MOMENT RECURRENCE RELATIONS FOR BINOMIAL, POISSON
AND HYPERGEOMETRIC FREQUENCY DISTRIBUTIONS'

By Joun RIORDAN

1. Introduction. This paper gives the development of recurrence relations
for moments about the origin and mean of binomial, Poisson, and hyper-
geometric frequency distributions from the basis of the moment arrays defined
by H. E. Soper.” This procedure has the advantage of expressing the moments
in terms of coefficients which are alike for the three distributions and are de-
rivable by a single process, thus providing a degree of formal coordination of
the distributions. For both kinds of moments, the coefficients satisfy relatively
simple recurrence relations, the use of which leads to recurrence relations for
the moments, thus unifying the derivation of these relations for the three
distributions. The relations derived in this way for the hypergeometric dis-
tribution are apparently new. Apparently new recurrence relations for certain
auxiliary coefficients in the expression of the moments about the mean of
binomial and Poisson distributions are also given.

This course of development involves repetition of a number of well-known
results which is justified, it is hoped, by the unification obtained.’
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104 JOHN RIORDAN

2. Moment Arrays. As developed by Soper, frequency distributions may be
exhibited by frequency arrays, in the case of a single variate, in the form:

(2.1) f4) = me

where p. are the frequencies with which the measures, x, of the character, 4,
occur in a population.
The substitution A = e“ leads to the moment about the origin array:

f(ea) — ;pz &

' 2 2
(2.2) =;p,<l+xa+%+...)
a8
= Zmg
where

= gp,x"

The symbol « is a logical or umbral symbol serving merely to identify the
moments in the expansion of the array.
The moment array for moments about the mean is found from the relation:

¢(e”) = ¢ ™M f(e)
=;mMN!

where m, is the first moment about the origin.
The moment arrays for the distributions concerned are as follows:

Binomial f& =101+ ple* — D" = io (2) p°(e® — 1)°

Z o=

Poisson 7 = & = Z a (e - 1)

z=0

Hypergeometric f (e*) = i (lz;():)z (_ea*;_‘[}f

z=0

where the parameters p, n, and a for the binomial and Poisson have the usual
significance. The parameters for the hypergeometric distribution, with the
substitution r = s, follow Soper; Pearson (loc. cit.) uses g, r, », where ¢ = l/n.
The notation (), means

We=1C—-1) - 0=z +1).

It will be seen that, with the usual interpretation of (:) as zero for z > n,
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the three distributions so far as concerns « may be exhibited by a function
of the form

f(e) = gAz(e" -1
where A, of course depends on the distribution concerned.

3. Moments About the Origin. The moments about the origin can then be
defined by the equation:

(3.1) 2m = 2 Ale" — 1)
=0 S: z=0

and
ZoAz(ea _ l)z — ;‘)Az go (_ l)z—v (j) AL

hd s s

= Zci' Zx!AzSz,.
8=0 3! z=0

where S.,, is a Stirling number of the second kind, as used by Jordan (loc. cit.)

and defined by

z!8,. . = Z (-1 (x) v = A0,
=0 v

A"0° being in the language of the finite difference calculus, a “difference of
nothing’’ that is A"’ | n = 0.
The internal series terminates at s because S,,, = 0, £ > s, as is readily
apparent in the finite difference expression. Further Sp,, = 0, s # 0; Sp,0 = 1.
By equating coefficients in equation (3.1), m,, the sth moment about the
origin, is given by

3

(8.2 me= 2, x1A.8; ..

z=0

The particular forms for the three distributions are as follows:

3.3) me = 2 (n)s 2”8z, s Binomial
z=0

3.4) me = 2 a° Sz s Poisson
z=0

(3.5) me = O (lzz()r)z Sz, s Hypergeometric
z=0 z

The Stirling numbers have the following recurrence relation (Jordan loc.
cit.):

(36) Sz,a-i—l = sz.s + Sz—l,e-



106 JOHN RIORDAN

This relation in conjunction with equations (3.3)-(3.5) leads to moment recur-
rence relations. The procedure is illustrated for the binomial distribution as

follows:

s+1

Mey1 = Z (n)s P° Sz, a1

z=(

s+1
= Z;. )z 9" (x Sz, s + Szt s)
= pDP'm” + (npma - p2 Dp My)
= npms + pg D, m,

where ¢ = 1 — p.
The steps in the process are expanded as follows:

