ON CONFIDENCE RANGES FOR THE MEDIAN AND OTHER
EXPECTATION DISTRIBUTIONS FOR POPULATIONS OF
UNKNOWN DISTRIBUTION FORM

By WirLiam R. THOMPSON

About the commonest situation with which we are confronted in mathematical
statistics is that wheré we have a sample of n observations, {x;}, which is
assumed to have been drawn at random from an unknown population, U, with a
zero probability that any two values in the finite sample be equal; and we
desire to obtain from this evidence some insight as to parameters of the parent
population, U. If further assumptions are made as to some of the parameters
or the form of U, there may result a gain in power in testing other given hy-
potheses or establishing confidence ranges for particular parameters, but at an
obvious sacrifice of scope in application. Insistent problems involve estimation
of mathematical expectation that in further sampling we shall find z lying within
a given interval, or similar expectation with regard to parameters of U such as
the unknown median. It might seem that, without further assumption, all
we should claim is that it is possible to draw from U the sample actually ob-
served. A mere description of the experience may well be considered the
observer’s first duty, but a restriction to this would leave entirely unused the
quality of randomness which has been assumed. What additional statements
as to U may be appropriate in view of this randomness are our immediate
concern; and the object of the present communication is to show how we may
obtain such expressions in the form of mathematical expectations, and to
present some results. Widespread applications to problems of estimation of
normal rangés of variation or specific confidence ranges and comparisons of
saniple reflections of possibly different populations are immediately suggested,
and a new foundation is offered for the study of frequency-distribution from the
point of view of Schmidt.!

Section 1

Accordingly, consider the following situation. Let A = {x} denote the set of
all real numbers; and U denote an unknown frequency-distribution law of draft
from {z} such that there exists an-unknown function, f(z), bounded and not
negative in 4, and that the probability of obtaining x in an arbitrary interval

(e, B) is
] B
1) P(a<x<ﬁ)=/ f(x)-dz ;

18chmidt, R., Annals of Math. Slat., &, 30, (1934).
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and, for every positive p < 1, there exists a finite interval («, 8) such that
Pla < z < B8) > p. Let U be called an infinite population; and let n drafts,
independently thus governed, made from A without replacements be called a
random sample of n observations from U. Let S = {xx},k = 1, ..., n, denote
such a sample; the enumeration to be made in an arbitrarily determined manner.
In any case z; # z;for ¢ # j.

Temporarily, let us consider % to indicate the order of draft of the values of
{x:}, and let p = P(z < zi) denote the probability that z, drawn at random
from U, be less than zx of S. The probability d priort (i.e., without regard to
relative values of  in the sample) that in such random sampling p: lie between
p’ and p’’, where 0 = p" < p’’ £ 1, is obviously independent of k, and
equals p’’ — p’;i.e., pris equally likely @ prior to lie in either of any two equal
intervals in its possible range, (0, 1). Furthermore, the probability that in
the rest of the sample, S, there will be just r values less than x; is

n—1 ’
( , )-m-(l—m)““",

where r is an integer and 0 =< r < n. Of course, pi is unknown; but we may
calculate (for all cases in repeated sampling wherein the same value of r is
encountered) the expectation, P, (p’ < px < p'’), that pi lie in the interval
(p’, p’’). This is given by

!’
2 P(p' <pe <p") = W/ pr-¢-dp,
ris! o’
wheres =n — 1 — r,andg =1 — p. Thisis a familiar result®?4in applications
of the well-known principle of Bayes to estimation of d posteriors probability.
The approach is convenient in that many relations which have been developed
in this connection are made immediately available. However, that px is
equally likely d prior: to lie in either of any two equal intervals in its possible
range, is not based in the present case upon an especially added assumption
nor any plea concerning equal distribution of ignorance, but follows directly from
the elementary assumptions of random sampling. Accordingly, we are enabled
to develop for given ranges what may be called the specific confidence or mathe-
matical expectation that a given variable lie therein.
Obviously, (2) does not depend on k if this index is the order of draft provided
that just r values of the sample, S, are less than the one under consideration, zz.
To simplify notation, accordingly, let the index k for any given sample, {z:},

* Bayes, Philosophical Transactions, 63, 370 (1763). Cf. Todhunter, L., “A History of the
Mathematical Theory of Probability,”” Macmillan and Co., London, 1865.

3 Laplace, “Théorie Analytique des Probabilités,”’ Paris, 1820; and other works, C7.
Todhunter, l.c.

¢ Pearson, K., Philosophical Magazine, Series 6, Vol. 18, 365, (1907).



124 WILLIAM R. THOMPSON

be determined by the relations, z; < z;for ¢ < j, where k = 1, ... ,n. Then,
by (2) ask = r + 1, we have

’ 7"y n ! p”

where py is the probability that random sample values from U will be less than
the k-th value in order of ascending magnitude from a given random sample,
{zx}, of n values from U; and P(p’ < px < p’’) denotes the expectation that in
such sampling p; will lie in the interval, (p’, p’’).

