and thus the above reasoning is still valid.

5. Formulae for py, fs, D1, Piz, Pss. Formulae for pas in which a + b = 5, 6,
7, 8 have been obtained. But for (a + b) > 6 these formulae become very long,
and since these will be of no use in the subsequent work, only those of order 5
and 6 are given below.

Pn = ”_6{(7‘1 “'nl)SP41+27m S(2P30P 11 +3P;1Pgo)}
+ nt {(nl + nl)S(PwBi + 4Ps'1Ai) + GnMS(PgoBino + 2P:1\1A6P;o)}

* This is a generalization of Pepper’s results for N = «. See Biometrika Vol. XXI,
pp. 231-240.

1'The symbol Pl 145 on is an abbreviation of the full term (4:; + 4,) (Pl 1P20 +
Pl 1P30). Similar abbreviations will be used in the other formulae.



MATHEMATICAL EXPECTATION OF PRODUCT MOMENTS 39

+ 20~ {(n} + 1) S(2P},A:B; + 3P}, A}) — 2QuSPj, — 3QuSP;,}

+ 2n7% {(n} — 1)S(2P;, 43P}, A}B) + 2QuSP;, + 3QuSP3o} + 7 'Qu . (6)
Pz = n8 {(’n: — m)8P3, + nngS(P;opgz + 6P;,P{, + 3P;,P{,)}

+ 7% {(n} — DS(2P},B; + 3P}, 4) + 3nmsS(P3oP{1Bi + [P3oPi.

+ 4P}, P11 4D )+ n* {(n] + 1)S(P3oB? + 6P3, 4B

+ 3P;,4%) — QuSP}, — 6QuSP}, — 3QuSP{,} + n~* {(n] — 1)S(3P;,4:B}
+ 6PuA:B; + P, AY) + 3QuSP3o + 6QuSPi; + QuSPi2}+ n7'Qu. )
P =07 {(nd + n)SP{, + 5(nt + nt 4+ n)S(Pi,Pi,

+ 2P;,P{,) — 10(2n} —n)8P§, P}, +30(3"': + n8)SP3 P} P11} + n8{(n;
+ 1)S(P{oB; + 5P:,A) + 10(nd + 1)S*2P3,Pi,B; + (2P3,Pi,

+ 3P§ 1 P{o)Ad — 10nmo8*(2P5, P{oB; + (2P3oP{, + 3P2.P},0) A}

+ 5078 {(ni — 1)S(P{oA:B: + 2P314%) + 6nnaS(P3oP{oA:B; + 2P3,P1,47)
+ QuS(Pi, + 6P}, Piy) + 2QuS(Pi, + 6P;P{,)} + 10n~{(n}

+ 1)S(PyABi+ P, AY) — QuSP§, — QuSP;, | + 5n=2{(n} — 1)S(2P;,4B;
+ P}141) +2QuSP3o + QuSPi1} +n7'Qn . ®
P = 17 {(n} + m)SP{, + (ni + n} +m)S(P{ P}, + 8P;, P,

+6P3,Pjo) +4(2nt —n)S(P3oP{, + 3P}, Pi,) + 6(3n] + na)S(P3oPioPg,
+ 4P}, P}, P%))} 4 2n#{(n} + 1)S(P{, B; + 2P;,4.) + 2(n] + 1)S[(2P5,P1,
+ 3P;3,P§o)B; + (Pgof.’gz + 6P}, Pi, + 3P}, Pi,)A] — 2nmS[(2P;, P,

+ 3P}, P}o)B;+(Pi,P{; + 6P}, Pi, + 3P{, P{))A]} +n~3{(ni — 1)S(P{, B}
+ 8P, AB; + 6P},A}) 4 6nnaS[P} P§, B} + 4P}, Pi,A:B; + (P3,P{,

+ 4P§,P{,)AY] + QuS(P{, + 6P}, Pi,) + 8QuS(P;, + 3P;,P{1)

+ 6PuS(Pj; + PioPis + 4P{,P{,)} + 4n*{(n} + 1)8(P;,4:B}

+ 3P§,AB; + Pi{,A}) — QuSP{, — 3QuSP;}, + Q;,8P;.}

+ n*{S(6P3,A:B? 4+ 8P;,AIB; 4+ Pj,A}) + QwSP}, + 8QuSPi,

+ 6QuSP3,} + 7 'Qes - 9
pu = n7{(n} + n)SP;; + 3(ni + ni + n)S(P3, P}, 4 3P3, P,

+ P{,Pj,) — (20} — ma) 8(P§oPis + 9P}, Pi,) +9(3n} + ns)S(P3,Pi, P,

* The repetition of this expression signifies that A and B factors are coupled only with
those P factors which have corresponding iandices.



