CONTRIBUTIONS TO THE THEORY OF COMPARATIVE STATISTICAL
ANALYSIS. 1. FUNDAMENTAL THEOREMS OF
COMPARATIVE ANALYSIS'

By WiLLiam G. Mapow

This is the first of several papers in which there will be presented a general
approach to the statistical examination of hypotheses which are false if any of
several things are true. Phenomena requiring such a statistical theory are
investigated quite frequently. As examples may be cited the studies of lag
correlation in time series, periodogram analysis in geophysics, factor analysis
in psychology, and analysis into components in agriculture.’

The theorems of this paper have one purpose: to permit the reduction of the

distributions by which the hypotheses are to be tested to essentially the joint-

distribution of the statistics which contain the information offered by the data
concerning the truth or falsity of the things which will negate the hypotheses.
In order to do this it has been necessary to generalize the theorem of Poincare
on the probability that at least one of several events occur.® As illustrations
there are stated, after Theorems III, VI, and IX, generalizations of a distribu-
tion derived by Jordan, (5) page 109.*

In a second paper, we shall give a complete derivation of the joint distribu-
tions necessary for the applications of the analysis of variance. A reconsidera-
tion of the Schuster periodogram will be included. In other papers these
results will be extended to problems arising in the theory of regression, and to
problems of the distributions of medians, etc.

The fundamental theorems of comparative analysis are now obtained in such
a form that they are applicable to problems in the theory of probability no
matter what the distributions may be. Some special cases of these theorems®

1 Presented to the American Mathematical Society, March 27, 1937. Research under a
grant-in-aid from the Carnegie Corporation of New York.

2 Naturally these techniques are also useful in other branches of science then those in
which they were first applied. It should be noted that by analysis into components we
here refer to the work of Fisher, (2), chapter 6.

3 See, Poincaré, (7), page 60. This theorem is attributed to Poincaré by Jordan, (),
and Fréchet, (3).

4 This distribution states the probability that in r trials of an experiment which has
exactly n possible results, these results being mutually exclusive, each of the possible
results occurs at least once. Jordan’s derivation has been simplified by Fréchet, (3),
page 12.

& The theorems are, of course, part of the theory of measure and integration.
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160 WILLIAM G. MADOW

liave been used in connection with the derivation of distributions of positional
statistics such as the k** in order of N elements,’ and others.
Let @ be a collection of elements z, and let A be a set of subsets of 2. Then,
the axioms which the elements of A are to satisfy are’
I. Ais a field;?

II. Qe A;
III. To every A e A there is ordered a non-negative real number P(4);
IvVv. P(Q) = 1;

V.If AeAand BeA,and AB = 0, then P(A + B) = P(A) + P(B).
We shall regard Q as the set of possible results of an experiment e. By events
we shall mean elements of A. The complement A of A with respect to @ will
be an element of A if A is an element of A. A consists of all elements of
which are not elements of A and hence is the event which occurs if and only
if A does not occur.’
Let the subsets of Q

(1) E\,E, .- E
be elements of A. Then, if a1, @2, - -, a; is a permutation of 1, 2, ... | k,
the set

2) EoEey - -- }_7,",,1‘]_7';,,,1_)rl oo B,

is an element of A and is the event which occurs whenever all the events
E. ,E., -, E. occur, while none of the events E. ,,, Ea;1y, -+, Eq
oceur.

The events (1) are said to be independent if and only if

j k
(3) P(Eal cte Ea,'Ea,'+l e Eak) = I]Il P(E“').I.I_‘_IP(E"') .
y= ye=j
for all selections of the sets (1) and their complements.'
Theorem I. The probability that the first j of the k events (1) occur, while the
remaining k — j events do not occur, is

¢ See, for example, Gumbel, (4). It is noted that Theorems I, II, and III are stated by
Arne Fisher, (1), page 42, who assumes, however, that the events are independert.

7 These axioms are stated by Kolmogoroff, (6), page 2.

8 A set of sets is a field if the fact that A and B are elements of the set implies that
A + B, AB,and A — AB are also elements of the set.

¢ The event A will be said to have occurred if the result of the performance of the experi-
ment E is an element of A.

10 See Kolmogoroff, (6), page 9 for a discussion of various equivalent definitions of
independence.
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_ _ k—j k
@) PEr - EjEjp - By) = 20 (=1y Z _J’(El <o  E;jBq -+ E,)"
’ al<az " <ay
Proof. Letk = j + 1. Then it follows from Axiom V that
4) F(E\E; --- E;) = P(E\E, --- E;E;.) + P(E\E; --- E;E ;).