In general, let E(w) = # denote the mathematical expectation of any
variable, w, under the given sampling conditions. Then, from a well-known
relation developed by Laplace, we obtain from (3) the mean expectation of px,

.k
(.4) Py = m ’
and, further relations* of Karl Pearson yield
v _ T _ kn—k41)
®) B =2 = o0 = G it

i.e., the mean squared error in systematic use of - _’:_ i instead of the unknown

px should have the value in (5). Specific confidence ranges for z are readily
established; e.g., the expectation that in random draft from U we obtain 2
within the range (2, n—z+1) in view of the sample, S, is

n+1-—-2k

e for2k<n+1;

(6) Plai < 2 < Tpirp1) =

and P(x < zx) = P(x > Znty1) = n_-’:-—l For a given variate, w, the range

(e, B) will be called central if P(w < &) = P(w > f), as in the case under (6).
This is in accord with the development .of the subject of confidence ranges by
Neyman®¢ and by Clopper and E. S. Pearson? following the introduction of the
notion of fiducial interval by R. A. Fisher.8® The estimates of pi in (4) may
be of value in studying frequency-distribution from the point of view developed

by Schmidt,! by comparison of z with"nﬁ( %k — 1) where

— 1) rather than n/«( o
¥ is a univariant inverse-of the integral of a given frequency function, taken to

§ Neyman, J., J. Roy. Stat. Soc., 97, 589, (1934).

¢ Neyman, J., Annals of Math. Stat., 6, No. 3, 111, (1935).

7 Clopper, C. J., and Pearson, E. S., Biometrika, 26, 404, (1934).
8 Figher, R. A., Proc. Camb. Phil. Soc., 26, 528, (1930).

9 Fisher, R. A., Proc. Roy. Soc., A 139, 343, (1933).
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replace the unknown f(z). Obviously, P(zi < z < Ziy) = 7&—1 A discus-

sion of the special case, n = 2, has been prominent recently in a controversy
between Jeffrey'® and Fisher®!! and in an article by Bartlett.??
Now, in (3) for p = p’, and p”’ = 1; we may write®

k—1
—_ n a, g = =B(n_k+1)k)
@ Po<mw= (") ree=Lo-bt1p=DkLLY,

a=0

where ¢ = 1 — p, and the incomplete B and I functions are those of K. Pearson®
and Miiller.¥ Now, let M be the unknown median of the infinite population,
U. Then, by definition of px, if and only if zx > M, then pr > 3. Therefore,

k-1

8 PO <) = P05 < py) = (%) > (Z) = Ios(n — k + L, k).

a=0

2
between the k-th observations from each end of the set, S, is given by

9 Par<M<zpry)=1—2Isn—k+ 1,k), for 2k < n + 1.

Obviously, P(zx < M < zxy1) = (1) (Z), and the expectation that M lie

Obviously, this confidence range is central.

Section 2

Now, consider another infinite population, U’. In similar manner we may
develop expressions for confidence ranges and distribution expectations. Let z’
be the variate, and consider a sample, S’ = {x,.}, of n’ observations drawn
without replacements from A according to U’ but after the sample, S; of U;
i.e., so that no two of these sample values in S’ are equal, nor any of them equal
to & value in 8. Furthermore, let m be the order of ascending magnitude of z’
values in 8’; and p,, = P(z’ < z,,) for ' drawn at random from U’, and let M’
be the unknown median of U’. Then, by replacement of x, n, px, k, and M by
z’, n’, p,, m, and M’, respectively, in relations already developed for U and S,
we obtain corresponding expressions for U’ and 8’; e.g.,

1

(10) P(z, <2’ < zp,) = T

1 Jeffreys, H., Proc. Roy. Soc., 4 138, 48, (1932); A 140, 523, (1933;; 4 146, 9, (1934);
Proc. Camb. Phil. Soc., 29, 83, (1933).

i Fisher, R. A., Proc. Roy. Soc., A 146, 1, (1934).

12 Bartlett, M. S., Proc. Roy. Soc., A 141, 518, (1933).

13 Pearson, K., Biometrika, 16, 202, (1924).

4 Miiller, J. H., Biometrika, 22, 284, (1930-31).
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Now, let the index values, k., be defined as the number of values of {z:} that
arelessthan z,,m = 1, --. ,n’. Then, for all realized cases,
(11) Ty, < z:a < Zppt1s m = 1, Tty n,’
for the extreme members of (11) in S. Then, for z and z’ drawn at random
from U and U’, respectively, we may write

12)  0< (41D +1).Pa <) — {‘é:‘km<n+n’+l,

provided that the expectations for U and U’ may be treated as independent.
Similarly, for P(M < M’) we have the relations,

n’

E Z)‘Io.ﬁ(n - km+ 1: km) < 2"’ZP(M < M,) <1

me=1
+ 2 (m'n_ 1)'10.5("' - km, km + 1)-

m=1

(13)

Of course, Ins(n + 1,0) = 0, and I,5(0, n + 1) = 1. It may be verified readily
that the inequality relations of (12) and (13) provide best upper and lower
bounds for P(z < z’) and P(M < M’) under the circumstances given.

