ON THE FREQUENCY FUNCTION OF zy

By Ceci. C. Cralc

Given the distribution function of x and y, what can be said of the distribution
of the product zy? The author has had two inquiries during the last two years,
one from an investigator in business statistics and the other from a psychologist,
concerning the probable error of the product of two quantities, each of known
probable error. There seems to be very little in the literature of mathematical
statistics on this question.

If z and y are independent and are each distributed according to the same
normal frequency law, it is well known that the distribution function of
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in which K(z) is the Bessel function of the second kind of a purely imaginary
argument of zero order.? If z and y are independent and are each distributed
according to a logarithmic normal frequency law, it has been pointed out that
the product, (x — a) (y — b), in which a and b are the upper (or lower) limits
of the range for z and y respectively, is distributed according to a law of the
same type.* In both cases the special choice of origins greatly simplifies the
problem.

In the present discussion it will be assumed that z and y are distributed
normally. It will appear that the distribution of zy is a function of r;, the
coefficient of correlation between z and y, and of the parameters,
my mz me ?Z'/'—y

= — and p2 = — = y
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which are proportional to the reciprocals of the coefficients of variation. The
chief difficulty arises when p; and p» are small so that zero values of zy occur

1 J. Wishart and M. S. Bartlett: The Distribution of Second Order Moment Statistics
in a Normal System; Proceedings of the Cambridge Philosophical Society, Vol. XXVIII
(1932), pp. 455-459.

2 G. N. Watson: A Treatise on the Theory of Bessel Functions; Cambridge University
Press (1922), p. 78.

3P. T. Yuan: On the Logarithmic Frequency Distribution and the Semi-logarithmic
Frequency Surface; Annals of Mathematical Statistics, Vol. 4 (1933), pp. 46, 47.
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2 CECIL C. CRAIG

for values of z and y well within their respective ranges of variation. (If p;
and p; are large, practically one may exclude zero values of z and y from con-
sideration. The author hopes to present an investigation of this case soon.)
It is the object of the present paper to study the rather unusual frequency
function that arises in this situation. It will first be assumed that z and y
are independent (r,, = r = 0). Then it will be shown that the distribution
function when r # 0 is readily derived from that arrived at in the special case.

We can find the moment generating function of zy without difficulty. We
have,

_(z=m)?_ (y—m)?
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Setting, for convenience,

this can be written,

el(p1+0)) 9™ +201p49] 2(1—0%)
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0)) M.(9) =

This choice of variable and of parameters will be adhered to in the sequel.
On expanding log M.(8) in powers of ¢, we get for the semi-invariants (of
Thiele),

)\zk+1~;=(2k+1)lp1pz, k=012 -.

2 (2k) !

Agk:s (P2 :)+(2k—1)') k=12, ....

These give for the mean and variance of zy,

M, = mme

2 2. .2 2 .2 2 2
azy = 0, My -‘TUzml +010'2.
For the standard semi-invariants of z (or of zy), we have,

Azk41:s (2k + 1) ! pip2
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Taking,

_ 6 p1p2
T (2 2 32’
(Pl + p2 + 1)

as a measure of skewness, it is easy to verify that

IEslégx/ﬁ-

For either py = 0 or p, = 0, the distribution is symmetrical about its mean
which then falls at the origin.
For the excess or kurtosis, we have,

£‘=6[2(pf+p§)+llsﬁ_
(o} + 03 + 12

Thus the skewness is never great and becomes small with increasing p; or p..
The excess also becomes small with increasing p; or ps, but it can be very large
for small values of these parameters, attaining its maximum of 6 for p; = p, = 0.
But, as it will appear below, the distribution function always becomes infinite
in a logarithmic manner at the origin. (We have already seen, as must ob-
viously be the case, that moments of all orders exist.) It is to be noted, too,
that for any given p, and p, £2x increases without limit with increasing k, and
that the same is true of £2:41 if neither p; nor p; is zero.