Hence the theorem is true for k = j + 1 and any j > 0. Let the theorem be
truefork =j,j+ 1, ...,k — 1. From Axiom V it follows that

(6) P(E:---E;Ej;, - Ey)
=PE,---E;Ejp,--- Exy) — P(By--- E;Ejp - B Ey).

Substituting from (4) the theorem is proved.
Letn2>2m+ ---4+n,n20(@(=1,...,¢;and let

n! = (n; )
il (h— 1y — - — ] ot T
CoroLrarY. If, for each value of v, (v = 1,2, --. , k — j), the (k — j; »)
terms
P(E,--- E;E,, --- Ea)
which can be obtained by selecting oy, a2, - -, a, without repetition from
i+ 1,54+ 2, ---,k, are all equal, then

k=7

) PE, - E;Eiy - E) = ):‘_,0 (=1’ — j;»)P(By - - - E;).
Let

k

(8) 8@w) = 2. P(EyE. - E.,)
@y, 0=l
a1<<ay

where the summation extends over the (k; ») terms
9) P(E.E., --- E.,)

which can be obtained by selecting » of the k events (1) without repetition.
If all the terms (9) which can be obtained by selecting » of the k events (1)
without repetition are equal, then

(10) S() = (k; »)P(E, --- E,).

11 By definition

k—j k
zf (=1) E P(E, ~--E,-E'j+1 e Ba,)
y=0 g, @ =i+l

a1 < <ay

k—j k
=PE - E)+ > (=1 3>,  P(Ey - EjEa - Ea,).
y=1 ay,ay=i+1
a1< 1 <ay
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Theorem II. The probability that exactly j of the k events (1) occur is

k—=j

(11) Py = ;; (=1 + »;9)8G + »).

Proof. If A, is the subset of @ defined by the requirement that exactly j
of the events (1) occur, then A; is the sum of (k; ) disjunct sets:
k

(12) A(i) = . Z . Eal e E“iE—""i-i-l e E—'akr
_ ap =
where a;1, -+ -, ax have those of the values 1, ..., k which remain after the
selection of a;, - -+, @;. By Axiom V we may replace A by P in (12). Upon
substituting from (4) we note that the resulting terms of (12) which depend on
the same number », v = j, ... , k, of events have the same sign, that all S(v),
v = j, -+, k, occur, that no term depending on fewer than j events occurs,
and that any particular P(E. E,, - -+ E,,,,) will occur in those of the terms
of (12) the j occurring events of which are a subset of Eo, , Ea,, -+, Ea,y,
and will occur in no other term of (12). Hence the coefficient of S(j + ?) in
(11)is (=1)" (j + t; £). This completes the proof of the theorem.

Cororrary. If (10) is true for v = j, --- , k, then
k=i
(13) Py = Z (=1)"(k; j, ) P(E\Ey - - - E;.,).

v=0

Theorem I1I. The probability that at least j of the k events (1) occur is
ok
(19) P? = Z()) (=1’G 4+ v — 1;2) 8G + »).

Proof. If AY is the subset of @ defined by the requirement that at least j
of the events (1) occur, then A is the sum of k — 7 + 1 disjunct sets:
(15) A = A+ Ay + - F Aw
By Axiom V we may replace A by P in (15). Substituting from (11)

k—j
(16) PY =3 ¢ 8G + ),

y=0

where

o=0G+vitn) -G+ D+ -+ (DG w0, 0=0---,k—)).
It is easy to prove that

17) (—D'G+v—1;9) = 2(—1)"‘“(j+v;j+u).

Cororrary. If (10) is true for v = j, ... , k, then

(18) PY = g (=1G +v—1;0)(;j + v)P(E\Ey - -+ Ej).



THEORY OF COMPARATIVE STATISTICAL ANALYSIS 163

To provide examples illustrating these theorems let us consider r experiments

(19) E(l), E(2), . ’E(r)
Let E® have k mutually exclusive outcomes
(20) 0,08, ..., 0.

Then, it is easy to define the spaces 2°, A the probability function Pi(E‘”),
the combinatory product

Q= Q(l) x 9(2) X oo X Q(f)’

the set A and the probability function P(E) so that Axioms I, - .-, V are satis-
fied and hence Theorems I, II, and III are valid.

We shall assume that the experiments (19) are independent.

Let _
0; G=1,--,k)

be the event which occurs when neither Of” nor O nor - - - nor 0{” occur.

Then O; occurs if upon performance of the experiments (19) at least one of
0{’, 0%, ..., 05 occur. ‘
It is an immediate result of the definition of independence that

@) POuOu--0.) = 11 (1= PO = - ~ PO,

From Theorem I, the probability that 0., O;, -- -, O; each occur while not
one of O;y1, Oj2, -+, O occurs is

PO+ 0,000 = 3 (-1 3

ay, a1

(22) a1< r<ay
II o1 = PO — -+ — PO”) — P(OS)) — -+ — P(OS))}.

