METHODS OF OBTAINING PROBABILITY DISTRIBUTIONS'
By BurToN H. CaMP

The emphasis of this paper will be on method. Special results will be cited
in order to illustrate the methods rather than to summarize achievement in the
field; for that has been done already by Rider (1930, 1935) Irwin (1935) and
Shewhart (1933) in recent surveys. The purpose is to describe and to illustrate
most of the methods that have been used to determine exact probability dis-
tributions, and to show that they are all derivable from one fundamental theorem.
In order to prove this unity in a simple manner, it will be desirable to omit from
consideration methods which are essentially ingenious forms of counting, such
as are used in sampling without replacements from finite universes, and in
finding the sampling distribution of a percentile.

The general problem to be discussed may be stated as follows: N individuals
(t, - -+, ty) are drawn, one at a time with replacements, from a universe whose
probability distribution is ¢(f). A certain single valued function of the #’s is
formed. This is called a parameter of the sample, and is frequently also,
but not necessarily, a useful estimate of the corresponding parameter of the
universe. The problem is to find its probability distribution, f(z). As usual,
a probability distribution is a function which is required to be defined, except
perhaps at a set of measure zero, throughout the infinite domain of its variables;
it is nowhere negative, and its integral over its domain is unity.

Most. of the more recent developments of the theory relate to a more general
form of this problem. Instead of N individuals, there are N sets of # individuals
in each set, and these sets are drawn respectively from M(M =< N) universes,
each of which is described by a function of » independent variables, thus:

(1) ‘ ¢(i)(t1) te ’tﬂ); (”' = lr Tty M)'

Instead of a single parameter there are P parameters, and each is a single valued
function of the observed values of the nN individuals in the sample, thus:

(2) x; = go‘(t§.1)y Tty tSlD; e ;tﬁN)’ R tSDN)); (1: = 11 Tty P)
The first method to be described is fundamental and will be designated as
TraeoreEM I. Let it be required that each g as described in (2) be not only

single valued but also constant at most in a set of measure zero in the nN-way
space of the #’s. Then

& f flar, ez dX = [ o, 69 ar

1 Presented to the American Mathematical Society at a meeting devoted to expository
papers on the theory of statistics, April 11, 1936:
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where X is the space of 2’s and T the space of the ¢’s, p is any measurable set
of points in X, and ¢ is the set in T for which g is in p. Often p is the P dimen-
sional cube (z; + Az, 72 = 1, --- P) at the point (x;, -+, z,) and then q is
the set where

&) ;. SgiSz+8z; (C=1,---,P)
and ¢ is the simultaneous distribution of the sets of ¢'s,
(4) . ¢(1)(t§l)7 ) ts'l)) o d’(N)(t{N)y ] tiN))-

In this ¢ is the universe from which the ¢'” set of ¢’s is drawn. Obviously,
if N > M, some of the ¢”’s are identical, and then it is assumed that the several
sets are drawn independently. Often, all of the N sets of ¢’s are drawn from
the same universe. Then M = 1 and all these ¢’s are identical, and (4) becomes

¢ =[P, -+, 1P [P, -+, )]

In the special case where there is but one parameter (P = 1) and but one
individual in the sample (» = N = 1), and p is an interval, formula (I) becomes

z+Az
(Ia) [ f(z) dz = / odt;
and in the very special case where it is also true that ¢ is an interval it becomes
dt
(Ib) 1@ =@ - | 21,

provided also that certain derivatives (to be specified later in the proof) exist,
where ¢ is now the inverse solution of the equation,

®) z = g(®).

The proof of formula (I) is immediate, if one is willing to assume the existence
of the probability distribution f; for then the left side is by definition the prob-
ability that the z’s lie in p, and this is also the meaning of the right side of (I).
(Ia) can be proved without assuming initially the existence of f(z), for then
the existence of f(z) can be inferred from the existence of the right side of (Ia),
because f(z) may be set equal (except perhaps at a set of measure zero) to the
upper right hand derivative, with respect to Az (Az is a variable, and z is fixed),

of | ¢ dt, provided that one adds the condition that this derivative is nowhere
q

infinite. The point at issue here is merely the existence of a primative for a
monotone increasing function of Az. (Ib) may be derived from (Ia) by taking
the derivative of both sides with respect to Az, if the derivatives are continuous.

