REGRESSION AND CORRELATION EVALUATED BY
A METHOD OF PARTIAL SUMS

By FeLIx BERNSTEIN

““To be sure, Laplace viewed the matter in a similar way but he selected the
absolute value of the error as a measure of loss. But if we mistake not, this
position is certainly not less arbitrary than our own; that is to say, whether the
double error is to be considered just as tolerable as, or worse than, the simple
error twice repeated and whether it is thus more fitting to ascribe to the double
error only a double weight, or a greater one, is a question which is neither in
itself clear nor determinable by mathematical proof but has to be left entirely
to individual discretion.

‘“Furthermore, it cannot be denied that the assumption under discussion
violates the principle of continuity and precisely for this reason the procedure
based on it strongly defies analytic treatment while the results to which our
principle leads have the advantage of simplicity as well as of generality.”’—
F. Q. Gauss: Theoria combinationis observationum, pars prior, art. 6.

Since the “Theoria Combinationis” of C. F. Gauss appeared in the year 1821
a century of Mathematical Statistics has been dominated by the ideas of this
classical treatise—ideas whose fertility does not seem to be exhausted even
today.

The germ of most modern contributions to mathematical statistics—in fact
also those of Karl Pearson and his school—go back decidedly to this paper.
Though the immediate achievements of Gauss are so conspicuous as not to
need any comment, a true critical appreciation of the work can be gained only
by comparing it with the previous methods of Laplace, superseded by those of
Gauss.

For such critical appreciation, C. F. Gauss himself has prepared the ground
in the lines quoted at the beginning of this article. To Gauss the standard
deviation is a measure of uncertainty or risk of a game in which.the errors of
observation are considered as causing only losses. In this he follows the lead
of his great predecessor. The difference between them is that Gauss adopts
the square of the error as a measure of the loss while Laplace adopts its absolute
value for this purpose; Either choice frees the error from its sign so that the
loss is the same regardless of the sign of the error.

Gauss considers this choice of the measure of the loss as purely conventional.
Therefore he feels justified in adopting the square of the error because in adopt-
ing the square instead of the absolute value of the error, the mathematics he
uses remains in the easily accessible domain of analytical processes. This
creates for these methods a superiority in elegance, simplicity, and generality.

The modern developments of mathematical statistics, based on the principles
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78 FELIX BERNSTEIN

of Gauss, have confirmed the correctness of this viewpoint. This has proved
true particularly in the theory of analysis of variance developed by R. A. Fisher
and in the more general theory of semi-invariants, first defined by N. H. Thiele.

The inadequacy of the Gaussian method seriously impairing its value for
statistical use has come to light through the investigations of Karl Pearson of
distributions of one and two variables. Since the moments of higher order
involve standard deviations of increasing magnitude the characterization of the
distributions by means of the moments, in line with the Gauss-Thiele concepts,
becomes practically impossible. Therefore it was of the greatest interest that
Lindeberg was able to derive an expression for the standard deviation of a
measure of skewness constructed not on Gaussian but on Laplacian lines,
namely based exclusively upon the sign of the error. The mathematical diffi-
culties surmounted by Lindeberg by a very involved and difficult analysis—
with some clearly indicated gaps in the proofs—are precisely of the character
of those that Gauss wished to avoid. Encouraged by the success of Lindeberg,
I have developed in two papers' the standard deviations of more general mo-
ments and the correlations between them of which the mean deviation of Laplace
and Lindeberg’s measure of skewness are special cases. The proofs have been
arrived at by a rather simple and rigorous procedure. These new moments,
together with the old ones, form a new system of statistical characteristics by
which a distribution in one or two variables can be described by expressions
of lower order and therefore of greater precision. This method makes un-
necessary the use of moments of higher order than the third.