=1

From Theorem II, the probability that exactly j of O,, 0., - - ., O occur is

@) Py = 25 (=1 = j + % Sk =+ 9),
where
k r
Stk —j+v) = > ) Hl {1=PO) — - — PO, )}
ay,ag, ,ag—j+y=l =

a1<az< < ak—j+y

Since the probability that at least j of O1, Oz, - - -, Oi occur is equal to 1
minus the probability that at least ¥ — j + 1 of 0, Os, --- , Ok occur,” it
follows at once from Theorem III that

P{at least j of Oy, - - -, Oy occur} =

(24) 3
1-— §(~1)V(k — 498k —j + v+ 1).

12 There are, of course, other ways of computing these probabilities.
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The case treated by Fréchét and Jordan is that which occurs when we assume
POP) = PO, t=1,---,k), G h=1,... ,7) and in (24) let j = 1.
It is not difficult to obtain further generalizations of Jordan’s distribution, by
defining events which occur if and only if fewer than j' of r events occur and
then proceeding as above.
Certain useful generalizations of Theorems I, IT, and III will now be derived.
Let the subsets of Q

(25) E£l), E;')’ cee, E,(‘a) (s = 1..., p)

be elements of A, and let N = k® + k® + ... + k@,
Let j <k, (s =1, --.,p); and let

t jte)

1,
(26) Q(‘) = I—Il I-Il Eﬁ') (t = l’ MR ] P):
Let
t k(o)
(27) Q(t)l - q . I(I+l Eﬁ.) (t = l, . ’p).
gm=]l gy (s

Furthermore, let for each value of s, (s = h, ---, p), the (k“ — j¥; »*)

possible distinct selections of »® of the k> — j* sets

(28) Ef-il).n, E,(':Z)-H, sy E,(jl)

be arranged in some order, and, if the intersection of the »* sets of the 4,**

selection be denoted by
q"("(.)) (3 = h; e ;P),

(29) . 0w,
(% = L2... :(k() —]();"()))r

let

(30) qih-..l’g(y(h)’ cee, y(P).) — g q“("(,))-

There are ﬁ (k® — 7; v) sets (30), for each value of h, (h = 1, ..., D),
s=h

and any set of fixed values of »®, ... @

Let for each value of s, (s = h, --- , p) the (k”; »*) possible distinct selec-
tions of »® of the k® sets

(31) EP, . G=1,--, k),

be arranged in some order, and if the intersection of the sets of the %,*" selection
be denoted by

(32) q-".(p(c))
let
(33) q'u',,...i,(y(h)’ .oy y(p)) = f;IA q'“(v,(')).
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There are 111 (k“; v*) sets (33), for each value of h, (h = 1, ---, p), and any

set of fixed values of ¥™, ... »®.

It is clear that the various sets that have been defined are elements of A.
The fact that the sets are the events which occur if and only if certain sets of
events occur is also too obvious to require further comment.

Theorem IV. The probability that of the N events (25) the first j of super-
script s occur and the remaining k' of superscript s do not occur, s = 1, --. , p, is

k(1)—j (1) g(2)—;(2) k(P)—j ()

PQPQPY = ¥ X ... ; (= 1) DDt
»(P)m=

y(1)mp v(2)=0
(34) (k(1)—j(1);, (1)) (k(P)—j (P);y (D)) . )
v P[q""""(yfl) ce v(p))].

=1 tp=1

Proof. Theorem I is a proof of Theorem IV for p = 1. The theorem may
then be proved either by regarding it as a special case of Theorem I and col-
lecting terms, or by induction.

CoroLLARY. If, for each possible set of values of »*, v®, ... v the

fI (k(a) _ j(');v(‘))

=1
“terms
(35) Plg" 6%, -, v )]

are all equal, then

k(1)—;(1) k(P)—; (P) " »
P(Q(p) Q(P) ) = ;;0 . (,Z)f_o (__l)v +..tr(P
(36)

ﬁ (k(a) _ j(:); V(s))P[ql---l(y(l), el ?’(p))]~
gual

Let, for each valueof b, (h = 1, - -, ),

»)  (k+1) ()
SE™, v )yt ¥ )

(37) (k(B);p (R (k(P)y(P)) _ o .
= Zl . Zl P[Q(h 1) Q(h 1) qt;. t,,(v(h) . v(p))].
A= ip=

It is apparent that by using (34) it is possible to obtain an expression for (37)
which’ does not depend explicitly on Q*™". In fact

k(1)—;(1) k(h—1)—; (h—1) W -1
(k) (p) LS DRI ¢
SE®, ..., »®) = }i (-1 ,
»(1)mp »(A—1) w0
(38) (k(l)_g);,(l)) (k(i—-l)_i(h—l);,(h—l)) (k(h);,(h)) (k(p);,(p))
=1 th—1==1 th=1 tp=1