Theorem I, in these various forms is used a great deal, especially in the last
form (Ib). This affords one freedom to choose the most desirable function
for purposes of tabulation. R. A. Fischer’s z distribution, a logarithm, is an
important illustration. Many authors have been interested in so choosing the



92 BURTON H. CAMP

function that its distribution shall be normal. They include several of the
older writers, and more recently H. L. Rietz (1921, 1927), and G. A. Baker
(1932, 1934). However, the theorem is of special importance in the theory,
for all the other principal methods of obtaining probability distributions are
essentially corollaries of it. These corollaries will be called Theorems II, III,
and IV.

TreoreM II. Let $ (the measure of p) and § (the measure of ¢) be infini-
tesimals of the same order and let both the oscillation of f(¢.e. maximum jf-
minimum: f) in p and the oscillation of ¢ in ¢ be infinitesimals; then (I) may be
written,

(8] 1P = ¢4,
where f applies to any point of p and ¢ to the corresponding point of g. This

equation (II) is an approximate equation in the sense that differences of higher
order than those retained are neglected. In particular, with the conditions
used in formula (Ia), equation II becomes

fAz = ¢q.

The left side of (II) is an approximation to the probability sought. The right
side shows that, in order to evaluate it, one need only find the volume in T space
of the differential element q and multiply it by the value of ¢ in ¢. Formula (II)
expresses the so-called geometrical method used by many authors, e.g., by
R. A. Fisher (1915, 1925), by Wishart (1928), and by Hotelling (1925, 1927).
The chief difficulty in connection with it is in finding the volume of nN-dimen-
sional ¢. In order to display the advantages and disadvantages of this method
we shall pause at this point and look at a concrete example.”

Let two individual (4, £) be drawn independently from a normal universe
and consider the simultaneous distribution f(z, y) of the sum, z = & + &,
and product, y = #ts, the mean of the universe being chosen as the origin.
Here N =2,n =1, M = 1, and so,

— s (14 17) 1 - oo (% —2a)
“ %m0’ = 2
The point set ¢ is the area lying between the two adjacent hyperbolae,
iy =y, =y + Ay,
and also between the two adjacent lines,
W+t ==z W+t =z+ Ar,
where Az and Ay are infinitesimals and are equal. This area may be computed
by simple integration and is:

(6) é

2 See also C. C. Craig (1936). Craig uses another method to be explained later (formula
IIIa).
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2Ax Ay

‘\/x—~2 — 4y y)
=0 if 2 < 4y.
Hence II gives us immediately the desired result:
22—~2y
f(z, y) AzA —--—l—e—ﬁw—l—-AxA if 22> 4
) y Yy = 1l'0'2 \/m y) y’
=0 if 2 <4y

If 2 = 4y, §is an infinitesimal of lower order than $ = (Az)?, and so Theorem IT
does not apply. In this case we must go back to Theorem I, and from that we
can learn that the probability,
f S dz dy,
P

is an infinitesimal of the first order if p = Ar Ay = (Az)®is of the second order.
Hence it cannot be approximately represented by a finite number times .
The oscillation of f in p is infinite. The form of the surface f(z, y) is interesting.
The ordinates rise to infinity on the contour of the parabola z* = 4y, and vanish
within it. The surface is symmetrical with respect to the plane z = 0, but
not with respect to the plane y = 0. However, it is clear that the total prob-
ability of any given product, y (z.e. the probability of this y for all possible
values of z), is the same as the total probability of —y; hence

_:f(xy y) dx = [:f(x, _y) dx;

and the corresponding formulae,

zzl

A - |
2 o2 /m 202 1
e e _— dx (y > 0)
ol Vi VvV — 4y Y ’
and
y z2
2 @ (% Tl 1
— e [; e —vx_2 e dx (y <0),

must be equal; both may be reduced to the single form

1 v2
v —gi(+h)
F(y)=i2/e @ if y 0.
wa? Jo t
This is the probability distribution of y.
With this example before us, let us now reconsider the theory:
() The requirement (in II) that the oscillation of ¢ be infinitesimal in ¢
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will be satisfied if one can show that ¢ may be expressed as a continuous function
of the parameters (r1, 2, ---, Zr). In our example these parameters were
z and y and ¢ was so expressible (6). But if we had tried initially to find by
means of (I]) the distribution of the product y, independently of what values
2 might have, we should have been stopped at this point, because ¢ is not
expressible in terms of y alone. We should also have been stopped by the
requirement that § be infinitesimal of order Ay, for ¢ would have been the
space between two hyperbolas and its area for any fixed (Ay > 0) would have
been infinite. But, when thus stopped at that first point, it would have been
clearly indicated to us that the distribution of y might have been found via
the detour of finding the simultaneous distribution of both x and y, because
an attempt to express ¢ in terms of y would have led to the given expression in
terms of both x and y. For a similar reason R. A. Fisher (1925) was able to
find the distribution of the variance by finding first the simultaneous distribution
of the variance and the mean. Also, he was thus able to find the distribution
of the coefficient of correlation by finding first the simultaneous distribution of
all-the first and second order moments.