Obviously, any increasing function, ¢(y), for y in A, may be used throughout
the arguments, with ¢(y) replacing y = z, z:, M, z’, z,,, M’, respectively.

Section 3

Consider, now, the case of a finite population, Uy, of real numbers {z®},
2 < 2D for¢i < j,7 =1,...,N. Assume that N is known, and that a
sample, S, of n values has been drawn at random from U y without replacements.
Let the sample values be {z:},k = 1, - - - , n; and k be an arbitrarily determined
index. As before, we might consider k the order of draft, temporarily, but the
same analysis may be made if we let k be the order of ascending magnitude in
the sample, S, and disregard its value in connection with d prior: estimates of
draft probability. Each z; = z™® for some unknown u; = 1, ..., N; and,
d priors (i.e., with no knowledge as to order of magnitude of other values in the
sample), any two of these values are equally likely. Obviously, this is so if z
is the first value drawn from Uy, and the rest of the sample may be regarded
as a random draft without replacements of n — 1 elements from [Uy — z:il.
Let.r be the number of these sample values less than zx, and s = n — 1 — 7.
Then the probability of drawing such a sample after the given zi, under the

(50 ™)
! 8 , where u; — 1is the unknown number of

iy

conditions given, is
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values in Uy that are less than zx. To estimate the expectation, P(R = ux — 1),
that there are just a given number, R, of values in Uy less than xx; we encounter
the same situation considered by K. Pearson in a paper® subsequent to those
applied to the infinite universe; and, by a simple conversion in notation, we have

S O/

14)
‘ ®

In previous communications'®'7 I have defined a function,

’

2 r4+r—a\[(s++14+a
r ) s

p ’ o) = a=0
(15) 1[1(7‘,8,7',8)— (r+s+r’+s’+2) ’
r+s+1

for any four rational integers r, s, v/, s’ = 0; and shown that Pearsons further
result, equivalent here to evaluation of P(ux < R + 1) for a given R, may be
expressed by means of this y-function. Thus, we have

(16) Pur < R+1) =¢(r,s, R—r,N—-R —3s—2).
It was demonstrated also?®:17 that
(17) 'p(r, 8’ r’, 8’) = ‘P(r, r’, s, 8’) = lP(s,’ r” 8’ r) = 1 - ‘p(s’ rl 8,’ r’)

with extension of the definition to include y(r, s, —1, s’) = 0, and that

a'ir'(r+r’+l).<s+s’+l)

- r+1+4a s —a

(18) Y(r,s,1,8") = r+s+r’+s’+2) .
r4+s+1

As in the case of the infinite population, here also it is obvious that the order
of draft of xis of no consequence in the analysis; and again we willlet k = r 4 1,
whence s = n — %k, and we may make these substitutions in (14) and (16).

Then, we may write

19) Pur=R)=yk—-1,n—kR—kk+N—-—R—n-—1);

s Pearson, K., Biometrika, 20 A, 149, (1928).
16 Thompson, W. R., Biometrika, 25, 285, (1933).
17 Thompson, W. R., American Journal of Mathematics, 57, 450, (1935).
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and, obviously, P(un—t11 = N — R + 1) = P(ux < R). Hence, if we let M
be the unknown median of Uy; and m = J_V_;_a, wherea = 0,1,and N — ais

even; then, as u; is an integer,

-2
=1-2yk-1L,n—km—kk+4+N—-—m—n—-1),

which is the expectation that the median of Uy lie within the closed interval,
(%k, Tnty1), for 2k = n 4 1. This gives the confidence range, analogous to
that for the infinite universe. It may be noted that

P(uk =R< uk+1) = I_’(uk =R) — P(u;,.,.l = R)
=y(,sr,s) —yYy@r+1,s—-1,r -1, +1)

wherer =k —1,s=n—kr" =R —k,ands’ =k+ N —-R —n— 1.

Hence, (18) gives
(21) Plur £ R < upyr) = @>—-<Nl—:—lc—>
(=)

The approach by way of Pearson’s problem again makes it easy to evaluate
the expected mean p: and variance as in the case of the infinite population,

(20) P (zx = M = xn—-k-}-l) =P (uk = ]—V = u,._k“)

where p, = P(z < z) for z drawn at random from Uy. Of course, pi = ""A: 1’
but u; is unknown. From Pearson’s result,'* however, we obtain

KN+ 1)—n—-1_ k ( n) E—1
(22) Pr = N £ D) = 3T I_N + may

and the expected variance of py,

o a_;: = Mo =2 = e ?nk++1)12).((1:’z :‘l-— ;;(]JVV’— & :
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