But another point of interest is still involved. It has been assumed that the
Gaussian characteristics give a greater amount of information than those of
Laplace. This is proved, however, only for the case of the normal distribution
&;e""”’ This was recognized by Gauss himself in his paper of April, 1816,
that appeared five years earlier than the Theoria Combinationis Observationum.
In article 6 of his paper, he says, that the constant & of a normal distribution
obtained from one hundred observations by the use of the standard error is
as exact as that obtained from one hundred fourteen observations in which
the mean deviation is used. Hence with a given number of observations only
the equivalent of 889, of the total are used by the second method. This does
not hold true for all distributions. The following theorem can easily be proved:
The amount of information as defined above, furnished by the use of the mean
deviation is greater, equal to, or less than that furnished by the standard devi-
ation, depending respectively upon whether

1 Felix Bernstein: ‘‘Die mittleren Fehlerquadrate und Korrelationen der Potenzmo-
mente und ihre Anwendung auf Funktionen der Potenzmomente,”” Metron, Vol. X, N. 3
(Nov. 1932).

Felix Bernstein: “Uber den mittleren Fehler der Potenzmomente.”” Zeitschr. f. d. ges.
Vers.-Wissenschaft, Bard 30, Heft 3, March 1930.
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(B — 1) Z 48 — 1)

where
M2
80 = 1?2'
M4
Po= 2

ur the k-th moment and ¢ = the mean deviation.
For example, in the distribution ge—""', the mean deviaition furnishes a greater

amount of information than the standard deviation.?

In the present paper, we shall discuss the practical use of expressions for
correlation and regression in which the new type of statistics formed along
Laplacian lines will be used. These new expressions are of a linear form and
can be computed therefore more easily than those of Karl Pearson. The amount
of information given by these expressions is less than that given by the expres-
sions of Pearson if the normal law, in two variables, is fulfilled. For other
distributions, however, this is not generally true. The determination of the
standard deviations of these new expressions is given in Metron.?

The application of the new expressions of regression and correlation to grouped
data is set forth here for the first time. The method is strongly recommended
for all cases in which the data lose reliability with increasing deviations from
the mean. Deviations in the new method enter the expressions only in the
first degree and not in the second as in the case of Pearson’s. It is obvious
that the influence of the doubtful extreme readings is, therefore, considerably
lessened. Since our expressions are linear, no adjustments for grouping (Shep-
pard’s corrections) are necessary.

It ought to be mentioned here that linear expressions for the measurement
of correlation have been set up before.

K. Pearson (Biometrika) and Egon. Pearson (Biometrika) have derived an
expression called “linear correlation ratio” which in case of linear regression is
identical with the correlation coefficient.

K. Pearson also discusses the linear correlation coefficient

_ 1 gqusoz xsgy)
T= 2(Sx8gx T SySgy !

2 To this second type of distribution curves also belongs y = y¢(z) where z(z) is the mean
h kh

of two Gaussian curves with the same origin, i.e. y(z) = }( —= e?*** + == e"‘m’z)
V7 V7

m™
16 < k < 34.
I owe this remark and some other valuable suggestions regarding the subject of this
paper to Mr. Myron Fuchs.
3 0p. cit.
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suggested by Lenz and various other linear expressions, all similar to our expres-
sion (1). He finds that they are all equal to his quadratic correlation coefficient
in the case of a Gaussian distribution.

However, their expressions were not recommended by those authors for the
determination of correlation between quantitative variables, because—

1. No easy and practicable methods were given for their evaluation in the
case of grouped data.

2. Their standard deviations were not determined. .

We now proceed to define the new formulas and to describe the methods for
their evaluation. The proofs are furnished in the Appendix to this paper.

Let r; and 7, denote the regression coefficients of z on y and y on z respectively,
and r, as usual, the coefficient of correlation, and by & and § the arithmetic
means of the z’s and y’s. Let us take Z, § as the origin, so that z, y are the
deviations from the mean. We have

Sz Sz
-1y w= ZY
= Sy or %= S
+y -y
1)
Sy Sy
+z -
" T T
“+z -z

r=rnXn

Sz denotes a partial sum of the z’s, this sum being extended over all the z’s
+y
of the observations whose y is positive and the other sums have a corresponding
meaning.
It should be noted though that if data occur whose y-deviation is 0 (practically
never in a grouped table) one-half of the sum of these z‘s should be added to Sz.
+y
In the S a similar addition should be made in case observations occur in which z
+2z
is zero. (See Table IV.)
The formulas (1) and all following ones will be proved in the appendix to this
article.*