40 HYMAN M. FELDMAN

+4P1,P{,P11)} + 3n8{(n] + )S(P;5:B: + P334) + (n} + 1) SI[(P},Pi,

+ 6P3, P}, + 3P{,P}o)Bi + (P33P + 6P1,P{, + 3P;,Pj,)All

— nmaS[(P3oPfs + 6P3, P{, + 3P, P{,)B; + (P§s P}, + 6P}, Pi,

+ 3P3,P{2)Al} + 3n5{(ni — 1)8(P;,B} + 3P;,A:B; + P{;A})

+ 8mmeS[P3 o P{1 B} + (P30P§s + 4P1,P{1)A:Bi 4 P}, P{,4})]

+ S[Qu(P3y + 3P30P{,) + 3Qu(P3s + P§oPis + 4P}, Pi,) + Qu(Pi,

+3P5, Pi)l} + n4{(n] + 1)S(P3,B: + 9P;,A:B} + 9P, A}A; + P{;AY)

— 8(QuP30 + 9QuP:: + 9QuPiz + QuPis)} + 3n3{(n] — 1)S(Pj,4:B}

+ 8P1,1 4B} + P53 AlB) + 8(QuPjio + 3QuPi, 4+ QuPi,y)} + n1Qs. (10)
CrapTer III. The Mathematical Expectation of the Variance of p,

1. The Symbols yms,, and ;Mp,,. Denoting the variance of p. by m and
the mathematical expectation of smp,, by :M»,,, we have the definition,

oMog = {071 8(x; — 2)%(y; — Y — Pu}?
=n"28%x; — 2)°(y; — ¥)® — 207 Pap S(a; — 2)*(y; — Y+ Pay, and
2Mpy, = E(smng) = E {n=28%(x; — 2)*(y; — ) — 2npauS(z: — 2)*(ys — y)* + p2,
= n2E[S(z; — 2)%(y; — y)?] 4 2n2E[S(z; — 2)*(x; — 2)°(y; — ¥)*(y; — )]
— 207 PasElS(x: — 2)*(ys — y)'l 4+ Pas = nPras
+ 2n2E[S(z: — 2)*(y: — ¥)*(z; — 2)°(y; — ¥))] — iy (3.11)
Before attempting to expand the right hand side of (3.11) for any values a, b

we shall derive the formula for M5y, to illustrate the procedure.

2. The Mathematical Expectation of sm»,,. By (3.11) we have
2Mpy = 0Py, + 207 2E[S(x; — ) (y: — y)(2; — 2)(y; — )] — P1,. (3.21)

The first term is given by (4) and the last by (1). The only new term is the
middle one. To expand it let us write it in terms of U and V. We then have:

n8E[(zs — 2)(ys — ¥)(@: — 2)(y; — y)] = n28E((U: + A)(Vs

+ B)(U; + A)(V; 4 Bj)] = n=*{SE[UV.U,;V; + (U:V.U;B; + U;V,U.B;)
+ (UViVid; +-U;ViVids) 4+ (UiVi4;B; + U;V,;A:By)

+ (UV;A;B; + U;ViA:B;j) + U;U;B:B; 4 V;V;A:A; + 4 vanishing terms

+ ABiAB]). (3.22)
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The evaluation of the last term is very simple. For
SE(A:B;A;B;) = S(4:B;A;B;),
and from the elementary theory of symmetric functions we have:

S*(A:B;) — S(A?B?Y)
5 .

8(A:B:A;B;) =

Hence

8%(A;B;) — S(AIBY) _ Q11 — Qu
2 N 2 )

To expand the first term and also the remaining ones, we return to the u, v,
notation defined in Chapter I. We then write

SEWUV.U;V;)) = n~*SE[(mu¢ — uy — -+ )(nw; — v — +-+)

(nlu,-—ul— oo )(nlvi—vl- s )]-

SE(A;B;A;B;) = (3.23)

The only terms which can appear in the expansion of the right hand side of the
last equation have the following form:

E(}), E(@d}), E(upup,),

i.e., exactly those which appear in the evaluation of 7. Remembering the
symmetry, there will be no loss in generality if we take for 7 and j the integers
1 and 2. To find the coefficients of the three characterstic terms, the above
summation may be broken up as follows:

‘n‘SE(Us'V.‘UfVi) = E[(muy — ug — «- )y — 03 — ) (Mg — g — -+ .)
(mve — 01 — )]+ E{lnu — ug — « - )(nawr — v — --2) + (mup — w
_ °)(‘n102 — U= - -)]t?(nxus —uy— o) (s — vy — .- )} + ‘?E[(nlu.'