P[qa’p-ot‘»—l(y(l)’ e, p(h—-l))q-i).-nt'p(;‘(h)’ cen, y(P))].
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If the different terms of (37) are all equal, then

If the different terms of (38) are all equal, then

E(1)—7 (1) k(A—1)—; (h—1) . y

(L)) (p)y __ y (Dot gy (h=1)

SV, ..., »?) = Z E (_1)
y (D= y (A=1)mg

h—1
(40) — H (k(l) _ j(t); y(n)) fI (k(');v('))
a=1 s=h
P[ql...l(y(l)’ e, y(h—l)) q’l"'l(y(")’ ey, v('))].

Theorem V. The probability that of the N events (25) the first § of superscript
8 occur and the remaining k& do not occur, (s = 1, --+ , h — 1), and ezactly '
events of superscript 8 occur (s = h, .-, p), is

kC(R)—j (A) k(P)—;(p) * »
P(i(h).ui(l’))(Q(h_l) Q(h——l) ) — ; . (_l)v 4+ or(P
v (A)mp y(Pl=p
(41)
f{ (j(a) + V(a); V(‘))S(j(h) + V(h), . ’j(p) + y(p)).
g

Proof. The theorem may be proved, either by induction using Theorem II,
or by obtaining disjunct sets as in Theorem II and using Theorem IV.

CoroLLary I. If (39) is true for all sets of possible values of »®, ..., »®
then
k(B g (B) k(p)—j(p) ™ ,
P(j(h)...j(p))(Q(h_l)Q(h_l),) = z; . (_l)r 4o otr(p
(42) »(h) =) y(P)m0
fl‘ (k(u);j(u)’ ”(a)) P[Q(h——l)Q(h—l)’q-l-ul‘(v(h)’ .. , v(p)).
CoroLLARY II. If (40) is true for all sets of possible values of v“)‘, A
then
E(D—j (1) £ (P)—i (p)
P(j(h)...j(p))(Q(h_l) Q(h_l)l)' = 2 “re : (_1),(1)+,,_+,(,,)
y (D (P
43 L= 8 s 8 Y 8, ) )
(43) IIl(k()—J();"())f{(k();.]“ﬂ“)

P[ql---l(y(l), e, v(h—l)) q-l---l(y(h) .. y(p))}_

Theorem VI. The probability that of the N events (25) the first 7 events of
superscript s occur and the remaining k' do not occur, s = 1, ... , g — 1, exactly
7 events of superscript s occur (8 = g, --- ,h — 1), and at least 7 events of

superscript s occur (8 = h, --. , p)is
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G ) ( ) (o) k(0)—;(a) k(P)—j () = -
Pl ”_)) g—1 -1y _lvﬂ+-~+vP
G0)eeeg )(Q Q ) v(9)=0 y(P)=0 ( )
(44) T o @. @ VT (@ ( @

IT G2 + 5955 IT G + 5 = 1;57)

8=g 8=

S(j(a) + V(g)’ ttty j(p) + V(p))~

Proof. The theorem may be proved either by induction using Theorem IIT
or by obtaining disjunct sets as in Theorem III and using Theorem V.
Cororrary I. If (39) is true for all sets of possible values of

1
y(v), y(a+ ), cer, l‘(p)

then
(B eeejlp)y (o—1) Alg—1)"’ LS ™ (@) 4.y (P)
P(j(a)..‘i(h-l))(Q Q ) = (;0 R &y (—1)
14 - v =
45 ba 1 . Yo (0
( ) H (k(c);J(s), V(:)) q [(](a) + ”(:) -1 V(c))(k(c);](: + V('))]
8=g 8=
QY QMY ¢ 6, e v,

CoroLLarY II.  If (40) is true for all sets of possible values of v, »®, ... | »®

then

)—; (1) (p)—j(p)
G eeajlo)y (=1 (g1’ k“i“ Lo g (Do ipp (@)
P(,‘(a).--i(h—l))(Q Q ) = cee (_1)

(D=0 y(P)=0

(46) 7 10 . N\ TT (1.6 5@ @ ﬁ (o) 8 NS @
IT @ =595 IT %55, » )_h[(J +v7 =105 + )]

=1 8=qg

P[ql.“l(”(l)y A} ”(a—l)) ql".l(y(a)’ ety ”(p))]'

Let us again consider the experiments (19), and let us assume that
E® (@ =1, -..,7) has as its mutually exclusive results

(47) Og:) (t = ly cec )k(')); (3 = 1) 2)

Let O, be the event which occurs if, upon performance of the experiments
(19) at least one of the events Oy, O, ---, 0{? occur, and let O, be the
event which occurs if and only if O, does not occur.