Turning now to the derivation of the actual frequency function of z, we set
dw

&

w = zy; then for any given z, y = w/z, dy = (-ig ifx>0,and dy = —

if z < 0. These values are substituted into ¢1(x) ¢2(y)dz dy, in which ¢,(z) and
¢2(y) are the frequency functions of z and y respectively, and the resulting
expression is integrated over all values of z, giving for the frequency function
of w: :

: : © 0
P = [ a0 %~ [ ot 0 %]
TO102 0 x —o z

in which,

<I>(w, x) = e—(a:z‘—2mw:z'—2mo:wz+¢:w’)I2v:¢r:z’ .

Again setting z = 2y , and introducing the parameters p; and p, this reduces to,
0102
_ (pi+e)

e 2

4) F(z) = ——2—1—r——l¢1(2) — ¥a(2)],
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in which,
© - z—z‘ﬁlz‘z'z--f%

(5) ¢1<z)=/ e e “)9’3,
0 z

and y»(z) is the integral of the same function over the interval (— «, 0).
Now writing,

z? z? p1z+ps z
. ® 3T ise *
(6) i(z) = / e dz ,
0 T

we note that

pw+pr

e
z

can be expanded in a Laurent series in powers of z for all values of z except zero.

In this expansion the coefficient of z™1, r = 1, is ’—;IT Z,(plpg z), in which

_ pip2 2 (p1ps 2)? (o1 2)° .
@ 2o 2) = 1+T+ it rrnenit graesit

+0)®=0C+E0C+Ek-1---+1).
We may note parenthetically that

p1 I3
- 2) = _
i > (p1p2 2) (pz z)

in which I,(z) is the Bessel function of the first kind with a purely imaginary
argument.* '

. . 2" p;y
The coefficient of 21, r = 0, is —r—':’ > (p1p2 2).

ol

If(2 \/plpz Z) ]

Setting now,

) mz-Hn;'
e
Z fn(x) = y
7 =——o0 x

we substitute this series in (6) and seek to justify the expansion it gives for
¥1(2) obtained by term by term integration. We write,

z? s 2

di(z) = /;1 e_?_m}:fn(x) dr 4 _/;me_?—mz_f,.(x) dz .

¢ Watson, loc. cit., p. 77.
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For z > 0, pipe > 0, the terms of Z fa(z) are all > 0. Then the conver-
gence of

Z/le_?‘?;f,‘(x) dx

is sufficient to allow term by term integration in the first integral. Inthe second
integral we observe that Y f.(z) converges uniformly in every fixed interval
1 £ z £ a. Then term by term integration is permissible here if

Z/ e_?_ﬁf,.(x) dz
0

is convergent.5 It is evident, then, that it will be sufficient to establish the
convergence of

Z/;we_%’—i_'fu(x) dzx .

If either or both z < 0 or pip2 < 0, it will be easily seen that the series involved
are still absolutely convergent which is sufficient.

Now using the definition of the Bessel function of a purely imaginary argu-
ment of the second kind,

z? 6
1/2\ [° " d

it is easy to derive the relation,

n—1 z? z?

2 ® Ty T Irndz
K,,_ﬂ(z)=z /; e -

Remembering that K,(z) = K_,(z), we have for our expansion,

Vi(2) = 20 Ko + (o1 + p2) 27 221 Ki + (o1 + p3) Qz_' 2K

:
+ (o1 + 02 ;—,ZaKw

in which the argument for all the > _-functions is pip; 2, and for all the K-func-
tions is z.

¢ T.J.I’a Bromwich: An Introduction to the Theory of Infinite Series; Macmillan & Co.,
London, 2nd edition (1926), pp. 496 and 500.
¢ Watson, loc. cit., pp. 78 and 183.
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But we may as well add to this the expansion of —y3(2), which may be
written,

and obtain the expansion,

2 2
prte,

2
PO = [kt G+ oD S Tkt Gl 469 5 DKot - |

the convergence of which we will examine. But it must be noted that the
terms arising from the expansion of

z 2z
prztpr— —p1z—p2—
z z

e
and
x X

e

which contribute to the expansion of F(z) as just written are those of the forms,
; d P2 ;.
@t Zx en @ )' s
Hence the expansion as written is valid in any case only for z > 0. For z 2 0,
we may write however,