—_— U — - ')(nlvi —V — - -)(nlu; — U - - -)(nxv; —V - - ’)]‘ (3.24)

Writing the three terms in a row and their coeflicients from the three parts of
(3.24) in columns below these terms, we get the following scheme:

E(uiv}) E(uivs + ujvi) E(u1v1ug v9)
ni n} (n}+ 1)
ny(ni + 1) —2n1n, 2n3
nyng Ny N3
2 Z -2t
Total nn,(2n'1 —_ 1) —nng

—_— 3 2
coeff. 2 2 n(n] + ni — 3n, 4+ 3).
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With the aid of the above equations we finally get:

*

nn(2n; — 1) SPi, —

SE( U.'V.'UiVj) =n"* { 2

nns

—Z_SP;ﬂ (1;2

+ n(nn? — 3n,)SP}, P} 1}

Proceeding in the same way we find:
SE(U,V.U;B; + U;V;U:B;) = n=%(2n} + n,)SP;,B,;
SE(UV:ViA; + UViViA) = n=%(2n] + n) 8P, A,
SE(U,V:A;B; + U;V;A:B) = —nn,SP},A,B; + (n} + n,)Q,, 8P},
SE(UV;A;B; + U;V;A;B;) = 2nSP}, — Q,,SP;,
SE(UU;B:B; + ViV;A:A;) = nS(P},B} + Pi:A3%) — 38(QuPs: + QuPso)-
Collecting terms and simplifying we finally get:
Moy = n~4{n}SP, + S(P3,Pi, + 2P, Pi,) — ©’S(Pi,)*}
+ 2n-%n,{S(P},B; + Pi,A)} + n—*{S(Pj, B} + 2P{,4,B; + Pg,A})}. (11)

Corollary 1. Incase X; = Y, i.e., when the set of populations are univariate,
(11) becomes

sMpy = ”4{"38[1):0 - (P31 + 48P3, Pio} + 4n~'n, SP3o4; + 4n-2SP;oA:.

(11)

This is Tchouproff’s formula for the expected value of the variance of samples

of n.1
Corollary 2. In case the n populations are identical (11) becomes

oMpy, = 1731, Pyy + Pyo Py — nszll- (11)m

3. The Mathematical Expectation of :M»,,. We now return to the general
equation

1My = N Pruy, — Py + 2072 é' E(z; — 2)*(y; — y)*(z; — 2)°(y; — y)b. (3.11)

t=1,j=1

*Since E(ulvl) = P}y, E(uiv}) = PioP},, ete.
10 See Biometrika, Vol. XIII p. 295.
1 Bee Biometrika, Vol. XXI p. 234, Cor. 1.
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The first two terms are given by (5). To evaluate the last term we write:

SE[(z; — 2)°(ys — 9)*(x; — 2)°(y; — y)*] = SE[(U; 4+ A)*(V: + B)*(U; + A,)°
a,a,b,d,
(Vi 4+ B)¥ = SE(UVIUV?) + s creerer,

1’1,72.73,74-0

SE(UTVIUSVIATBPAPBY) = n=2e™ SE{(mws — - -)*(mws — - -+ )

1

(nu; — - - Je(nw; — -4 8 p(ritratrstry) C:l e Cf‘ SE[(nyu; — --.)a
o

(s — -+ YOy — - Yoty — - Y ATIBIA B, (3.31

wherea =a —r,B=a—ry,y=b—1r5,0 =b —rs

The right hand side of (3.31) has been broken up into two parts because the
first part is symmetrical, while the second part, in general, is not except when
r1L =T andr; = 74

Let us now consider the expression

SE[(nus — -+ )%(mps — -+ P(mu; — -+ )*(mw; — .- Pl (3.32)

This is a double summation in which ¢; = ¢;; and in which the diagonal terms,
¢ii, are missing.