¢ Using r; and r; of (1) the regression lines are y = r.z and z = r;y. They are those
straight lines which fit the data best according to the method of least squares, if the weight
of the deviations is taken inversely proportional to the absolute value of the variable.
Taking z for instance as the independent variable, r; is the value of m which minimizes
1
S E (y — mx)? (the sum extended over all data z y).
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The standard deviations of r; and r, are

) Sz

. _ 11 _ -tz
o= aN 1 4 m(m — 2r)) where m = 5

+y

(2)

Sy

L= (L bn—2)  wheren = 14
o'rz=é—‘—N +nn— r Weren=—Ty

+z

We are now going to illustrate the computation of r and for this purpose
we shall use a table of Pearson’s which gives the correlation between the heights
of fathers and daughters.

The totals at the right and lower end of the table are first computed and
the bracketed numbers are the sums of the numbers that precede. The
means are

5 _ 1659.5 — 1179 _ 4805
=T 136 T 1376

and
; _ 16509 — 1390 _ . 2605
¥y= 1376 = 71376

whose signs determine on which side of the working mean to ‘“quarter” the
table. This quartering is done in Table 1 by the lines v and hkh. Then the
totals above the heavy horizontal separating line Ak and those to the left of
the vertical separating line » are found, e.g. 2, 4.5, 7.25, - -+ and .5, .5, 0, -- - .
Multiplying these totals by the respective class marks, we find the outside lines:
18, 36, 50.75, - -- and 5.5, 5,0, - -- .

Sz is now = 1107.5 — 420.5 = 687, and an adjustment for the fact that a

working mean has been used has yet to be made. This adjustment is ZN_,
where N_, is the number of negative y'’s. (N_, = 728.)
We have therefore for the adjusted values

260.5

Sz
—y = 1107.5 — 420.5 t 1376 <728 = 825.07
Sy 480.5 _
y = 1179 + 376 728 = 1433.21
r = .5757 r, = .5170
r = .546

The standard deviations, according to the formulas (2) are

o = 031 o, = .027
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The standard deviation of 7 = r, X r; has to be estimated by using the
general formula for the standard deviation of the product ¢ of two variables
a and b;

o 2Ro',, o
E=2+m+ b

R being the correlation coefficient between a@ and b. Since —1 < B < + 1,
substitution of these limits for R leads to the inequalities

[ 0'52 0'2 g a'bz
(z‘z) <?<<E+3)

. 2
puttinga = 7, b = r., ¢ = r° we have

Or __ Ory _ 02 _ 0Or | On
T < + =

1 T2 r T T2

Considering the relation ¢, = %’

we have 2r (07,72 — 0r,71) < 0 < 27 (07,72 + 0y 71)
from which we derive with sufficient approximation

g < -030

A slightly different arrangement for computing r has been made in the
following table.
TABLE II

Correlation between diameter of the stem and length of the lonest flower petal of
Trientalis europaea™

PS 3 15 34 45 30 6 2 0 0 0 O
PS —4 -3 —2 —1 0 1 2 3 4 5 6 Total
1 -4 1 ‘ 1
7 -3 1 4 1 1 7
20 -2 1 9 16 3 1 30
33 —1 2 9 22 9 2 1 45
27 0 8 19 | 20 4 1 52
8 11 18 12 6 4 48
1 2 1 8 9 3 21 24
3 3 6 41 14
4 2 21 2 7
5 1 3 4
6 1 1 2
Total 4 15 34 53 | 56 30 19 12 5 5 1 234

* E. Czuber: Die statistischen Forschungsmethoden, Wien, 1921.
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TABLE III

z = Diameter of the stem.

y = Length of the longest flower petal in millimeters.
Working mean, z,, = .825, y.,» = 34.5.

Class width of £ = .4 mm. of y = 6 mm.

