ON THE CHI-SQUARE DISTRIBUTION FOR SMALL SAMPLES'
By PaurL G. HoeL

1. Introduction. The use of what is known as the x* distribution function
for testing goodness of fit involves two types of error. One arises from the fact
that the derivation of this function is based upon rough approximations, while
the other arises from using the integral of fhis continuous function in place of
summing the proper terms of a discrete set. Both of these errors become in-
creasingly important as the sample becomes small. The purpose of this paper
is to investigate the nature of this first type of error by finding a better approxi-
mation than the customary one to what might be called the exact continuous x”
distribution function.

The method employed is that of generating or characteristic functions, and
consists in expressing successively in expanded form the generating function of
the multinomial, the distribution function of the multinomial, the generating
function of x*, and the distribution function of x*. Only the first and second
order terms of this final distribution function are evaluated explicitly because
of the increasingly heavy algebra involved. By means of these second order
terms, the nature of the error involved in the use of the customary first order
approximation is investigated.

2. The Generating Function of the Multinomial. Consider k¥ + 1 cells
into which observations can fall, and let p; be the probability that an observa-
tion will fall in cell 2. If n observations are made, the probability that cell ¢
will contain «; of these observations is given by the multinomial

n! ay a «
P= —————pi'ps* .- gl

Ch!az! MR ¢ 9 |

k+1
where Z a; = n. The generating function of this multinomial can be writ-
=1

ten as’
k n
M =[pe" + - + pre* +pI" = [l + ;P.'(e“ - 1)] )

where a4 is chosen as the dependent variable and pi4, is written as p.

! Presented to the American Mathematical Society, April 9, 1938.
2 Cf. Darmois, Statistique Mathematique, pp. 237-242, for the methods used in this and
the next two paragraphs.
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Let z; = ¥ = "Pi  The generating function of the z; is obtained from that

V4D
of the a; by multiplying M by the proper factor to shift the origin to the mean

and then replacing ¢; by, say, u;/A/n to compensate for the change in scale.
Denoting this function by ¢,

2 Piu,
¢ = i=1vn [1 + Zp(eu.l\/— _ 1)]

=1

Consequently,
k k
loge = —\/n ;piui + n log [1 + Zl pi(e“”‘/; - I)J.

Since the range of the u; may be selected sufficiently small for convergence, the
logarithm on the right may be expanded in powers of the summation, which in
turn may be expanded in powers of the u;. Terms containing 1/7*? as a factor
will be homogeneous in the u; of degree ¢ + 2. Writing down only the terms
of order 1/n and lower, this double expansion gives

1 k
log ¢ = —[Z (s — pHui — 2 2 pipiuiuf]
2 Li=1 <7
1
[6 2. (v — 3p% + 2pDul — 5 Z (pip; — 2pipiuiy;

+ 2 Z ptpzplutu:ul] [ Zl (s — 71’? + 121), - 61),)11,

i<i<

(1) — 5 Z (p:p; — 6pip; + 6pip)uiy;
7]

Z (pip; — 2pip; — 2pip; + 6pipHuiu}

|<7

+ 2= (pipi;e — 3pipip)uiuu,
S
i<i<i

+6 2 Pipiplpmuiuiulum] + -

1<i<i<m

Hence ¢ can be written in the form

E (P'—P:)\h—z 2 pipjuiuj;

A A
(2) (P—C =1 i<7 ][1+;/“1;+—;2+...]’

where A, is the coefficient of 1/4/n in (1), A, is the sum of the coefficient of 1/n
and A}/2, ete.
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3. The Multinomial Distribution Function. If a distribution function can
be expressed as

@3) f<x1,---,xk)=fo—§a,af°+zﬁ,, o _ .

i,7=1 0T ax,

where f is of the form ¢e 220,,,,,,

function® can be written as

with | ¢;; | positive definite, then its generating

4) Fluy, ---,w) = Fo[l + Z a;u; + Z Biuiv; + ],

1,=1

where F, is the generating function of f, and is of the form e Zosining

lth | Qai; I
positive definite. Conversely,* if the generating function of a continuous dis-
tribution is of the form (4), then the distribution function can be expressed by
means of (3). This relaticnship may be applied to (2) since it can be shown to
be of the form (4).

The coefficients c;; of f, corresponding to ¢ can be determined by making use
of the fact that the moments of fy can be evaluated directly by integration or
indirectly by differentiation of ¢o. It is sufficient here to equate expressions
for second moments; thus

2 © hd
— - / f Z:T1Col a2 Ty e da.
ou, ou, u;=0 —o0 —o0
Now
" o papg, s =t
au, du, u,_o ps, s = .