Consider next a general term of k factors from the expansior of each bracket
of (3.32). As we are dealing with symmetric functions, there will be no loss in
generality if we consider the first k subscripts only; and if we let the lower limits
of the exponents of the u’s and v’s begin with zero we may consider that each
parenthesis of a given bracket contributes exactly & factors. Such a term,
omitting the coefficient, may be written as follows:

’ v ' k ' B
E(up .- u:"vfl ces vf"u‘l'! - u‘iwfl . vzk) = ,II E(u:h""'wgh""h)
-1

k
= II PHen + o) Ga + B2) - (3.33)
This term occurs in every one of the 3nn,; brackets of (3.32), having the same

numerical coefficient in every one of them, which is

@h®h (3.34)
Nay ! Ta, ! 118, 1 118, ! ’

‘To obtain the 7, coefficient of (3.33) we break up (3.32) into the following partial
summations:

El(mu; — - )o(mav; — -+ o(mu; — -+ )o(maw; — .- )] = El(my — -..)*
(moy — - P (mug — --- )2(mavy — -+ P] + -+ + Ellmw— — ---)°
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s — oo P G = <o o = -]+ 5 H (e — oo )

(=P 8 (ag— o= P |+ B (B(C— o)
i=k+1 $,i=k+1
(mv; — -+ Yo(mu; — - - Ye(nw; — -+ P}

From this equation we get for the total coefficient in n of the term (3.33) the
following expression:

k ’ ’ k ’ ’
S (_n1)¢h+ah:+ﬂh+ﬂhr + n, S [(_nl)a;.+ﬂp. + (_nl)ahﬂsh] + C',"‘ .
hoh'=1 h=1

The following restrictions on the o’s and 8’s must be observed.

o t+ot - ta=2a bﬁl+l3z+"'+ﬁh=b

aj +az+ -t =a Bi + B4 - +B=b
(©) an 4 an + B+ By = 1.

From (c) we obtain the upper limit of k, namely: ¢ = a 4 b.
Combining the various above equations we finally obtain:

(a)

n nb
(n)2e+® S(UVEULV?Y) = (al)2(b)? S S

iy - . 4
fp=l ana,nBh b =0

' k ’ ’ k ’ ’
S { S (—nl)“"“"*'“»'*"»' + ng S [(—nl)""*'"" + (—-’nl)ah-*'ﬂh] + C;k}
h=1

k=1 \h,h'=1

Jh ’ ’
1 Playta;) (8i+8,)

. 3.35
oy ! Ha, | T8 ! I8} ! (3.35)
Turning to the second part of (3.31) let us consider the expression

S Ellmui— ) (uos— ) (g — -+ ) (mwy — - ) APBPATB}*

$=1,7=1

for a given set of ’s. The term (3.33) may also be considered as a general
term of this last expression; of course, the exponents of the u’s and »’s will be
different in this case. In order to evaluate the complete coefficient of a term
like (3.33) we again write;

SE[(mus — - - -)=(nw; — -+ )7(maw; — - )P(maw; — ---) A;'B’A B!
= El(ns — ++- )*(mavy — -+ ) (maus — -+ Y8(mawy, — --- Y A{'B1*4;°B,"
+ Elnus — -+ )*(naps — « -+ )(nguy — - )B(nwy — - - Y'4,'B;°A*B}*

+ .o+ El(mur — --- )o(mvy, — - - - Y (mug—y — - - - YB(nwp—r — -+ )°
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k n
A'B.’A% Bt + S El(mu; — -+ )*(nw; — - - YA;'B? 8
i= i=k+1
(mu; — - -- )ﬂ(n,vi —_. )5AT2B”] + S El(nu; — --- )ﬂ(nlv’. — ... )
A?B” S (nlu ~~~~~ ) (nlv ----- )7A”B73] + S E[(’nlu ..... )“
$,7=k+1
Ny — -~ - )7(nlu1- —_ e )5(nlvi — ... )4 :lB:3A ;2B;4] . (336)

It is now quite easy to write down the complete coefficient of a term of the
form (3.33). The numerical coefficient of this term is the same in every bracket

of (3.36), and is

(— DS(a—m)!@—r)! (=7 (b—r0)!

i (3.37)
T ! Tery, 1118, ' TIB;, !

