ON CERTAIN COEFFICIENTS USED IN MATHEMATICAL STATISTICS
By Evererr H. LARGUIER, S.J.

I. Introduction

(1.1) We have studied here certain coefficients arising in interpolation, numeri-
cal differentiation and integration formulas in order to establish explicit expan-
sions for these coefficients in the form of a finite summation. Ordinarily they
are obtained by means of recursion relations, which necessarily demand the
building up of a complete table in order to find the desired set of coefficients. By
using the methods described in this paper, we are able to calculate any desired
set independent of the ones which precede it in the table. In the literature we
find two other expansions of the difference quotients of zero, one by Jeffery! and
one by Boole.? Qur expansion for the differential quotients of zero is the same as
one obtained by Jeffery,® however the proof is more elementary and simple.

The Bernoulli numbers also find a wide range of application in many finite
integration formulas, and hence our attention was drawn to the discussion of
certain coefficients which occur in the study of these functions.* As in the cases
mentioned above these coefficients are likewise ordinarily obtained by recursion
formulas, but by our expansions they may be obtained directly.

II. Difference Quotients of Zero

(2.1) It is our purpose here to show that this difference quotient of zero, A 07,
may be expressed by the following summation:

e BEI GO 0

where aj, @2, -+ , @m-1=0,1,2, ... ,;n —~manda; Z az = -+ = @Gmn1 = 0.

Obviously the number of terms in the summation is the number of combina-

tions of n — m + 1 things taken m — 1 together where repetitions are allowed.
(2.2) By means of the recursion relation’

A™0" = m A™0"1 4 m A™Qn1 (2)

1 Henry M. Jeffery, ‘“On a method of expressing the combinations and homogeneous
products of numbers and their powers by means of differences of nothing.”” Quarterly
Journal of Pure and Applied Mathematics, vol. 4 (1861), pp. 364 fi.

2 George Boole, A Treatise on the Calculus of Finite Differences, (Stechert, N. Y.), p. 20.

3 Loc. cit.

4 Steffensen, Interpolation (Williams & Wilkins, Baltimore), p. 125.

¢ L. M. Milne-Thompson, Calculus of Finite Differences, (Macmillan), p. 36, sec. 2.53, (2).
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we are able to build up a table of values. By substitution it can be shown that
(1) satisfies the values of this table except when m = 0, 1 and for m > =, for
then the summation becomes meaningless. We therefore define the summation
to have the value 0 for m = 0, n > 0 and for m > n, and the value 1 for m = 1.
We exhibit one substitution below. When m = 3 and n = 4,

sl €+ Q0+ QY () -

(2.3) Taking (2), we proceed by repeated application of the recursion formula
and finally we have

n—1
A0 = mr™ AmOm + Z mn-—d Am—lod ,

d=m
which since A™0™ = m!,® becomes
n—1
A™™ = mrmm! 4 3, mrd AmTI09 (3)
d=m

We will now prove (1). Proceeding b; induction we assume (1) true for
m — 1. Hence from (3) we have

d=m

v

where a1, a2, -+, @m—2 = 0,1,2,...,d — m + 2and a; Z a3 = ---
am-2 2 0. This becomes

n—1
A™0" = m* ™ m! 4 m! E mrd-1 E ::n_z_% "L (g) ' (%) s 4)

d=m

Using the symbol =2 for the double summation of (4), we may write
aiey J[m — 1 3\°/2\° m — 1\° 3\ (2}
IOEMEEEROIGRE=HEROI0
m — 1\° 3\ /2\!
+m=a) - @0+
m — 1\ (m — 2\d—mH (3>d~m+l (2>d—m+1
+(m—2) (m—?:) A2 1
d—m+1 2 d—m+1
AR
n_l m i1 3\ n—d—1 /Q\n—d-1
S0

=

N

¢ Milne-Thompson, loe. cit.
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m n—d—1 3\n—d-1 2\n—d
()
n—d—1 m — 1\»m1 m — 2\r ™ 2\n—m
+( —1) (m—2> (m~3) (1‘)

3

3
3

3

=) G0

wm m n—m fm — 1\nm _3_ n—m (9 \n—m .
NOW, m = <m) (7';&—_—2) e <2) (i) y and also d varies

from m to n — 1. Hence by including m»™ under the summation we are
able to replace the double summation by a single one and have

A e O NG

where a, @3, - -+ , @1 =0,1,2, ... ,n — mand a, = a3 = ... Z AGm = 0.
Hence (1) is proved.”