The value of the integral is known® to be ¢, the reciprocal of the element c,,
in the determinant | ¢;; | . Hence

ot { p,p,, s#t
c
Ps — p, , §=1
But ¢.; can be obtained from c*, since it is given by the reciprocal of ¢**. Thus
cee = &'/ | ¢ |, where & denotes the cofactor of element ¢*’ in | ¢ | .

3 Darmois, loc. cit., p. 242.

4+ See, for example, S. Kullback, Annals of Mathematical Stetistics, vol. 5 (1934), pp.
263-307.

5 See, for example, Risser and Traynard, Les Principes de la Statistique Mathematique,
p. 226.
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PL— Pt —PiDe - —DiDk
] Pr—D: -0 —Pabs
c | = to. .
Pk—Plf
1—-1— 1 1
D1
1
_ k2 2 2 1_;; 1
= (=1)"pip: - - - D& .
-1
Dk

This determinant may be evaluated by subtracting the last column from each
of the others and then expanding by minors of the last row. Thus

k
1 - i
I¢| = k2 2 k i=21p _
¢ =(=1)"p1 - pi| (=1 e = 1Pz - -+ DiD,

k
since pi = 1 — p from probability considerations. To evaluate ¢*, delete

=1
row s and column £ in | ¢** | , then shift row ¢ to the last row and column s to the
last column. These shifts, together with the sign of the cofactor, change the
sign of the resulting expression; hence

1L e 1
4
1—-% 1
2 2 2
&t = —(—l)k“p—————‘pptp" g = P12 -+ Pis
1-1
Pk
1

provided s # . Since ¢ is merely | ¢** | after row s and column s have been
deleted, it may be evaluated exactly as was | ¢’ | . Thus

i 2 I—Ep.-

= (=) B PRy, dE iy (1 Zi),
(=1) o (-1) P R AU
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Combining these results, ¢,; = zl;for s # tand ¢, = % + l; and therefore

8
1 k
9 1+ T
fo = ce 2[‘“1 P p') 2 ;- I]]

By computing the necessary derivatives of f , the explicit form of f, given by
(3), can be obtained to the desired number of terms. Since such derivatives
contain f, as a factor, f may be written as

®) f=fo[1_7+__...],

where B; is obtained from A4; of (2) by replacing terms in the u; with the cor-
responding derivative of fy and then factoring out f, .

(5)

4. The Generating Function of x*. Let this function be denoted by

G(t)=[: /_m f0[1-_+—- --:ldxl...dxk.

k+1 _ 2 k4l 2 k

i=1 \/np, i=1 Pj i=1 p p i<i

consequently x* is, except for a factor of —3%, the quadratic form in fo. Ac-
cordingly, letting § = 1 — 2t,

Now

e fo = e e ™ = e
and hence
60 [" [T i BB an
—o0 —o0 - '\/;L n -

Letting z; = 2;4/6 and denoting the value of B; after this substitution by C;,

G'(t)=0_’k/ fo 1—\%1_4'%2—“' dz - - dzy,
—00 —o0 L n -

=g‘*’°[1+}1/ .../foczdzl...dqu-...],

since the terms involving odd powers of 1/4/n are of odd degree in the z; and
therefore vanish upon integration.

For the purposes of this paper only the integral which is the coefficient of 1/n
needs to be evaluated. Since the algebra involved in this evaluation is heavy
and the formulas become exceedingly long, only a few terms will be written out
explicitly to indicate the procedure followed.

@)
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From (1), (2), and (6) it is clear that only fourth and sixth order derivatives
of fo are needed. As examples

4 2

oh [D3—6D§(1+l>+3<1+1)],

oz; P D P > ) 3
% _ [D°—1504< +l)+45D§<1+1> —15(1+1)],
9z? P mi P D P m

1
where D; = 5[:0, + -+ (1 + g) i+ - +xk]. Following the procedure

indicated in (6) and (7), this integral becomes
/ / fo{2 i Z [p: — 7pi + 12p; — 6pi]

4 2 2
55 Gra) +oGa) ]
62 0 \p mi Y

+ (similar terms of degree 4 and lower in the D)

(8) 1 & 2 3 4 b 6
+ ; [p} — 6p} + 13p} — 12p! + 4pi]

6 4 2 2 3
[2‘ — 15122f<1~+l)+45l__)1<1+l) — 15<l+£):|
6 2 \p 6 \p P D

+ (similar terms of degree 6 and lower in the D;)} dz; - - - dz.