The coefficient in 7, and A}t B}3 A2 B}4 is broken up by (3.36) into the fol-
lowing four parts:

k aptay, B, +8,,
I. 8 (—m) A};'B}3A3B4, from the first k(k — 1) brackets.
h=1,h'=1
k « n k «
IL S (—m)™*™h47B; 8 ApB= S (—m) ™ r4pBys
h=1 h'=k+1 h=1

k
O 8 apmi],
h'=1
from the next k(n — k) brackets. Similarly
II1. S (—m) "'H"'A”B,, [Q,m— S A”B;“] from the next k(n — k).

h'=1

And finally:
IV. S A'B{*A*B}* = SA Bj38A;2Bj* — SA{r+d Biratra)
t,7=k+1 1 1
k k n k
— S APBPAPBit— 8 APBy S ApBjf— 8 AjBit S A[Bp

hyh'=1 h=1 h'=1 h=1 h=1

&
+ 2 S A”B;a S ABit = Qs Qrars — Quritrpyravre) — Qrarg 'ISAPB;‘

h=1

k k
—Q,,,4SA,',‘B,’,‘— S AR'BiRAIBit +2 S A}'Bi® S AjiB;4, from the
h'=1

hyh'=1 h=1

last c3* brackets.
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The restrictions on the a’s and #’s differ from those given above in that a is
replaced by @ — rmand @ — 7, and b by b — r;and b — r4; and from the restric-
tion (c) we get for the upper limit of , in this case,

tl:"_‘_"'_ﬂﬂ.‘_s=a+b_

rn+retrs+rs
2 2

4

when Sr; is even, or the greatest integer less then %? when Sr; is odd.

1
Combining (3.37) with C7 ... C 4 , We get for the general numerical coefficient
in the expansion of the second part of (3.31), the expression
(=1)8r; (a2 (d)?
r;! ey, Moy | I, TIB,

By an obvious manipulation we have

k

I+ +II4+1V= 8 [(—nx)ahﬂ"ﬂ"'ﬂh'—I]AZ‘B;'RA;'.?B;’.’-!-QTM

h,h'=1
k k

S [(—nl)a"”"—I]AﬁlBir.a-l-Qrm S [(_nl)"h*"’n —I]A,',zBX‘
=1

h=1 =

k

k k a,+8
- 8 A*Bi* S [(—m) » "—I]A,?B,',“— S A;'Bj?

h=1 h=1 h=1
v « ;z+ 8 I,z ropRr4
S ( - nl) —1]4 h B o+ errs Qrm - Q(r1+r2) (r3+r4) « (3-38)
h=1
Finally, combining the various equations we get the formula:

n a,b $
2Moy = 0P — Pap + 2(n) 2@V ()20 1) 8 S S

 pE== ’ =
iw=1 ah-ah'/.ﬂ».ﬂhﬁo k=1

k ta 87, k a'+8
{ § (=)™ o 8 [(—m)mh 4 (—m) h‘“"»1+02”“}

h,h'=1

HP”' (ah + a)’;) (Bh + ﬂllt) + Z(n)_2(¢+b+1) (a !)2(b !)2 § aSb (—n)s'lSr-'

o, ! TG, ! Tlay 1 TIB; ! i1 rprgrgreo Ml
a,8,7,8 ¢ k antBita 48,
S s{ 8 [(—m)™ W _1) 47BpABY
ah.a,‘uﬁmﬂhﬂok-l kA=t

K k k o,
— S [(—m)ewt8s — 1) A;Bj» 8 AyBrt — 8 [(—mi)e+s, — 1]

h=1 h=1 h=1

k k
ApB 8 A['Bp + Qe S [(—np)ewter —1] AJBj?
. h=1

h=1
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k al+p,
+ errs h§l [(—nl) hoTh —1] A;'Blr»‘ + Qerrzu - Q(r1+r2) (r3+r4)}

in . .
TP (oY a)) (Br+8,)

. 12
a,! 118, ! Ha; ! 08! (12)

In case the n populations are identical the second part of (12) must vanish,
and in the first part the summations

k! CE X Payia)) (aats))

n k
i;.S-l hI;Il P(’:h‘\"a;)(ﬁﬂ'ﬁ;) = AT )
where [, l, - - - l. are the number of repetitions of the pairs of integers
(a1 4+ @1) (B + B1), - -+ (ax + ai) (Bx + Br), respectively.
We then have the following
Corollary: The mathematical expectation of the variance, smy,;, of the product
moment, pqs, in samples of # from a single infinite population is given by

a,a,b,b
Mys, = Pra — Pho + 2m) 5D @AY S

’
ama nBhp, =0

S

¢ 1 O™ k a al
le;Ckla{ S (—m)™Te
k=1 bllg? ooe !