(#7) A distinct advantage of this method is that ¢ is independent of the
universe ¢, so that once found it may be used in connection with any universe
which satisfies the condition that it can be expressed as a continuous function
of the parameters. Thus, the distribution of the sum and product in our
example may equally well be found for the universe described by the Type III
curve, Ate™*(t > 0). For, then

¢ — A2 t by e—a(tl-Hz) — A2 ye—az’.
and so, using one-half of the same § as before, since now z, ¥y 2 0,
2

(z,9) = A’ye ™ ——— if >4
f(z,y) Ve e Y,
=0 if 2° <4y
From this, F(y) can be found by integration (c.f. Kullbach, 1934)
| ()
L —azr A2 y L] e
F()=A2 / —e—-——-—_d$=— — du.
Y ) N \/xz — 4y 2 Jo u

As another illustration, consider a normal universe of n intercorrelated vari-
ables in which all the total intercorrelations are equal to r (e.g., the statures of
n brothers) and let the sample be a single group of n (one individual for each
variable).

1 —%[k‘zt:+k2 i;;iz;t,]

*T @R’ '
where R = (1 — D" 1 —= o — Drl, ks = @ — "l — (n — 2)r], and
k, = —r(1 — )" Suppose one wishes to find the simultaneous distribution
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of the variance  and the mean y for such.samples.’ Since for Student’s problem
Fisher has found the value of ¢ for this 2 and y to be

n—3

2

g =cx "~ AzAy,

their distribution f(z, y) for this universe may be written down immediately.
In terms of  and y the bracket in the exponent of ¢ is y’(kyn — ken + kon?)
+ zn(ky — k), and so f(z, y) is the product of § and this form of ¢:

n—3

fa,y)=Kefs?, FE=— 2iR [(kin — ko + Fandy? — nley — a)al.

(#4%) Another attribute of this method is that it sometimes lends itself to easy
extensions from a simple case where there is only one restriction (N — 1 degrees
of freedom) to similar cases when there are more restrictions. Thus R. A.
Fisher (1924) proceeded from the variance of a sample from a single universe
to the variance from a set of universes, as required in the theory of analysis of
variance; and thus also (1915) he had proceeded from the distribution of r to
that of multiple R; and Hotelling (1927) showed how these distributions could
be obtained when the values of each variate were themselves intercorrelated
(as in a time series) and not merely correlated with values of the other variates.

Tueorem III. Now let us consider again the fundamental form (I). For
convenience let nN = m. If the conditions will not permit us to write the right
side in the form in (II), it is still possible that we may be able to find that
(m + 1)-dimensional volume by some other method. In particular, whenever
it is possible to iterate the integral once we have the formula:

(I11) /de:/ dT’[ ¢ dim,
? T! am

where ¢, is the section of ¢ by ¢, space at the point (41, - - , tn_s) of 7" space,
T’ space being the space of the (1, - - - , tm_1) coordinates. With added condi-
tions one may deduce from (III), for the case where there is but a single para-
meter z, the approximate equation:

(I1Ia) fdr = dx/ dT’ - ¢(ty, -+ , tw) di",

T dx
in which ¢., is supposed to have been expressed in terms of the other coordinates
by solving the equation z = g(#;, -, t.). It is an approximate equation in
the same sense as (II) was. Sufficient conditions for this change in the left
side of (III) have already been mentioned in discussing (II). The propriety
of making the corresponding change in the right hand side may be left for
determination when the form of ¢ is given. It will perhaps be sufficient here
to point out that our earlier example illustrates both the case where this change

3 A special case of a more general problem solved first by R. A. Fisher.
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is permissible and where it is not. For, let it be required to find the distribution
f(y) of the product y = t#, without reference to the sum, &, + #. Formula
(I1I) yields

v+ay o (w+an /0y 1 -%(‘:“:)
@ [Trea=z[a [ a2k
v o !ty 2o

This is valid for every value of y including y = 0. If y # 0, we may change
the right hand side as in (IIIa) and obtain as the probability that y is in the
interval (y, y + Ay):

v+Ay A % 1 _2%(‘:'*‘”’:)
(8) / fay ==L | e “dh + e
v

mo? Jo &

where e is a differential of higher order than Ay. This may be proved by com-
puting the difference between the value of (7) when ¢, has constantly the value
(y + Ay)/t, and when it has constantly the value y/t;. If y = 0 this change
in the right side of (7) is not valid; it is easily seen that in this case the integral
on the right of (8) is infinite. It may be shown, however, in this case that

d .1 [ e dx
©) 'L‘ f(y)dy—4—2—7r ; x\/xz—:—l,
and that this is an infinitesimal, and that it is of order as small as one.