!+ 2
Pl P’

F(2) =
® (2)

[ Zokot 6F + oD 2] Bkt Gt + o) ] Tk

+M+£ﬂ%3}m+m]

in which the arguments for the D and K-functions are the same as before.
Let us consider now the question of the convergence of (8), first in the case
that z > 0. We set

c rK zr—lK 1
* = v —=DI"
Then from the relation,
2
©) Kea— Kn= = Z K,

we readily derive,

22 _ 2v >
Grom ol

7 Watson, loc. cit., p. 79.
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For z > 0, the left hand member and ¢, are both > 0. Thus

2v
Cyy1 — IT— >0.
Then let
2
cv+l=y_l_y1+6v+1, 6,+1>0,

and we have,

22 2 2 6,41
e > (23 m 2 2
It is evident from this that for a given z > 0, a », exists such that ¢, < 3
for v = w,.

Further since

| p1p2z |
2 Se

the convergence sought follows for z > 0. Since K is an even function of z,
it is easy to see that (8) is also convergent for z < 0. For z = 0, the first term
possesses a logarithmic discontinuity at the origin.

To calculate ordinates of F(z) there are fairly extensive tables available in
Watson’s treatise already referred to. These tables may be readily extended
by means of the asymptotic formula for K(z) for larger values of z, and by means
of (9) for larger values of ». One can rapidly build up tables of D _.(z) by means
of the easily obtained recursion formula,

Zr(ﬂ’?) = Zr+1($) + G_:—z)(z) Zr+2($) .

It is unfortunately true that the expansion found for F(z) is very slowly
convergent for large values of p, and p,.

At the end of this paper are shown three clLarts of F(z) with the tables of
ordinates from which they were made by way of illustrating what such curves
look like. (On the second for comparison the broken line is the normal curve
of error.)

For py = p; = r = 0, we have simply the known result,

F() = }rK., @ .

For py = 1, p» = r = 0, the curve is symmetrical about its mean (and the
origin). Here every Y _-function is unity.

For the case in which py = p; = §, r = 0, I first constructed tables of > (@)
forz = +0.025, :0.05, 0.1, and by intervals of 0.1 to +3.0 fors = 0,1, . .- ,
20. Values of ) 4(z) and Y s(z) for z = 3.2 and 3.4 were also used. Not
more than five terms of (8) were required to obtain values of F(z) accurate
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to five places of decimals. This distribution curve is skew with M, = 0.25
and 53:2 = \/T6~

The curves are plotted in standard units with unit total area (o, =
Vv ol + p3 + 1). The tables of ordinates are given both in units of
z=-Y andoft = 2=

g102 Oy

Turning now to the case in which r # 0, after some computation, we have
for the moment generating function,

(p:+p:—2rmo:)0’+2 p1ped

2[1—=(14r)0][1+(1—r)J]
€

V-0 +nl+ 0 =-nd]

As a check on this result, if we set 7 = 1 and p1 = p2 = p in it we get,

(10) M.(9) =

o2

6'1_:2—0
Ml = =3
which may be readily verified to be the moment generating function of :—:
if r is distributed normally with mean m and variance ¢* <p = —?) .

To obtain the semi-invariants of z in this case, on expanding log M,(d) in
powers of ¢, setting

a = pl + p: — 2pipor, b=2pp, c¢c=1+47r, and d=1-r,

we have,

log M.(8) = ‘ﬁg_b_" (1 — e9)1 (1 + do)-!