‘ k
M S [(—my)anter
hoh'=1 h=1

k
II Plaw + az) (Bx + B3)

_ a+8 Ccrey 1 . 12
+ (=) + ’} oy ! T8, ! ey ! TIB, ! o

4. The Formula for :Mp,. Formula (12) can by no means be used mechan-
ically. It does, however, summarize to a great extent the details in finding
2M,,; for any given values a, b. Formulae for :Mp,, :M»p; have been ob-
tained, but the one for ;M is too long to be included in the paper, especially
since with a little work it can be easily derived by applying (12). The one for
2M>p,, is given immediately below.

Moy = n~¢{nin38[P{, — (P3,)} + n38[P{,Pss + 4(P5oP{, — maP;3,Pi,)]
— 2n3nsSP§ 3P, + (n3 + 2)8(P3oPjoPis + 8P3o P PT,) + 6SP30Pio Py, }
+ 2n8{nniS(P; B; + 2P}, A; — P} P{,B; — 2P}, P}, A,)

— 4ngS(P3 o B:P], + P} ,4:P},) — 2mS[nsP3, BiP§o + 2(2n, — 3)P;, A;P],]
+ 6n8P;, P, A; + 4mS(P;oP{,B; + Pj P}, A; + P30 AP}, + 2P{, P{,B;
+ Pi,PjoA)} + n~*{niS[Pi,B} — (Pi,B)Y + 48P}, Pj,(B: + B;)*

+3(n3 + n)SP3; A% 4 48P30 Py (4i + A;)" — 20S[P; o Pl 4]
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+ 2P; 1 P{1(4:i + A 4+ 16SP;, A:P{,A; — 4njS(P{, A,)?

+ 4(2n} + n)SP}, A:B; — 4n,SP} A;B;P}, — 8nSPyPi , A;B;

+ 8S8(P; B:P3,A; + Pi, AP} B;) — 4n;SP} AP}, B;

— 2mnan'S(QuP3 5 + 2P ;) + 2nan'S[6QuP} P},

+ Qu(P3oPjs + 4P, P{ )]} + 2n~*{nn.S(2P},A:B} 4 2P, A} + 5P}, A%B))
— mS[Qu(P3,B: + P{,A) + 2Qu8P;B; + 2P3, A)]l} + n—{n?S[P§, A"

+ 4(P3,AIB? + P{,AIB)] — 2n8[(QuA:B; + QuA )P}, + QuP},A:B;

+ QP2 A%l + S[Q30P§ 2 + 4Qu(QuPi, + Q1,Pio)]}. (13)=

Cuapter IV. The Mathematical Expectation of the Third Moment of p;;

1. The Mathematical Expectation of ;m»,,. Following the notation of the
last chapter we shall denote the third moment of py; about its mean by 3m»,; and
the mathematical expectation of sm»,; by sM>»,;. We have then by definition.

amoy = (N8 — ) (¥ — y) — Puld,
and by a well known formula we have:
My, = ;';T: — 3:Mopypn — By - (4.11)

The last two terms of (4.11) are given by (1) and (11). To evaluate E we

{1 = E{nS8(z; — 2)(y: — 9)}® = n3SE(x; — 2)*(y; — y)®
+ 3n38E(z; — 2)*(y; — y)¥(z; — 2)(y; — v)
+ 603 8E(z; — x)(y: — y)(x; — )i — v) (@ — ) (e — v) -

The first term is simply n—%p;; which is given by (10). The evaluation of the

second term is not essentially different from the evaluation of the left hand side

of (3.22), and since all details have been given there we shall omit them here.

To evaluate the last expression let us write:

SE(z; — 2)(y: — 9)(@ — 2)(y; — v) (@ — 2) (@ — ¥)

= SE[(U; + A)(V: 4 B)(U; + A)(V; + B)(Ur + Ax)(Vi + Bi)]

= SE(U;V.U;V;UsVi) + SE(U.V.U;V;UBi) + --- + SE(A:B:A;B;A:By) .
(4.12)

2 In case the n populations are identical this reduces to one of Pepper’s formulae,
Biometrika, Vol. XXI, p. 238, Cor. 1.
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As there is a great deal of similarity among the various terms of the right hand
side of (4.12), it will not be necessary to go into the details of the expansion of
every one of them. We shall, therefore, indicate the details for the expansion
of only two of them—one symmetrical and one non-symmetrical; and as the
first two terms are of that type we shall use these for the purpose of illustration.