We may state the probability that the event E, , which occurs if and only if
at least ¥ of the events O, , (t = 1, -+, k) occur, and the event E, , which
occurs if and only if at least 7 of the events O, (t = 1, --- , k®) oceur, both
occur.

1t is apparent that

(48) P(E\E,) = 1 — P(E)) — P(E») + P(E\Ey),

where Ej is the event which occurs if and only if E, does not oceur, (s = 1, 2).
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From Theorem III
o)1

(49) P(.E_,) Z ( l)v(')(k(c) (c) +V(.);V('))S(')(k(') (l)+ (c)+1)

(3 =1, 2)7

where
k(s)

S(c)(k(n) (c) + y(') + 1) —
apy' g (a)mj(8) 4y (e) =1
(50) . a1 < <agle)—j(o)4y(a) g1

g {1 - P(Ofx‘l)a) = s = P(OL‘,Z(.)_’-(.)_‘_,(.)_‘_I.)}, (8 = 1: 2)
From Theorem VI

j (1)1 j(2)—1

2
5O\ 1y (D) @ _ @ (OO
(50) P(E:Ey) = ,(Z):-o .(;_o( D .I_]l:(k 7T+
S(k(l) - j(l) + ]l(l) + 1’ k(ﬂ) - j(z) + y(2) + 1),

where
(k(1); 5 (1)—p (1)) (k(2);5(2)—p(2))

S(k(l)"'j(l) +V(l) + 1, k(z) (2) + (2) + 1)

=1 tg=1

P[q-t'll'z(k(l) _j(l) + y(l) + 1’ k(?) _j(ﬂ) + ll(2) + 1)]’

and

Pk — 0 4+ + 1, k% =@ 4% 4 1] =
r k(D (1) 4y (1)4 k() (2)4p(2)41
II {1 ~ PO - 2 PO }
fe=l y=1 o=l

the subscripts o, , (v = LD — §O 4P 4 1), being those of the 7,**

selection of km i® + v(l) + 1 events from & events, and the subseripts
(e i E® — 3 4+ v® 4 1), being those of the is® selection of
k‘” ](2) + y(z) + 1 events from k® events.

The desired probability is then obtained by substituting from (49) and (50)
into (48). The procedure is perféctly general, and applies directly to situations
in which p > 2.

We shall now investigate the results obtained by requiring that the events
considered satisfy a relation of implication.

Let the subsets of Q

(51) EIO’E'A’a;"')Ek" (8= 1,".’,?),
be elements of A, and let
(52) E,.C E;, E=1...,k)

if s <t
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It follows that
(53) P(E.E) = P(B.), (G=1,---,k),(<?.
Letjy <j: < --- < jrandlet o
(54) Qt=.I_Ilif_.IlEi., t=12..--,p).
Letj1 <j: < --- < jeand let L
(55) Q = E;-ﬁxﬁ"" t=1,2,---,p).

From (52) and (53), it follows that

P(@.Q) =P([f1 I E]

s=1 i=j3—1+1

[ﬁ T E] 11 E) Go=0) G=1,2---,p)

s=1 i=j,+1 i=j+1

(56)

Let ji < j» < --- < j, and for each value of s, (8 = 1, --- , p), consider a
selection of j, + v, events of second subscript s from (51). Let the p selections
thus obtained be such that

Jotve<jwn, (=12 .., p), (o1 = k),

and if E,, is one of the events of the selection of events of second subscript s
then the fact that ¢ > s implies that E;, is one of the events of the selection of
events of second subscript ¢.

From (52) and (53), the probability of the occurrence of all the events of the
p selections thus obtained is a function of j, + », events, u, of which are of
second subseript s, (s = 1, -- -, p) where

67 moAope e Fope = Jo v (s=1,---,p),

and for a given set of values of 71 ,jz, - -+ , j» the u, and », determine one another
uniquely, (s = 1, -+, p).

For a definite set of values of j;, ---,j,and w1, -+, ppOrjr, --+,jp and
v, .-, vp there will be

(Jetr — Jos Ve) = (Jor1 — JosJorn — 1 — = -+ — M), (s=1,-.- D), (Jp = k)

possible distinct selections of j, + v, (s = 1, ---, p) events of second sub-
script s, j, of which are preassigned, from j,41 events, (s = 1, --- , p).

Let these selections be arranged in some order for each valueof s,s =1, ---, p,
and let

(58) Qiyig - i,,(lll y M2, s, k)

be the event which occurs when for all values of s, (s = 1, - -, p), the events
of the i,“’ selection of j, + », events of second subscript s all occur.”