- %[log (1 — ¢9) + log (1 4 d&)]
(11)
- a¥? + bd

3 2+ (@ —d)d+ (4 d) 94 (¢t —d)s* 4 ... ]

DO -

‘ 92 DA
rile—dvreralie-als ],

from which we derive,

Me = 2 Lo = (= D™ a4 e — (= D) B

(12) ( N
+ S (e (- )
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In particular,

b —d
)\1:-=§+c—2——=mpz+r

‘2_d2 2 d?.
Aes=a+° 3 -b+€—;—=Pf+p§+2p1pzr+(1+T2)

(13) ),

S —dat @+ )b+ — @

=600l +p2) 7+ oo (1 + )]+ 273 4 1?)
Mis = 6 (¢ + d®) a + (c* — d*) b] + 3 (c* + d¥)
12 (o + p3) (1 4 3 72) + 24 prpor (3 + 12) +6( 4 6r 4+ 7).
Noting that
da b ab 0 ¥ _ od

’ _="’1’

ar

6_7‘ = - ’ 5 = ) E' =
one can easily demonstrate what seems to be a rather striking property of these
semi-invariants, viz.,

_a_L'n:t - n(n — 1) An—lz .

(14) ar

To gain a notion of the magnitude of the skewness and excess in this case,
we form,
)‘4:3

i

b3 = Z‘:—l and &, =
2

In view of the above property,

% _ 623 — 3N
or G\
)\2

The denominator of this fraction is always > 0. The numerator, after some
reduction, can be written,

6 [o1 + p2 — pirs (1 — ) 4 (o} + 03) (2 — 1)
+ (o1 + 02 — 2) prpor + 1 — 17 .

The first two terms taken together, the third, and the last are all obviously > 0.
The term,

(15)

(0} + p3 — 2) pipar
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has its maximum value for | r | = 1. But for r = 1, (15) becomes,
Pt + o3 + ppa(pl + 03) + (o — p2)?,
and for r = —1, it is,

Pl + b5 — po2(p} + p3) + (o1 + p2)?,

both of which expressions are easily seen to be > 0.
Thus (15) is always positive and the maximum value of £;., is attained for

r = 1, the minimum value for r = —1. These values are respectively,
6 (pr + p2)? + 8 and — 6 (o1 — p2)?— 8
(o1 + p2)? + 2] (o1 — o2 + 218 '

the absolute value of either being < 24/2, which is attained in the first case
for p = —p: and in the second for p; = pa. It is seen that for high correlation
between z and y the skewness of zy can be quite large.

For the excess, we see that

kd-z
E4:z = 5
)‘gzz

attains a value of 12 when p; = —p;, r = 1 or when p; = ps, 7 = —1. Since
this is such an extraordinary value it does not seem worth while to carry out
the extended computation that seems to be required to verify one’s surmise
that this is the maximum of the absolute value.

Now, to derive the frequency function we proceed as before. Wesetz = %
102
and then
F(z) = L(z) — Ix(2) ,

in which,

LIi(z) =

z z 2
1 /w ; 2(ll—rr) [(’—»,)?——2 r(z=»)) (Z""*) + (?_"*) ] dz
ey T —— e -
2r V1 =2 Jo ’
and I.(z) is the integral of the same function over the interval (— <, 0).
We can write I1(2):

z

2 2
pl—2rp‘p’+p’ rz 1 22 1 z
T TRy Tioe e T 50SrY (zz+;)+—-——l_r,[(m—rp,)z+(p,—-rp,) ;J
e dz
e — .
0 xT

2r V1 — 2

Setting,
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this becomes,

pl=2rp p, o’
\/ _ 12(1 ln') ?+(lr!’2)2 _1_(u2+§_? =T Py +p,~r,,l;
1 —1r2e —r* — © ) ? — u = 1;;du
(16) 2 X e e‘\/l r vV 1l—r _{[
™ 0

But on writing,

— rp, -7
PLZ 0P Rpyoand 2P

i =R,,
\/1—) V1—? :

the integral in the last expression is of the same form as the y1(z) in the un-
. . N

correlated case. It is evident, then, that the distribution function of ¢ can

be written,

2 )
—2 +
LN 2rp,p, o, et

ViTE R TR [Zo (R R, ) K,(©)

m™

D+ ® 4+ 8D LS REDEG + ® 4+ RY 5 SINUN AT

+ (R? + RY) 'H Zs (R\R,O)K,(¢) + - ]

and is essentially of the form of I'(z), reached when r = 0, multiplied by an
exponential function.