3

III. Differential Quotients of Zero

(3.1) In Markoff’s formula for numerical differentiation we meet coefficients
of the type D™0™. We will show here that this differential quotient of zero
may be expressed by the following finite sum:

D™ = (— 1)™™m! X" (pips -+ - Pnm) (5)

where p; > ps > ... > p._m > 0 take on values from 1,2,...,n —1. Obvi-
ously the number of terms in the expansion will be the same as the number of
combinations of n — 1 things taken n — m together without repetitions.

(3.2) By means of the recursion formula®

D™ = (1 — n) D™D + m Dm10(»-D (6)

we are able to build up a table of values. By substitution it can easily be shown
that (5) satisfies the values of the table whenn > m > 0. For the other values
the summation is meaningless, hence we define it to have the value 1 for
m = n > 0;and the value 0 for m > nand m = 0. When m = 2and n = 4,
we have

D% = (- 1)*221{(3-2) + (3-1) + (2-1)} = 22,

which is the same value as found by (6).

7 Our expansion may be shown to be equal to that of Jeffery’s cited in the introduction,
which is Am0m+» = m | gmQm+n where £70™*n expresses the sum of all the homogeneous products
of n dimensions which can be formed by the first m natural numbers and their powers. The
proof of Jeffery’s expansion involves the use of complicated symbolic operators, while our
proof uses elementary notions only.

® Steffensen, op. cit., p. 57, 58, (12) and (14).
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(3.3) Returning to (6), we obtain by its repeated application:

n—m—

1
Dmn = (__ l)n—m (n - 1)(n—m) Dmym +m Z (__ l)a (n — 1)(«) Dm1((n—a—y
a=0

or, since D0\ = ml,
n—m—

1
D™ = (— ) (n — ™ mlfm 3 (= 1)°(n — 1)@ Dmige—aD (7)
a=0

In proving (5), we proceed by induction, assuming (5) true for m — 1; hence
by (7) we have

D™ = (— 1)*m (n — 1) m

n—m—1 8
+m! Y (=1 m(n— 1)@ E(R.lpz «+ Dn-m—a) @

a=0

where p1 > p2 > -+ > Pnma > 0 take the values 1, 2, ... ,n — a — 2.
Expanding the double sum of (8) we have

n—12 n—3
22X = ,.‘2 (P1 -+ Prm) + ,,.Z.:l (n —1)(P1 -+ Proms)

+ ”Z_:A w-—1Dm—-2) (p1 -+ Prm-2) )

+ .. +§(n—l)(n—2)---(m+l)(?x)

in which p1 > p; > ... > p, > 0 always holds, where

s=n—-—mmn—m-—1,...,21
in turn.

Upon inspection, it is evident that (9) contains all the terms of (5) with the
exception of (n — 1) (n — 2) ... (m + 1)m. Hence, since by definition
n — D™ = (p — 1) ... (m 4+ 1)m, we may include the first term on the
right-hand side of (8) under the summation and then we have proved (5).?

IV. The Coefficient G'~’

(4.1) In discussing the Bernoulli numbers and the Bernoulli polynomials,
Steffensen’® makes use of the relation:

r

By(z) = (= 1)r > G g (10)

n=0
] , : o - (=1)=mgmo@
Jeffery’s expansion referred to in the introduction is D0 = ¢mQ(), where —

expresses the sum of the combinations of the first n — 1 natural numbers taken n — m
together. The remarks made above under article 2.3 concerning symbolic operators also
apply here mutatis mutandis.