8+1 8

2 (n)ap° 8. = 2, (n). p" 28,0
z=0 =0 4

_ ; (n)s 8=, « pDH(57)

= pr m,

3+1 s+l

EO (n)z pz Sz—l. s = ZO (n -z 4+ 1) (n)z—l pz Sz—l, 8

=n2 )™ 8. — 2 2(n)e 8.
z=1 Zm=]

= npm, — psz Ms

The results for the three distributions are as follows:

3.7 Me1 = npm, + pqD,ym, Binomial
(3.8) Mep1 = am, + aDm, Poisson
3.9) Megp1 = gm,(l —1L,r—1,n—1) — (n+ 1)A.m, Hypergeometric

Here D, and D, denote differentiation with respect to p and a, respectively,
and A, denotes the difference operation with respect to n. For the hyper-
geometric distribution the moments are functions of I, , and n as well as of s;
ms(l — 1, r — 1, n — 1) is the same function of ] — 1, r — 1 and n — 1 as
ms(l, r, n) is of I, r, n. Equation (3.9) appears to be new.
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For convenience of reference, a short table of the Stirling numbers of the
second kind follows:

Sz,
‘N’ 1 2 3 4 5

0
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1

4. Moments About the Mean. As shown in Section 2 above, moments
about the mean may be defined as follows:

(4.1) Zm—. - EA ™ (¢ — 1)°

8=0
where m;, is the first moment about the origin:
my = np Binomial

= a Poisson

= Ir/n Hypergeometric
Now
ZAze—mla (ea ZA Z (_ l)z—v< )e(v—ml)u
z=0 v=0
Z E z! A Oz, 3
8=0 S z-=0
where

slons= 33 (= 07 (2) 0 = )t = 47 (= .
It will be observed that for my = 0, 6.,, = S:,,. The internal series terminates
at s for the same reason as before.

The moments about the mean are then given by:

(4'2) Hs = Z z !Az Oz, 8
z=0
The particular forms for the three distributions are as follows:
(4.3) B = Zo (n)z Pz 02,4 Binomial
(4.4) to = z; 0F 0z, Poisson
(4.5) Us = Z ®- (r), Hypergeometric.
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The coefficients o,,, satisfy the following recurrence relation:*
(4.6) Oz,041 = (T — M1)oz,e + 02,6

which in conjunction with equations (4.3)-(4.5) leads to moment recurrence
relations as before. The actual derivation is somewhat complicated by the
circumstance that ¢.,,is a function of m, and therefore of the frequency param-
eters, rather than a constant as before. The derivation is illustrated for the
binomial distribution as follows:

s+1

Msp1 = E (n): p* 0z, 011

z=0
s+1

= E ). " [(x — nP)oz,s + T21,s)

s+1

= ;0 (n)z Oz, 8 pr(pz) —_— npl-‘t + ;0 (71)z pz Cao1,s

= pDyts + NP1 — NPps + nPss — P[Doppta + NSpaa]
= pq [nsps—1 + Dy, ol

The steps in the process are expanded as follows:

; ()s 0z, pDy(p") = Z (1), [PDo(p* 02.2) — 9" pDs(cz.)]

= pDous — p Zo (n), p"(— nsoz, 1)

= pDps + n8pps—1
s+1 s+1

;o (n) Ip‘/: Oz—1,8 = ;o (n - + 1) (n)z—lpz Oz—1,s

8 8
=n Z; n)ep™ s, — Zo 2(n). p" oz,
z= z=

= NP ps — D’ [Dy s + 18 psal.

The relation D,o.,, = —nso,,s_1is obtained from the definition equation of
05,5 (With my; = np).

The resulting recurrence relations for the three distributions are as follows:

4.7) M1 = NSPQ ts—1 + PG Dy ps Binomial
(4.8) Bsp1 = aSus—1 + @ Dg s Poisson
4 Jordan, loc. cit. or E. C. Molina, An Ezpansion for Laplacian Integrals ..., Bell

System Technical Journal, 11, p. 571.