Many authors think of (IITa) as the fundamental formula in the theory of
probability distributions. One of the simplest and earliest applications of it
was to establish the so-called reproductive property of the normal law: that
the sum of two variates is distributed normally if each is distributed normally.
Jackson (1935) has used it to establish a similar property for two Type III
distributions which have the same exponent of e. Usually this integral is
difficult to evaluate when N > 2 because of the unsymmetrical form into
which it is cast, but when N = 2 and there is but one parameter (IIla) it is
perhaps the most convenient of all the formulae.

TaeorEM IV. An exceedingly useful formula is obtainable from (I) in the
following manner. Let 6(z1, -+, zp; a1, * -+, ) be a finite single valued
function of the old parameters (z) and of some new parameters (). Subject
to general conditions to be stated we may write:

av) L of dX = /T 0'¢-dT,

an identity with respect to each «, where 8’ is the result of substituting (2)
for the z’s in 6.

Since this theorem has not been proved in this general form, an outline of
the proof will be given. Sufficient conditions are:

(a) All the integrals involved shall exist.
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() If p is limited (in the sense that it lies within a finite hypersphere), so
is ¢, and conversely.

Proof. Let X, be a limited p set and T, the corresponding ¢ set such that
both (c) and (d) hold (¢ > 0):

[(ofodX—/;fodX!<e,

/¢0’dT—/¢9’dT'<e.
Ty T

It is easy to see that such an X, and a corresponding T do exist, as follows:

Let X, be a limited set for which (c) is true, and for which it will remain
true no matter what points are added to X,. Similarly, let Ty be a limited
set for which (d) is true and for which it will remain true, no matter what
points are added to Ty. Presumably X, and T, do not correspond to each
other, but we may now let X, be the totality of all the points of X, and of all
those points of X corresponding to T, and let T be the totality of all the
points of Ty and of all those points of T corresponding to X;. Then X, and
To do correspond to each other and have the desired properties (¢) and (d).
Now, since @ is finite, it is limited in X,. Let

(6) 10|<HlnXo
Divide the interval (—H, H) into s equal subintervals of length A, thus defining

in X, according to Lebesgue the measurable sets,
p; 6 =1, .-+, s), and corresponding ¢; sets in T :

Os 0 =< hin p;,
Os 0 < hingq;.

Choose arbitrarily any point of p; and let k; be the corresponding value of 6.
Then let

(c)

(d)

6))

6 = k;inp; @ =1, -+, s), and similarly let
0 =kiing; ¢ =1, ---,59).
Then
/ 6fdX = Zk.-/ fdX,
Xo i P
and

/ 0'¢ dT = Zk;/ ¢ dt.
To U qi

/mde=L¢dT,

)] /éde=/ 0'¢ dT.

Since by (I)
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Now

l[‘o(b—-o)de~§Lol9—ﬂlde§h['ode,

and

/ (9’—0')dX‘ §hf  dX.
To To

So, as h approaches zero both sides of (g) approach limits and their limits are

equal:
/0de=/ 0’'¢ dT.
X0 To

Hence by (c¢) and (d) the integrals

/Ofdx, /0'¢dT,
X T

differ at most by 2¢, and so, being independent of e they do not differ at all.
In order to determine the form of f from (IV) one must first evaluate the
right side,

A%dt=¢(ax, r, ag);

and then solve the integral equation,

(10) Lode = y.

It is the solution of this equation that usually presents the most difficulty.
Particular forms of 6 that are being used are

(11) 0 = ealz+ +"P’P’

in which case ¢ is said to be the “characteristic function’ or ‘““moment generating
function”; and

(12) 6 =z .- x8%,

in which case ¢ is a “moment function” or “moment” of f. Other forms might
be used. For example, a very convenient method of demonstrating the correct-
ness of the usual formula for the simultaneous distribution of the correlation
(), means (y, z), and variances (u, v), in samples from a normal bivariate
universe is by the use of

0 = eal(u’ +92 492 + 22) + ag (uvz + yz)

This method of finding f is not a final determination of the probability function
desired until it has been shown that the solution is unique, a serious problem
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in itself; it is one of those which Professor Shohat may consider.! There are
three methods of solving the integral equation (10):

(z) The first might be called guessing. Though unscientific, it is in fact
often effective. Especially is it available ii the distribution has already been
surmised but not demonstrated. Thus, it was open to Student (1908) when
he correctly surmised the distribution of the variance. Similarly it was open
to Soper (1913) when he incorrectly surmised the distribution of r.