Using the u, v notation we have

SE(U;VU;V;UrVi) = n8SE[(mu; — - Y(mws — --- Y(mu; — ---)
(mw; — .- Youur — - )(ur — 9],

The maximum number of subscripts appearing in any term evidently being 3, we
can write without any loss in generality:

SE[(nu; — -++) -+« (mwx — ---)] = E[(mws — -+ )Yy — -+ - )(ngug — ---)
vy — -+ )(mus — -+ )(mavs — -+ )+ Ef(mur — - - - )oum — -+ )[(mgug — -+ )
(nwe — -+ )+ (Raus — -+ )(mws — -~ ) 4 (naug — --- Ynwe — --.)
(nyus — -« )(mws — ---)}:S(nlu,-— e Yy — o) + Ef{(nuy — ---)

oy — -+ ) + (nug — -+ Y(mve — -+ ) + mug — +-- )(mwvs — ---)}
A?(’nxui— oo )(mw; — "')(nluj"‘ ---)(mvi— “‘)+§E{(nlui—' cee) ees

(v — ---)} . (4.13)

The coefficients of the various terms arising in this expansion can now be
found quite easily. For example, the coefficient of P} 5, which is, of course, the
same as the coefficient of Pj, is easily found to be

ngna(ni + 2) | nanang _ nnme(3ny — 2)

n3 + ng(2n} + 1) + > +=% 5

To evaluate the summation SE(U;V:U,;V;UrB:) = n*SE[(nu; — ---)
(nws — --- ) (mu; — -+ )(mw; — .. )(mve — --- )By], we break it up into
partial summations as follows:

SE[(nu; — -+ - )(mv; — -+ )(mau; — -+ - )(maw; —--- ) (muz — - - )Bi]

= E{(nus — -+ )y — - )(mauz — -+ - )(ame — --- )(maus — - .- )Bs
+ (mug — - -+ )Bo(nyus — --- )(nws — ---)] + (maus — - )Bi(myug — ---)
(g — -+ Ymus — -+~ Ynws — ---)} + E{f(naug — --- Yoy — -+ )
[((raue — - )(nawy — --- ) + (s — - Y(maws — -+ )] + (mae — ---)
(e — - - Y(maus — -+ )(nws — ---)}A?(muf— -+ )Bs + Ef(niug — --)

(mwy — -+ )(nue — ---)Bs + (nqus — --- )Bs] + (nug — --- Y(mawa — - .. )
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[(mus — ---)B1 + (naus — --- )Bs] 4+ (mauz — --- )(mwy — --+)

[(nur — ---)B1 + (uavy — - - )le}'?(nlui — ) — )

+E{(nlul_ ...)(nlvl_ ...)+ (nluz_ ...)(nlv2_ )+(nlu3_ )
(nws — ---)} Staus — -+ )i — - )(nw; — ---)Bj + E{(nus — ---)B;
+ (naug — -+ )By + (mus — --- )Bs}S(nw; — -+ )(nw; — -+ )

(nluj — ...)(nlvj —_ .. ) + ES(nlui — . )(7’&11); —_ .. )(nlui —_ . )

(nw; — -+ Y(maugx — - -+ )Bs. (4.14)

The expansion of (4.14) is not as difficult as it appears for only two subscripts
can appear in any term: the explicit appearance of the subscript 3 is due to the
fact that we are dealing with a triple summation. We, consequently, do not
need to expand those parentheses in which B appears.

We shall now, without any further details, state the final result, which is:

Moy, = n8{S[n; P}, — PP, + 3ny(P3,Pi, + PiPly) + 3ny(n} + 2)Pi,Pi,
— 3(2n} + VP;,Pi, + 3n,P{ Pi,P%, + 6(nd + 3n, — 2)P} Pi P¥]
— 3n,8P1,[S(n3P5, + PiPi, — ni(Pi,)’ + 2P ,P{)] — n}(SP{)%)
+ 3n75{8[n3(P3,B; + P3;A,) + 2a(P3,PiB; + Pi,PiA)
— 2n,(P§.P},B; + P}i,Pi A) — 2n,(P} P§,B; + Pi Pi,A,)
+ (P{,PioB; + P;,P{,A,) — 2n,(P{,Pi,B; + P;.P{,A))
+ (P3oP§sB; + P§:PiA)l} + 3n~4{S[n,(P§,B} + Pi;43)
+ ny(P3oP{ 1B} + P§,Pi,A}) — (P{\P30B} + P§,P1,A%)
— 2(P},B,PiB; + Pi,A,Pi,A) + 2n,Pi,A,B, — 2P},B.P},A;
— 2P},A,P{B; + 2n,P{;P{,A;B; — 2(P;{ )’ A,B]]} 4+ n=3{8[(P§,B} + P{;A})
+ 3(P3,4,B% + P1,AIB))}. (14)18

Wherea = n} + n; 4 1.
This formula is shorter and simpler than the formula for sM»,,, although they
are of the same order. This is due to the symmetry of ;M»,,.