Total P.S. Total P.S.
z times z times z y times y times y
—4 16 12 —4 4 4
-3 45 45 -3 21 21
-2 68 68 -2 60 58
-1 53 45 —1 45 33
0 (182) (170) 0 (130) (116)
1 30 6 1 48 8
2 38 4 2 48 2
3 36 0 3 42
4 20 0 4 28
5 25 0 5 20
6 6 0 6 12
(155) (10) (198) (10)
Mean —-27 +68

The P.S. columns are the partial sums as explained in the previous table.
The work of multiplying the totals by the class marks and of adding them has
been separated here from the table.

We obtain N = 234, N_, = 106, N, = 135

27
170 — IO—mX135

T = = .805
68
130 + 234 X 135
116 — 10 + 28 % 106
234
Te = 27 = 834
182 — @ X 106
r = .82

Pearson’s coefficient for this table is r = .83.
Finally we illustrate by a small non-grouped table where the partial sums
can be written down immediately.
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TABLE IV
Correlation between Ages of Husband and Wife
Age of Age of Deviation Deviation
Husband Wife Husband Wife
22 18 -8 -8
24 20 -6 —6
26 20 —4 -6
26 24 —4 -2
27 22 -3 —4
27 24 -3 -2
28 27 -2 +1
28 24 -2 -2
29 21 -1 -5
30 25 0 -1
30 29 0 +3
30 32 0 +6
31 27 +1 +1
32 27 +2 +1
33 30 +3 +4
34 27 +4 +1
35 30 +5 +4
35 31 +5 +5
36 30 +6 +4
37 32 +7 +6

Ave 30 26

Here 0-deviations occur in the third column. Hence®

Sy = 26 + % X 8 = 30, Sz = 33, Sz = 31, Sy = 36,
+z +z +y +y

rn=.86 1r=.91 r= .88 (Pearson’sr = .86)

Appendix
Proof of formula (1), page 1. The following notations will be used:
(f(x))’ = probable value of f(z)
(f())2 = probable value of f(y) for a fixed z.
+1

sgx=signofx=|—:lforx;£0. sgx = Oif:c%O.
-1

§ See page 7.
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The assumption of linear regression means that
4) yg - yo = 1y — zo)
We multiply both sides of (4) by some arbitrary function ¢(z) of = and get
Wz — ¥")9(2) = ry:a(z — 2°)9(2).
Both sides are functions of z. We shall take their probable values for all z’s.
Now, for a fixed z, y2¢(x) = (y¢(z))s and the probable value of (y¢(z))s for
all #’s is equal to the total probable value (y¢(z))’. So we have
(@)’ — ¥'9(2))" = ryl(z — 2")9(2))°
((y — ¥)8())°
5 o = 2 IO
® = (= @)
If now we take z%° as the origin, we get
r - @)
T (2 (@)
and similarly

L _ @)
= Wa)

where ¢, is another arbitrary function.
Replacing the probable values by the respective arithmetic means we get

i Sxd’l(’!l)
T Syn(y)

and

Sys(x)
(6) Tyiz = S_x¢—(?)

with &, § as the origin.

By a suitable choice of the still arbitrary functions ¢ and ¢, , we may derive
all the various expressions for regression coefficients. Taking, for instance,
o(x) = z, p1(y) = y, we get Pearson’s expressions. Taking ¢(z) = sg(x — 1),
&1(y) = sg(y — az), a1 and ay being constants, we have

_ Sysg(z — o) _ Sz sg(y — a)
@) Tve = Sy sg(z — an)’ =0 = Sy sy — an)

and if we make ay = as = 0

_Sysgz ' _Szsgy
(8) Tyz = Sz sgx, Tzy = W]

Since 8z = Sy = 0, we can add Sy or Sz to the numerators and denominators.
Adding Sy to the numerator, Sz to the denominator and multiplying both
sides of the fraction by % we get

_ 5Sy(sg(z — an) + 1)
9) v = 182(sg(x — ar) + 1)
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Instead of (9) we can write

S y+ 38 y
x> a rT=aa
(10) T T8 ot IS e

> a T=aa

since the operations of (9) multiply the y ordinates by 0, %, 1 according as the
z’s are % a .
The expression (10), with a suitable choice of a; should be used for the purpose

of numerical calculation of r. For instance, when calculating r from the data
of Table IV, we took a; = a; = 0 and had