13 It is understood that the j, preassigned events of second subscript s are among the j;
preassigned events of second subseript ¢, (¢ > s) in the events (58).



170 WILLIAM G. MADOW
A typical event (58) is

Jstve
(59) gooaly ) =1L II Bay  Gotwo=0).

g=1 {=j,—14+¥z—1+1

There will be, for a definite j, events of second subscript s, (s = 1, ..., p)
P
(60) I Gosa = Goi 22, (o1 = K),

events such as (58).
For a definite set of values of u;, - -- , u, there will be, for each value of s,

(8=1,--°,I))

(k;#c—l—“’—#l;#a); (s=l,2,---,p)
possible distinct selections of j, 4+ v, events of second subscript s, jo—1 + 7.1
of which are preassigned from k events, (s = 1, ..., p).
Let these selections be arranged in some order for each value of s,
(s =1... 7p)’
and let
(61) qin’z ip(#l y M2yt 0y /-"P)

be the event which occurs if and only if, for all values of s the events of the
7, set of j, + v, events of second subscript s all occur, (s = 1, ---, p), and
the first subscripts of the events of the ¢,*® set of events of second subscript s
are among the first subscripts of the events of all the selections of events of
second subscript greater than s, (s =1, --- , p).

There will be

(62) (k;l-"l;/"'?)"'yl"'p)

events (61) which may thus be obtained.

Theorem VII. The probability that of the pK events (51) the first j, events of
second subscript s occur and the remaining k — j, events do not occur,s = 1, ..., p,
is

je—i1 38_72

P(QPQP) Z i( 1)v|+v2+ tvp

v1=0 »2=0

(F2ZiLv1) (nf”z) . (k—ip;vp)
t i P[Qtug t,(ﬂl, M2y * 0y I-‘p)];

=1 tg=1

(63)

where the event Q, determines the j, — j._1 — »,1 events of second subscript
8, (s =1, ..., p), which have as first subscripts all numbers 1, 2, - - - , j, which
are not among the j,—; + v, numbers determined by the events of lower second
subscript than s which are contained in ¢, ... ¢, (1, -« - , up).

Proof. Expand (56) by means of Theorem IV.
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CoroLLarY. If, for each fixed set of values of py, p2, - - - , up the terms (58),
in number (60), are all equal, then
, fe—i1 is—i2 k—1i, Avgee P .
P@QQ) = 3 % - 3, (=1 T (g — i)
(64) v1=0 v3=0 vp=0 =1
P[q1~~'l(ﬂly M2y * ey “P)] (JP-H = k)'

Let
(kiw1) (k—p1ip2) (k—p1—" 2 -—#Bp—1ibp)

T . =
(65) (I-‘l’ M2, ) I-‘p) ~ & &

Plgiyiy..i,(u1, p2y -+ -5 pp)].
If all the terms of (65) are equal, then

(66) T(us, -+, I‘p), = (k’ M1y M2y 00y #D)P[ql--~l(ﬂl7 Tty l-‘p)]'
Theorem VIII. The probability that of the pK events (51) exactly j, evenls of
second subscript s, s = 1, --. , p occur, 1s
j2=i1 73=j2 k=i
Pgy...ipy = ZE 2 e f ()it
(67) v1=0 vy=0 l'?ﬂo

Ij[ (o3 do — w1 — -+ = pacd) T(pa, p2, - -+, o).

Proof. If A, ...,y is the subset of Q@ determined by the requirement
that exactly j, of the events (51) occur (s =1, --- , p), then 4(;,, ..., j,) is the
sum of

(ks gryje — JuyJs — Jay oo v s Jp — Jo1)
disjunct sets which may be obtained by replacing P by 4 in (56) and forming
(56) for all selections of j, — j,—1 occurring events from k¥ — j,.; events,
(s=1,---,p). By Axiom V, P, ..., ;, is the sum of the probabilities of
these disjunct sets.

Substituting from (63), it is noted that all terms (61) which depend on the
same u,, (s = 1, --., p), have the same sign and that all T(u1, p2, --- 4 pp)
for which

0S”s$jc+l—ja, (s=l,~--,p),

appear and only those appear. Furthermore any particular term (61) will
occur in those of the terms (63) the j, — j.—1 occurring events of second sub-
seript s, (8 = 1, --., p), of which contain a fixed »,_; events, the remaining
Js — Js-1 — ve—1 events being a subset of the u, events of second subseript s,
(s =1, ..., p), that actually appear in the particular term (63). Hence the
coefficient of T'(uy, -- -, up) is

e | () (4o = 0).
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CoroLLARY. If (66) is true for all sets of possible values of u;, pa, -+, up
then ‘