Frequency curves for vy (in standard units) are given in Fig. 1, Fig. 2 and
Fig. 3.

hg}
"

0
1"
o
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TABLES OF ORDINATES OF THE DiISTRIBUTION FuUNcTIONS, F(2) AND F(f)

Forpp=po=0,r=0 pr=1,pp=0,7r=0
(Curve is symmetrical with respect (Curve is symmetrical with respect
to origin) to origin)
M,=0,0,=1 M,=0,cr,=\/§

z=1 F(z) =F({) z F(z) t F(t)
0.1 0.77256 0.1 0.58215 0.07 0.82328
0.2 .55790 0.2 .44891 .14 .63485
0.3 .43887 0.3 .37159 .21 .52551
0.4 .35477 0.4 .31736 .28 . 44882
0.5 .29425 0.5 .27593 .35 .39023
0.6 0.24749 0.6 0.24270 0.42 0.34323
0.7 .21025 0.7 .21519 .49 .30432
0.8 .17996 0.8 .19193 .57 .27143
0.9 .15493 0.9 17195 .64 .24318
1.0 .13402 1.0 . 15460 .71 .21863
1.2 0.10138 1.2 0.12595 0.85 0.17812
1.4 .07756 1.4 .10340 0.99 . 14623
1.6 .05983 1.6 .08533 1.13 . 12068
1.8 .04645 1.8 .07069 1.27 .09997
2.0 .03625 2.0 .05873 1.41 .08306
2.4 0.02235 2.4 0.04078 1.70 0.05767
2.8 .01395 2.8 .02846 1.98 .04025
3.2 .00878 3.2 .01992 2.26 .02818
3.6 .00557 3.6 .01397 2.55 .01976
4.0 .00355 4.0 .00981 2.83 .01388
4.8 0.00146 4.8 0.00485 3.39 0.00685
5.6 .00061 5.6 .00239 3.96 .00338
6.4 .00026 6.4 .00118 4.53 .00167
7.2 .00011 7.2 .00058 5.09 .00082
8.0 .00005 8.0 .00029 5.66 .00040
9.0 0.00002 9.0 0.00012 6.36 0.00017
10.0 .00001 10.0 .00005 7.07 .00007
11.0 .00002 7.78 .00003

12.0 .00001 8.49 .00001
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[N

p1r=p2=79,T

M, =0250, =

F(z)

0.00001
.00002

0.00004
.00010
.00023
.00054
.00128

0.00311
.00488
.00769
.01221
.01954

0.03165
.05213
. 08809
15568
30423

0.47388
.64994

0.68106
.51947

0.36322
.21768
.14230
.09621
.06614

0.04589
.03201
.02241
.01571
.01103

=0

1S

2

14

—8.04
-7.39

—-6.74

—5.43
—4.78
—4.12

—3.47
—3.14
—2.82
—-2.49
—2.16

—-1.84
—-1.51
—-1.18
—0.86
—0.53

—-0.37
—-0.28

—-0.12
—0.04

.45
.78

1.43

2.08
2.41
2.74
3.06

F()

.00001
.00002

.00005
.00012
.00028
.00066
.00157

.00381
.00598
.00942
.01495
.02393

.03876
.06384
.10788
.19066
.37259

.58036
.79598

.83409
.63619

.44484
.26659
17427
.11783
.08100

.05620
.03920
.02745
.01924
.01351

13
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F1q.,2

p=p=%7r=0
M, =025 0 = Y5
z F(z) ¢ F(t)
4.8 0.00545 3.72 00667
5.6 100269 4.36 100329
6.4 100133 5.02 100163
7.2 00065 5.67 -00080
8.0 100032 6.33 100039
8.8 0.00016 6.8 100020
9.6 00008 7.63 100010
10.4 .00004 8.29 100005
11.2 100002 8.04 100002
12.0 100001 9.59 100001
e
4e0
T
yi A
1/ \:
y Y
// \\\
7
./ A\
/ AN
-8 -5 -4 -3 -2 -] [o] ] 2 4 s (]
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