Sy+% S y

+z z=0

Tva= g
+z

When dealing with data which are arranged in a grouped table (Tables I
and II) we take a; equal to the z-ordinate of that classline which is nearest to

the mean. (In Table I o = .5 — g—ggs)° With that choice of «; the sums
S disappear and the sums S are equivalent to the corresponding sums
= r>a
S. Hence we have
“+z
Sy Sz
z . .
(11) Tye = iTS?v and similarly Toy = :I_—%;/
+z +y
Instead of (9) we can also write
3Sy(sg(x — o) — 1)
_ IoY\sg 1
(9) e = 18(sg(@ — @) — 1)
This leads to
Sy Sz
e ! p—
(113) Ty:z = -—'@ and Tzy = ———'yg—»y

¢ It is desirable to chose the absolute values of the a’s small so that the maximum number
of data enter into the calculation of r. However, to take «; = a; = 0 would necessitate a
division of the middle arrays of a grouped table, a laborious process. Hence the choice
of the a’s as described above.
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Proof of the standard deviations of Formula (2).
In my article on standard deviations and correlations of moments’ the stand-
ard deviations of the expressions used in this article have been derived.
In the following, the notation of the Metron article just referred to will be
used. We use the symbols:
Pm,n —_ E xm.yﬂ

Pinn = Z z" sgzy”
Poyn = 22"y sgy
Plmn = 2 2" sgzy" sgy

The summations indicated extend over all observations. The true or prob-
able values of the same expressions are indicated by using p instead of P.

r _ Pl/O
zy —
POIl

We derive the standard deviations by defining the deviations as first variations.

log n = log Pl/o —_— log Po/1

o D10 DPon

(12) ot = [(6r)° = (r))? [(6;,%/’0 3 3}1):_:? )z]o

The probable values of the terms on the right hand side of the last equation are
derived on pages 17-19 and listed on pages 32-33 of the Metron article referred
to. The proofs which imply essentially a process of variation of Stieltje’s
integrals will not be given here. From pages 32-33 we take

2

[,(8P1I0)2]0 = p__zo_N__pl/_o, [(8P0/1) ] — —-Ar—pw_l
(13)

[(PyodPop]’ = Iﬂ_:_}_gyﬂ_’g/}
so that
2pu

14 2 — 2[1’20 L ]
(14) on ( 1) T

Assuming Gaussian distribution, we can put

P20 = gﬁw P = gp(zm Pu = TV PP = Tg-P/wPou

7 Felix Bernstein: ‘‘Die mittleren Fehlerquadrate und Korrelationen der Potenzmo-
mente und ihre Anwendung auf Funktionen der Potenzmomente,’”’ Metron, Vol. X, N. 3
Nov. 1932).
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Hence

17, z( p?m p/lo)
15 = e ()1 4 B g B
(15) =g 2( D1+ o -

Replacing the theoretical values by their corresponding empirical values,
we have

2
2 _ w1 2 _ _ Szsgx
(16) o = 5§ 1 + m® — 2rm) where m = Sosgy
The formula for o7, has been derived here for the value of 7 as given by (8)
le.n = M. In fact, we used r, = ML“) in the examples in the
Sysgy Sysg(y —«)

article, and « had some value absolutely smaller than .5. To use equation (16)
for the standard deviation of 7, is within the limits of the required degree of
accuracy; hence we shall disregard the difference. In a later paper the standard
deviation of r; for any « will be derived by using the method described in the
Metron article, for a different purpose.

To prove the statement in the footnote to page 7

To find the value of 7, that makes

Sf(z) (y — r2z)’ a minimum.
By differentiating we get
8f(@)(y — rz)z =0

_ Saf(x)y
'T Sif(@)x

If f(z) = 1 we get Pearson’s coefficient.

If f(x) = 1 (z # 0) we get

||
z
= oY _ Sysg
g Sz sgx
||

NEw York UNIVERSITY,
Departments of Anatomy of the Graduate ‘School and the College of Dentistry.