MOMENT RECURRENCE RELATIONS FOR DISTRIBUTIONS 109

4.9 o1 = (n + 1) I:p, - (z) Kipeo(lr,n + 1)] Hypergeometric

v=0

B mt -0 0]

v=0

where,
=lr Ir
K= msn="a
(= 1)(r—1)_lr
K = T n—=1  n

The last of these, which appears to be new, seems to be of formal interest only.

The coefficients o,, are related to the Stirling numbers by the expression:
Oz,8 = EO (_l)v (z) Sz.a—vmg = z% avm:

and consequently can be exhibited with detached coefficients in the form

a + a1 + az + -+ 4+ a,_,. For the binomial and Poisson distributions

certain simplifications, to be developed in the section following, in equations

(4.3) and (4.4) may be made. For the hypergeometric distribution it appears

necessary to use equation (4.5); the following short table of ¢.,,, employing the
detached coefficients mentioned above, is given for this purpose:

\\z [£2X]
8 0 1 2 3 4 b

1 0-1 1

2 04041 1-2 1

3 0+0+4+0-1 1-3+3 3—3 1

4 040404041 1-4+6—-4 7—1246 6—4 1

5 0+0+0+4+0+0—-1 1-54+10—10+5 15—35+4+30—10 25—30+10 10—5 1

5. Binomial and Poisson Moments About the Mean—Simplified Formulas.
5.1 Binomial. From examination of the first few moments about the mean,
it appears expedient® to write the formulas:

M2s = E Az, 2 (nPQ)z
z=1
(5.1.1)

Mos41 = (q - P) ; Oz, 241 (npq)’

¢ The kind of expression chosen admits of some variety. A recurrence relation for

8
coefficients in the expansion u, = Z a;, . p* has been given by E. H. Larguier, On a Method
z=1
For Evaluating the Moments of a Bernoulli Distribution, Bull. Am. Math. Soc., 43, 1, p. 24
(Abstract 8); I am indebted to Mr. Larguier for the opportunity of examining his results
in advance of publication.
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When these are substituted into the moment recurrence relation, the coefficients
are found to be related as follows:

@:2 = [T + PgDpolaz 21 + (28 — 1)or1 2,2
—2pq[1 + 2z + 2pgD, laz 2.1
az241 = [z + pgDplez2s + 25021209
or, in general,
oz 011 = [& + pgDpgloz,s + sa1,0
—pgll — (—=1)T[1 + 2z + 2pgDyJla.,

Using detached coefficients of powers of pg as outlined above, these coeffi-
cients may be exhibited as follows:

z 0z .8
,\ 1 2 3 4

(5.1.2)

126 + 1680 — 5040 - 119 — 2156 4 7308 490 — 2380 105
252 + 5040 — 20160 246 — 6948 + 32112 1918 — 13216 1260

2 1

3 1

4 1—-6 3

5 1-—12 10

6 1 — 30 4 120 25 — 130 15
7 1 — 60 4+ 360 56 — 462 105
8 1

9 1

It may be noted that the coefficients of the first column in conjunction with
equations (5.1.1) give the binomial seminvariants.

Equations (5.1.1) make the coefficients functions of pg only; a slight alter-
ation makes the coefficients functions of » only. Thus:

H2s = z‘; Bz, 2 (M)z
(5.1.3) -

peetr = (¢ — p) z_Zl Bz, 241 (PQ)°

and the coefficients are found to satisfy the recurrence relation:
(514) ﬂz,¢+1 = xﬁz.: + nsﬁz—l.c—l - [1 - (—1)‘](2$ - 1‘)51—1.0-

These coefficients may be exhibited by a rearrangement of the table given
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above as may be seen by comparing equations (5.1.1) and (5.1.3). The first
few coefficients are as follows:

z n71Bs,,

k 1 2 3

2 1

3 1

4 1 —-6+3

5 1 - 12410

6 1 — 30 + 25 120 — 130 + 15

5.2 Poisson. The Poisson moments about the mean may be expressed as
follows:
[s/2]

(5.2.1) R = ; az, 0"

where [ ] represents ‘‘integral part of”’ and

(5.2.2) Az, s41 = Tlz,s + SAz1,s-1.

The coefficients a,,, are the constant terms in the expressions fc- the corre-

sponding binomial distribution coefficients in powers of pq.
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