CuaPTER V. Product Moments of Trivariate and Quadrivariate Populations

1. Some additional definitions and notation. In this chapter we shall indicate
briefly how the method of the previous chapters may be extended to populations

18 Cf. Biometrika, Vol. XXI, p. 253, formula (19).
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of more than two variables. We shall do this by deriving some of the simpler
formulae, corresponding to those of Chapter II, for trivariate and quadrivariate
populations.

The notation will be slightly changed in that we shall symbolize the new
variables by priming the symbols for the variables used in the previous chapters.
Thus, we shall indicate the kt trivariate population by (X, Y, Xi) and the
kth quadrivariate population by (X, Y., X, Y;), and samples from such
populations by (z;, ¥x, z+) and (s, ¥x, Z1, ¥+ ) respectively.

We shall denote by P7; the product moment of the m! population of order
7in X, jin Y, and k in X’, and by P7}, the similar product moment for a quadri-
variate population. These are defined by the following equations:

P = E(X,, — a,)(Y,, — b,)/(X,, — ¢,)*, (5.11)
Pl = EX, — a,)(Y, — bm)j(X;l - ¢ )Y, —d,) (5.12)
where @y, b., ete. are defined as in Chapter I part 2.

The sample product moments corresponding to P7;, P7;, will be denoted

by piix and p;n respectively. They are defined by:

i =0t S (z, — 0y, — vz, — 2, (5.13)
m=1

Pae =17 8 (@, — )Y — 9)'(@n —2) (Y — ¥)*. (5.14)
m=1
Finally we shall designate E(p.;x) and E(p ;i) by pijx and p;;u respectively.

2. The Mathematical Expectation of p.; and pan. By definition we have
pm = Eln18(z: — 2)(y; — y)(zi — ). (5.21)
Applying the transformations (1.17) this equation becomes
npyw = EIS(U; + A)(V, + B)(U; 4 C)] = SE(U,V,U;) + SE(U,V,C)
+ SE(U,U;B) + SE(V,U;A,) + vanishing terms 4+ SE(4,BC,). (5.22)

Since EA .'B .'C i = A,‘B ,'C.', SE (A .‘B .'Cg) = SA ,'B .‘C,‘. Following the pI‘eViOllS
notation we shall put S4:B,C; = Q.

When the expression SE(U,;V;U) is expanded, no other non-vanishing terms
except those of the form E(uwu;) = Pi,, can appear. The coefficient of this
term will evidently be the same as that of Pj, in (2.23), namely: n—2nn,.
Whence:

SE(UV.U;) = n*nyn, SP;, .
The three terms following the first of (5.22) are by (2.24) equal to
n_lnz‘S(P:loCs + P{01B.' + P;uAs)-
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We thus get:
P = n3nne 8P}, + n2n2 S(Pi,,C; + Piy1B; + Pi A) +n1Q,,. (15)
With the aid of the formulae of II, 3 we easily find the formula

Dotz = "_5{(71': — 1SP;, + (2n] + nz)S(P;ooSPgu + 2P;EIOSP]’:01 - P'.fooPc';u
- 2P§10P§01)} +n7H{(n] + I)S(PémBi + Pziwoi + 2P:11Ai)}
+ 17 (] — DS(Psnd} + 2P10,4,B; + 2P{1,A.C; + P30B.C) + @uoSP3 1,
+ 2QuoSPio1 + 2QuiSPi10 + QuSPiod)} + 77 Qyy . (16)
3. The Mathematical Expectation of py;;. The procedure for finding the

formula for pyy; is very similar to the above. We shall therefore merely state
the result.

Pun = n—s{(n: - I)SP;:lll + (2”1’? +”z)S(P:1ooP$ou + P{ompéuo
+ PiowPiio)} +n7*{(n] + 1DS(Pi116D; + Pi10:C; + PiouB; + Pi11id)}
+ n—-z{(ng + I)S(P;IOOCiDi + Pf01oBst + PgllOAiDi + P3101*4iC£
+ PoouidB; + PioniBiC: + 8(QuuuP 1100 + QuuorPior0 + QuoorPé 110 + QuonoPiion
+ QuoPiorr + QuuoProod)} + 77 Quu - (1n
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