(7z) Papers by Romanovsky (1925) and Wilks (1932) have shown how the
problem of solving the integral equation may be shifted to the problem of
solving a partial differential equation, but this in turn may involve the solution
of another equally difficult integral equation in the process or determining the
arbitrary function.

(7#7) If each a be replaced by an imaginary 8 and one uses a Fourier trans-
form, one arrives at a set of formulae which are most important. For the case
where there is but one z and one 8, they may be written:

(13) / : ¢” f(z)dz = /T e ¢ dT = y(8).

(14) 1@ = o /_ : % y(8) dp.

Dodd (1925) has given an equivalent set of formulae involving only real vari-
ables. It is easy to prove that both sets may be changed to the single formula,

(15) fl@) = :—;/;:ﬁdt [a cos B(z — g) dB.

Kullbach (1936) has established the validity of the formulae corresponding to
(13) and (14) for the general case of (P + Q) parameters. Wishart and Bartlett
(1933) used the general forms to find the distribution of the generalized product
moment in samples from an n-dimensional normal system.

When the solution of the integral equations of (IV) cannot be found, one
has to put up with the semi-invariants or with the moments of f. Formulae
(IV) and (11) yield the semi-invariants, (IV) and (12) the moments about the
given origin, and from either of these one may obtain the moments about the
mean point. These methods are old but they are still important. Time does
not permit me to discuss them, because it would not be proper to close this
paper without some reference to limit methods.

Limit Methods. It is well known that the distribution of means of samples
taken from almost’ any universe approaches the normal law as a limit as N
becomes infinite. This theorem is subject to great generalizations, as is indi-
cated in papers of A. Liapounoff (1901), S. Bernstein (1926), Romanovsky

¢ In a later paper at the same symposium.
& There are exceptions. E. g., means of samples taken from the universe a/w(a + t2)
have a distribution identical with the universe itself.
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(1929, 1930) and C. C. Craig (1932). Subject to very general conditions it
has been shown that: If the characteristic function of one probability distri-
bution contains a parameter and approaches as a limit, uniformly in every
finite domain of its variables, the characteristic function of another probability
distribution; then the first distribution approaches as a limit the second distri-
bution. Hence S. Bernstein and Romanovsky have shown that: If the universe
is an n-way correlation solid of a certain very general type, then the » means

obtained by a selection of a sample of N sets of variates, z; = Nl @, 4+ - +tin),

(¢ =1, ---, n), have a distribution which approaches as a limit a normal
correlation solid as N becomes infinite. A similar theorem has been established
also in the interesting case of Romanovsky’s ‘‘belonging coefficients’”’, which
include K. Pearson’s coefficient of racial likeness. Also, by the method of
maximum likelihood, Hotelling (1930) has proved that under certain general
conditions all optimum estimates of the parameters of a frequency distribution
have a joint distribution approaching the normal as N becomes infinite. The
validity of the method of maximum likelihood when used for this purpose has
been established by J. L. Doob (1934).

Finally, one may note an apparently new limit theorem of another type.
Its general nature will be obvious from the following application:

Let a sample of N be drawn from the universe,

6 =Ae", i t>0,
=0 if t=o0.

It is readily proved, by means of (IV), that the distribution f(z) of the para-
meter,

=@+ -+
is a curve of the form,
f@@) = B£" ¢ wherez > 0,
=0 elsewhere.
Now let X become infinite. The universe approaches as a limit the rectangle:
®=Awhere0 =t <1,
=0 (Ielsewhere.

The parameter z approaches as a limit X, where X = maximum ¢;. The
distribution f(z) approaches as a limit the new distribution,

F(X) = NX"'where 0 < | X | < 1,

=0 elsewhere.
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Hence we have proved in a new way, what was already known: that the distri-
bution of the greatest variate obtained by sampling from a rectangular universe
is of the form F(X).

The limit theorem implicit in this illustration can be established in sufficient
generality, but I do not yet know whether it has other applications of value.
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