10 Op. cit., p. 125, (24); cf. also Jacobi’s theorem. Journal fur reine und angewandte
Mathematik (Crelle’s Journal), vol. 12, pp. 268-269.
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where z = z — 22 We wish here to show that the coefficient G<’’, ordinarily
found by means of recursion formulas, may be obtained from the following
summation:

r—n+1 Nn+1 Nz+1

G = (2r)@ Z [Na] Z (Npa] --- Z (V4] (11)

Np-1=3 N1=3

where [N] = (N)®/(2N)®. Obviously the summation has no meaning for
n = 0, nor forr < n 4 2. Therefore it will be necessary to make deﬁmtlons
or devise other schemes for meeting this difficulty.

Steffensen!! shows that

Gi'=1 for r=0; G =0 for r>1; (12)

and likewise he gives the following recursion relation:
@r —20)?6 = @)P GV + (r —n + DP G, (13)

In accordance with (12), we define the sum of (11) to be equal to 1 for n = 0,
and to be equal to 0 for n = r — 1, when r > 1. By means of the recursion
formula (13), Steffensen® gives a table of values of G%"), which (11) may be
easily shown to satisfy. From this table we have the value & = 10. Using
this as an example of the expansion, we have by (11):

G = (12)® Z (N3] E (V2] Z (V]

N3=3 N3=3 Ni=3

= (12)® [31{(41([5] + [4] + [3]) + [31([4] + 13D}
+ [41{[51(6] + (5] + [4] + (3]) + [41((5] + [4] + (3]) + [B1((4] + 8D}
= 10.

(4.2) Before proving the general case, we will prove by induction that

@0 = @)® 3 (V) (14)

N1=3

Assuming (14) true for r — 1, we have by (12) and (13)

60 = @)™ T V] + @20 = @) 3 il

N1=3

Hence (14) is valid.
(4.3) We shall prove (11) with respect to r. By repeated application of (13),

we have

11 Op. cit., p. 125.
12 Qp. cit., p. 126.
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G = {(2n®/@2r - 20) @GV 4 {2 P(r —n 4+ 1)®/(@2r — 20 4 2)®} GV
+ (@O —n+1DPC—n+2)?/@2r — 20+ H)®}GT + -
+{@P@—n+1D® ... (r — D®/@2r — 2} G
+{r—n+ 1@ ... (0P/(2r - 2)®} 6}

N2+1

= @)™ 3 N 3 [N
r—n+1 N:+1
FEI™r—nt 1 3 el 3 V)
£ —n g Ul —nt 2 3 Wad oo 3 N4 -

+ @) [r—n + Hir—n+42]..-[r—1] ril (V4]

N=3

+ @) [r—n+1]--- [r].
It is evident from inspection that this is nothing but an expanded form of (11),

hence (11) is proved with respect to r.
(4.4) Proceeding in the same way as above to prove induction with respect to

n, we have again by repeated application of (13)

G = {(r—n+DP/@r — )P} + (@)D — n)®/(@r — M)D}GTY
+{@)®0 —n - D®/(@r — 20)®} G5V
+ooe 4 (@D 3)D/(2r — 20) D) Gk

r—n+2 Ni+1

=@ -n+1 X . [Nacd -+ 25 [NY]

Np1= N1=3
r—n+1 N3:+1

+ @) —al 3 (Naal--- X [N

Np-1=3 N1=3
Ni+1

b+ @O Y Naad oo S VA

Np1=3 N1=3
N2+

L E™E S Nal - S V.

Np-1=3 Ni1=3
From this latter equation, (11) follows immediately and therefore the proof is

complete.
(4.5) Bernoulli numbers may be expressed in terms of this coefficient G."’, as is

shown by Steffensen,® in the following way
B, = (=1)'GY” (15)

13 Op. cit., p. 125, (27).
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which we shall express in terms of (11). However as (11) is meaningless for
n = r, we obtain the relation

@& +2)P6" = —Q26¢" Y for r>0, (16)

which follows immediately from (12) and (13), and thereby obviate this difficulty.
Hence, by (11), (15) and (16), we can write

By = ((-D™@)Y@O®) 3 N S5 W) 55 V)

We note here that the definitions of the summation, given in 4.1, likewise hold.
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