A PROBLEM IN LEAST SQUARES

By Jan K. WISNIEWSKI

§1. We are dealing with two variables, the observed values of which are
denoted z and y respectively. The pairs of observations are divided into r
groups, numbering n;, nz, - -+ n, pairs. Suppose in each group we determine a
regression equation of the following shape:

yi = a; + bz + - mz' 1)

where y; denotes the value of the ‘“‘dependent” variable obtained from the
regression equation, while y without any subscript denotes its observed value.
The r regression equations of type (‘1) are not assumed independent; on the
contrary, we postulate that

Zl:ye=ao+bo:c+---m' 2

be fulfilled identically in z; ag, by, - - - mg being predetermined numbers. This
leads to the following conditions:

;ai=00 ;bi=bo"';mc=mo- (3)
The magnitude to be minimized under the theory of least squares is now

Z= ;\sz.-[y—<a..+b.-x+ ---m;x')1’+2,{y—|:( —lf_ja.)

r—1 r—1 2 (4)
+<bo - zl:b.~>x+ (mo - zl:m.)x']}.
The normal equations derived from (4) are of the following shape:
r—1 r—1
na; + n,zl:a.- + b; ij + (;b;) (Z,x) 4oeemy 7
(5)

+(§m«)(2,x-) = iy = Y+ a0+ bo Do A e mo Doy

1
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> ": meaning a summation extended over the i-th group. As (1) is of the
s-th degree, we have (s + 1) (r — 1) parameters to determine and as many
equations, the problem thus being in theory solved.* As to the numerical
solution, Doolittle’s method or any other may be applied. We do not enter
at present the question, how much labor would the actual solution require.

Ezamples. Allen and Bowley in their book on “Family Expenditure”
(London, 1935) assume the expenditure on some defined item f to be a linear
function of the total expenditure e

f=ke+ec (6)

Evidently k= 1, Z ¢ = 0 (cfr. pp. 10-11). Another example I give in a
paper on seasonal variation, which appeared in ‘“Economic Studies” III
(Krakéw). Actual values y of a time series are assumed to be linear functions
of certain ‘“normal’’ values z

y=a-+bz )
a and b changing from month to month but constant from year to year. Then

da=02;b=12.

§2. Methods of solution in special cases. The generally recognized methods
of solving normal equations become extremely laborious as the produet (s 4 1)
(r — 1) grows large. As a matter of fact, the amount of computer’s work is
approximately proportional to the cube of the number of parameters to deter-
mine. Therefore short cuts seem to be indispensable. A most elegant one is
at our disposal in the special case' when the values of z in the several groups

* The remaining s + 1 parameters a, b, --- m are, of course, found from (3).
1 This seems to be realized in Allen and Bowley’s work.
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are identical, or, at least, the sums n;, p z, 3 - D.: 2™ are identical
in 7. Instead of (1) we shall write
yi=A; + BXi+ - MX, (8)

where X; , X;, --- X, are orthogonal polynomlals, i.e. such that 2XX; =0
if and only if 7 5% j. In general, X, = X + ap_t X"+ - af, the coefficients
being rational functions of n, > z, > ) DT

The conditions (3) can now be replaced by a set of equivalent ones, viz.

2 Ai= 4o 2 Bi=By-: 2 M= M. (9)
How the actual values of Ao, By, -+ M, are found, will be shown in the next

paragraph. The solution becomes now very easy, as the normal equations
for the determination of each set of r — 1 parameters are independent, i.e. we
can calculate the A’s separately, then the B’s etc., the order of solution being
of no importance. Moreover the shape of the normal equations permits of
considerable simplification of solution. Suppose we have to determine the
values. of the coefficients K, corresponding to X;. The normal equations are
now—after certain simplifications—

2Ki+ Ks + Ks + -+ K ,_I_ZX (i Xy — 22 Xwy) + Ko
h

Ki+2Ky +Ks+ - K,y = EX2 (Zzth Zthy) + Ko (10)

............................................................

Ki+ X%+ K+ --- 2K, 1 = Z 5 (Zr—l Xoy — Zr Xy) + Ko.

Adding these equations, dividing the sum by r and substracting the quotient
from the j-th equation, we get

p Xwy - 2 Xy _
Ki= S5 Z S ). 11)

The first member of the right hand side of (11) should be regarded as the
principal term: this is actually the value we would obtain for K;, were this
coefficient independent from the other K’s. The second member is a correction
term, the necessary amount of correction being distributed equally among the
several K’s. The simple solution given by (11) is only possible if the sum
> X: is the same for each group. From the definition of X, we see that it
is equivalent to saying that =, 2z, 22, --- 2;z™ be identical in 5. As
h increases to s, we come to the condition given at the beginning of this para-
graph.
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§3. If this condition is not fulfilled, we can, indeed, replace the power series
in z by orthogonal polynomials Xj.;, the second subscript being appended
in order to show that the values of the X polynomials are no more identical
for the several groups; these polynomials are now orthogonalized separately
within each group. But we are no more able to predetermine the values of
Ao, By, - -+ M,, as they depend on each other; this will be made clear a little
later. Therefore we have to resort to an approximation: the values of the
parameters will not be found from simultaneous equations, but successively,
step by step, beginning with those corresponding to the highest degree of the
independent variable. .

The values of ag, by, -+ mp are given. It is evident that my = M,. The
j-th normal equation is now:

M;> i Xt — Mo 2 Xow + @ M.-> (2. X2) = i Xey — 20 Xy, (12)

We see at once that

2
M = M; Zini +§i§a"iy - Ein/y. (13)

Inserting this into /12/ we get

ZX..y
EX ) 2 — M,
M 1 '7?/ .

: (14)
XX Zini zl:x Za X2

The second member of the right hand side of /14/ is again a correction term,
the necessary amount of correction being distributed in inverse proportion to
> X%,;. Now we determine the value of Lo, this coefficient corresponding
to s — 1, the second highest degree of z, and calculate the several L’s from
equations strictly analogous to (14) thus accomplishing the second step of our
work, and so on, down to the A’s. L, is found from the following equation:

=~ E laia(d) - M. (15)

To «,_; is now appended a bracketed <, this to stress its variation trom group
to group. We see from (15) that before the several M’s are calculated we are
not in a position to detérmine L,. On the other hand, if &)_; is the same for
all groups, the second member of the right hand side of (15) simply reduces
to a;s_1-mo and L, can be determined in advance, i.e. before calculating the
M’s. This is the case treated first (in §2). In any case, if no definite corre-
lation is to be expected between «;.1(¢) and M;, the approximative method
developed here should give very nearly correct results. The writer applied
this method of solution to the simple problem of seasonal variation mentioned
in §1 and found the results very satisfactory.