P(il, ey ’21 hzs i (_ 1)'1+'3+...+7,

v1=0 »;=0

(68)

(k;]u viyJe —J1— viyvey -y Jp — Jp—1 — Vpo1, Vp)
P[q'l,---l(l-‘l’ M2y * o0y “p)]'

Theorem IX. The probability that of the pk events (51) at least j, , but not more
than j,.1., events of second subscript s occur, (s = 1, - - - , g), and exactly j, events
of second subscript s occur, (s =g + 1, ---,p) 18

1 1 1
(69) P(1g+1 1,) = E Z cet E R(ig+1~~-i,),(1; 2, -0 0,),
Gq=0 63=0 6y=0

where, if a 1 in the ** position is denoted by 6;, (¢ = 2, - - - , g),
R(ig+l""rip)(1761’ e ;811»01 v ';6;87:4—17 v "873’0; et ;0; e ’57»+lt M ;50)

k“ig Jo+2—ig+1 Tg+1—ig 1.1¢+I"1'1.—1 j‘Y'—i'f._l_l i:"flfl

= E . E Z - Z ’ Z . E (_ l)vx+vg+...+y,
vp=0 vg+1=0 vg=0 "n"'i 1‘_f 13 Y1 1.-0 v1=0
(70) (.71 +n-—1; "1) cee (jn + Vyy — j'u—l — ¥y — 1 ”‘n)

Ui + Vv —Jrs— v — 1; vy oo+ (Go + ¥p — Jo1 — ¥t ¥5)
TG4 v1, -y Jvs + Vos — Jra=t — V231, 0, - -+, 0,
Jve vy —Jvs = Va9 do Ve — Jp1 — Vp——l)~
Proof. We note first that there are 2°~ terms in (69). Since
) Py = 5 o 3 3 oy
Nemig  Aamiz M=i1

the theorem may be proved by a process of repeated summation. From (67)
and (71)

i A2 Az—A; Ag—Ag k=j. gt

i1 _ vi4vot. ..+,

P()‘z"'hgirl'l"'fp) - Z Z E R z (_1) ?
A=j1 71=0 vg=0 vp=0

&+ v 7D+ v — M= wiswa) -+ (o + ¥p = Joo1 — ¥p-1; V)
T 4r,M+ve— M — w1, oo+, Jp+ ¥p — Joo1 — ¥p1)-
For fixed values of Az, A3, - - -, A, there will occur in (72) all terms
(73) TGr+B, Ma+nm—jgi—B, - dp+ ¥p — Jpu1 — vp),
Br=0,---,M—7j), OLv<Ahu—-2\), =2 --,p),
(ots = Joses =1,---,p — g),

(72)

and any definite term (73) will occur in all
(74) P(,'l+.,).,,...,,',,
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for which
0L aL Bi.
In (74), the definite term (73) will have coefficient

(=Pt PG 4 B+ @) e + v — G — Bij )
(75) cee (jp + vp — Jo1 — Vpa, "p): (a =01,..., ﬁl);
(Bl = 0) s ;)‘2 —.71)
Hence, in (72) the definite term (73), will have coefficient
(=1 oG 4 By — 1580 + v — G1 — By ;)
<o (Jo + vp — Jpa — Vp ; vp),
and
(76) PGY...ip = Rog...in(1).
We now evaluate
A3
(77) P{iin,, = 25 PEY.,.
Ae=j3
For any fixed values of A;, - .., A, there will occur.in (77) all terms
T(Gi+Bi,je+Be—G1 — B, N+ —jo = B,
<5:dp ¥ — Jp1 — Vp),
for which either 0 < B <N — 72;0< B <je—H—1lorBr=jo — 51 + 7,
07y M—5;0<B<N—7j —7
Let 0 < B <jo—j1 —1;0 < B2 < N3 — j2. Then the term (78) will occur
in all
(79) Pg;?i-a.)\a-'“-ig))
such that

(78)

0<a< B .
In (79), (78) will have coefficient '
(=1)PFPmets oGy + By — 1) (G2 + B2 — Go — B = 15 B2 — @)

s + v — Ja— B2 ”3) oo (ot v = Jo1 — vpa H ”p)-

Hence.in (77), (78) will have coefficient
(— )PPy 4 B — 15 80(G + B — Jr — B — 1; )

M+ w3 —Ja— Besws) - (Jp + ¥o — Jo1 — o1 ;¥),

(81) Br=0,--,Ja— 1 — 1), (Ba=0,---, N — Ja),
e=0, 0, N1 — \o), (s=3,...,p);
Nots = Jota)y (s =1, ,p — g)

(80)
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Nowletpy =jo — i+ ;0 <v <N —j2;0 < 2 <N — ja — 7. Then the
term (78) will occur in all terms (79) such that

y<aXlhb,

and in (79), (78) will have coefficient (80). Summing for a, (@ = v, - -+, f2),
we obtain as the coefficient of (78) in (77)

07 if ﬁ! >,
and .
(=1)Prtrste oG + B — 1; B) (s + v5.— J1 — Br; vs)
"‘(jp'*"’p—jp—l—”p—l;”p): if B2 = .
Hence
(82) P, = Roy...in(1, 1) + Rao,...in(1, 0).