When 6 = 1, the integral reduces to that of foB2 , which in turn is the integral
of a linear combination of derivatives of fy. But the integral of such a deriva-
tive vanishes. As a result, if the integral of foD? has been computed directly,
that of oD} and then that of foD! can be found indirectly by equating the cor-
responding bracket to zero for § = 1. Similarly for the other terms of the above
integral. As examples

/ fondzl...dzk=l_+__,
— o ¥4
3

00

© © \ ) . ,
foDidzy ---de =3(=+=).
- - P P

Upon evaluating all such integrals, (8) reduces to

1, 1\Y1 :
p ; 4+ 12p? — 6p} <— -)(-—1)
;(p 7pi + 1290 — 6pD3(+ )
2
+ (similar terms all containing (% - 1) as a factor)
(9) k ) 3 3
1, 1\/1
E i — 6pl + 13pi — 12p} + 4p0) 15(5 + 5) (5 - 1)

/‘\\1

3
similar terms all containing <% — 1) as a factor).
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In order to interpret these results, it is necessary to condense these various
sums of probability expressions. If the terms are arranged in descending powers
of the p;, it will be discovered that certain combinations condense readily.
The condensation in each case lies in recognizing combinations like

k
Z}p3+4§p?m+6;pfﬁ+l2 Elp?pmz
g SpEg i<y

i<i<
k 4
+2 2 ppipiPm = (; ps>.

i<i<i<m

However, some of the terms resulting from multiplying by 1 /p: above cannot
be condensed in this fashion until they have been reduced to familiar sums by
using relationships of the following type:

1 1 x
iPil—+—)=@F-1 i)
pr<p¢+p~) ( );p

i<j ]

1 1 1
ipipl—+—+ =) =Gk — 2 iDi -
Z pP;pz(i y pz) ( )Z:_Pp;

i<i<i i<y

After all possible condensations have been made, (9) reduces to
1 11 2
- —1 gZ_—(k-;-4k+1)

0 i=1 P;
1 1 T 2
+ <6 - 1) ﬂ.[5 .~§=1:17.' — (3K* + 12k 4 5)].

As a result, the generating function of x* can be written as

Gt) = o7 4+ % (6710 _ gt %)

(10) + %2 (0—}(k+e) — 3¢+ + gy kD) _ o—ik)
+ (terms involving higher powers of 1/x),
1 k+1 1 1 k+1 1
where 8; = "8[25 - (K + 4k + 1)]anng = ﬂ[5 2 — — (3k*+ 12k + 5)].
=1 Py =1 Pf

5. The Distribution Function of x*. It is well known that 6% = (1 — 2¢)~*
is the generating function of what is commonly called the x* distribution func-
tion with k degrees of freedom. If this distribution function is denoted by
Fi(x”), then the distribution function corresponding to (10) can be written as

S
(1) Fi + % (Frys — 2Fiia + Fi) + ;E (Fiye — 3Fxps + 3Frpp — Fy)

+ (terms involving higher powers of 1/x).
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The customary test for goodness of fit involves the integral of Fi(x*) from
x to o, which has been tabled for values of x* and k. The form of (11) is such
that the integral of the term in 1 /n is easily evaluated by means of this same
table. However, for more accurate results and for theoretical reasons, it is
more elucidating to express these integrals in a more compact form. This is
accomplished by using familiar® expansions for the integral of Fi(x%). De-
noting the integral of the explicit terms of (11) by P, it is easy to show that

(12) P=H+%m&+mw,

where P is the customary tabled value for k degrees of freedom and

R s SRR
(13) e k2.4"‘ (’C + 2)
= . - .
Be= g X~ 2+ 0+ G+ 9+ 2)),

for k even, while for k odd both R; and R contain an additional factor of 2/
and have 1.3 ... (k 4 2) and 1.3 --. (k + 4) respectively for denominators.

6. Conclusions. In any given problem the second approximation P can be
calculated easily by means of either (11) or (12) and compared with the cus-
tomary first approximation P; . However, the magnitude of this correction
term is of primary interest when x* is near a significance level and when one
or more of n, k, and p; is small because the aceuracy of P, is questioned in
those cases.

For x” at the .05 level and for 2 = k = 16, it is easily shown that 0 < R,
< .08 and —.08 < R, < 0. Clearly S, is positive, while .S; will be positive if
one or more of the p; is sufficiently small. Consequently, for those cases of
particular interest, the correction term is surprisingly small partly because
R, and R, are so small and partly because they are of opposite sign.

To illustrate this viewpoint consider the following numerical example. Let
n = 10) k = 4) X2 = 9488) D1 = p2: = 2'137) Ps = 25"0') Dy = 765) Ps = 9'8'0“ Then
S =223, 8, = 638, R, = .056, R, = —.027, Py = .05, and P = .045. The
correction term of —.005 is very small in spite of the fact that this example is an
extreme case to which the customary x’ test would not be applied.

As judged by the second order approximation obtained in this paper, the
actual error comitted by using the customary first approximation is much
smaller than the order of the neglected terms would indicate, and therefore
the range of applicability of P, is wider than has been supposed. However,
this investigation has considered only the error due to rough approximations
and leaves untouched the second type of error indicated in the introductory
paragraph.

OREGON STATE COLLEGE

¢ Risser and Traynard, loc. cit., p. 251.