If we examine (82), we note that the result of summing with respect to \s
has been the replacement of (76) by two sums which are similar to (76) in that
the next summation index, in this case A3, occurs in exactly two limits of sum-
mation. If it can be shown that.the two sums which occur in (82) each result
in a pair of sums after summation with respect to As , or more exactly if

Aet2

(83) N +z; “ R()q+1,...,jp)(1, 02, -, 0.)
s+1=ls

= R()‘+2...jp)(1, 02, --.,0,, 1) + R()‘.H'...'jp)(l, 03, ---,80,, 0)

then the proof will be completed.

Since the truth of (83) may be demonstrated in exactly the same way in
which (82) has been shown to be true, the theorem is proved.

CoroLLARY. If (66) is true for all sets of possible values of w1, p2, -+, pp
then

R(ig+1-"°'ip)(1’ 81y 00 8yy5 0,005 0,05541, R P URER 0,y dyps1,° ")50)

k—ip Jg+2—ig+1 jg+1—dg f7‘+1_1'7,—1 j2—i1—1
=2 DS > 2 (—pnr
= “ee “ee cee —_

vp=0 vg+1=0 vg=0 y,n:-j,n--j.’a vy=0

GrA o= 1590 Giys F ¥vs = Jvamt = Vg1 — 1593)
(B Grotvm = e = #re = Liad o G 90 = ot = ¥pm195)
(s di+v1y -+ ) Jvs F ¥ = Jramt = Pra—1y Jiva
F vy = dve = Vasp 2 Go H e~ Gpt = V)
Plgr..a(ir 4 v1y = o+ 5 Jivs + ¥4y = Jra-t = P13-1, 0, -+, 0,
JroFVre = Gve = Vvai 0o F e = G — vl
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Let us again consider the experiments (19) and let E have as possible results

0;:) (= L. k), =1,2)@¢=12...,7).
Let
. : (1, =1, T)
0('1) =) 0(1) i ) ’
" . (.7=1:"'7k):
i.e. 0§ occurs whenever Of) occurs. Furthermore let the outcomes
Oﬁ)’ 02(;.)) R Ol(c;)
be mutually exclusive.
Let
01’8; (s=1,2),
occur if and only if none of
0;':)’ Og)) Tt 0;',:)
occur. _
We may wish to know the probablhty that at least j, of Oy, , On and

at least j2, j2 > 1, of O, On, - - - , Oxe OccuU.
From Theorem IX this probability is equal to

(85) POt R(li 1) + R(]-; 0))
where

k—j2 fazi1—1
R(l: 1) Z Z_ (— 1)”“2(]1 +n-—1; 1)

Gatve—g1— = 1;0)TGr + v, 52 + ve — 51— w),

and
k=i .
R1L,0 = 2 (=1"Gi+wn—1;»T0G + .
v1=712—11
From (63)
(k;i1try) (k—j1—v1;dat+va—i1—r1)
(86) T(jl + », jz + v, — jl - 1’1) =

11=1 o=l
Plgii,(Gi + v1552 + va — 51 — w)],
where, from (61)

it jatve
GoisGi vy fat—gi—w) = I] Oap II O,
v=1 va=g1 v+l

the subscripts

(87) Qp, Oz, * ) Qjj4y
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being the first subscripts of the 7,*" selection of j, + », events of second sub-
script 1 from

Oll’ 021, e ;Okly
and the subscripts
Q14+l ) Q4w +2y * ¢ ) Qjatrs

being the first subscripts of the 7,*"selection of j» + v; events of second subscript 2,
J1 + » of which are (87), from

It is easy to see that

r

itn X jztrs .
Plgoi(i+ vy fa+ v — s — vl = I1 {1 - Z_; PO - X P(of:,’,)}.

t==l y=g14+r1+1
Furthermore
(k;j1+vy)
) TGt = 3 PlaaGi+wl,
L3 Ll
where

r i1t .
Plauti + w1 = T {1 - %" P},
Substituting from (86) and (88) into (85) the desired probability is obtained.
It may be remarked that theorems which have the same relation to Theorems
VII, VIII, and IX that Theorems IV, V, and VI have to Theorems I, II, and
IIT may be obtained without much difficulty.
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