ON CONFIDENCE LIMITS AND SUFFICIENCY, WITH PARTICULAR
REFERENCE TO PARAMETERS OF LOCATION

By B. L. WELcH

1. Introduction. The solution of the problem of estimating an interval in
which a population parameter should lie, by means of what is now often termed
the fiducial type of argument, dates back to the early writers on the theory of
errors. However, owing to their lack of “Student’s’ z distribution, their state-
ments were usually only of an approximate character, and, furthermore, the
logical distinction between the fiducial method and the method of inverse proba-
bility was never clearly drawn, before R. A. Fisher discussed the subject. It is
of interest to note how far “Student” himself went in this matter. In describing
the tables which he gave in his original paper he says:'

“The tables give the probability that the value of the mean, measured from
the mean of the population, in terms of the standard deviation of the sample,
will lie between — = and z. Thus, to take the tables for samples of six, the
probability of the mean of the population lying between — and once the standard
deviation of the sample is 0.9622 or the odds are about 24 to 1 that the mean
of the population lies between these limits. The probability is therefore 0.0378
that it is greater than once the standard deviation, and 0.0756 that it lies outside
-+ 1.0 times the standard deviation.”

It should be noted that “Student’s” zis (Z — 6)/ s where 6 is the true popula-
tion mean. His tables tell us that for n = 6, P(z < 1)* is equal to 0.9622.
Owing to the symmetry of the z distribution this is equivalent to saying that
P(z > —1)is 0.9622, i.e.

P{‘E = o _ 1} — 0.9622.

This may be transposed to read
L P{6 < z + s} = 0.9622

which is the statement I have italicized in the above extract, it being there under-
stood that the mean of the population is being measured from the mean of the
sample. “Student’ therefore makes here what is now called a fiducial state-
ment. In the next sentence he, in effect, attaches a probability to an interval
estimate for the population mean. In doing this “Student” was not conscious
of introducing any new principle, nor does he apply the method consistently

1 “Student’’ (1908). “The Probable Error of a Mean.”” Biometrika VI, p. 20.
2 P is used to denote the probability of the truth of the relation in the bracket following.

58

G?I
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%

=

The Annals of Mathematical Statistics. RINKGIS ®

www.jstor.org



ON CONFIDENCE LIMITS AND SUFFICIENCY 59

to other problems of estimation. For instance, in discussing the estimation
of the correlation coefficient p about the same time, he formulates the problem
in terms of inverse probability, although he was fully aware of the difficulties
involved in postulating an a prior: distribution for p.

In discussing the problem of interval estimation more generally, I shall adopt
some of the terminology used by J. Neyman! The sample observations
1, 2, - - - T, will be noted collectively by E (standing for the “event’ point
when the observations are represented as codrdinates in a space of n dimensions).
Then if ¢ is an unknown parameter, « a fixed probability, and F(E, 6, «) a func-
tion such that

@) P{F(E, 0,a) > 0} = a

we may obtain an interval estimate for 6 as follows. Let 6(E, a) denote the
set of values of 8 such that for any 6 in the set we have F(E, 6, ) > 0. Then
if we use the notation {6(E, &) C 6} to indicate that the set 6(E, «) contains or
“covers” the true parameter  we shall be able to rewrite (2)

3) P(E, a) C 6} =

We can then adopt the following rule to obtain an interval estimate for 6: (a) cal-
culate from the sample the set 8(E, «), (b) make the statement that 8(E, a)
covers 8. In adopting this rule we shall be right in the proportion « of cases.

There are, in general, an infinite number of ways in which we can start with
a statement of the type (2) to reach the statement of type (3). Neyman has
discussed methods of making the best choice between such statements. His
approach to this problem may be illustrated by the following example.

Suppose we have a random sample of # from a normal population with stand-
ard deviation ¢ and let

2_2(37—5:)2

M R )R

and w = range = largest £ — smallest .
Then we can find a constant b, such that

@ P{s- > ba} =a
g

and, turning this round, we obtain

(5) P {a < -bi} = a.

This means that, if we choose @ = .99 (say), then we can say that o is less than
s/b.ge and in 999, of cases we shall be correct in this statement.

3 J. Neyman (1937). “‘Outline of a theory of statistical estimation based on the classical
theory of probability.” Phil. Trans. Roy. Soc. A 236, pp. 333-380.
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Now similarly we can find ¢, such that

(6) P (1” > ca) =a
[

and reversing this

)] P (o' < QB) = a.

This statement is not inconsistent with (5). It means that, if we choose to base
our rule of estimation always on the range, then in 999, of cases we shall be
correct in saying that ¢ < w/cge . On the other hand, (5) relates to the conse-
quences of applying always a rule of estimation based on the standard deviation
of the sample. Both (5) and (7) are in themselves true statements, but we must
decide which of them is the better one to use. In certain circumstances speed
of calculation may be the determining factor, in which case (7) may be prefer-
able, but here we shall assume that the time spent on calculation is not im-
portant.

In making the statement that ¢ is less than some upper limit which is a func-
tion of the sample observations, we shall, in general, prefer that this upper
limit be placed as low as possible consistent with the chosen confidence co-
efficient «. We find, however, that it is not possible to say that, whatever the
sample obtained, s/b, will be less than w/c, or vice versa. We must, therefore,
approach the problem from another angle. If ¢’ is a value greater than the true
standard deviation ¢ we can theoretically evaluate the probability that ¢’ < s/bs,
and similarly the probability that ¢’ < w/c.. We may now express our general
desire to place the upper confidence limit for ¢ as low as possible in a more con-
crete form. Wemay ask that the probability that ¢’ is less than this limit should
be as small as possible. We find in the present problem that, whatever ¢’ > o,
we should include ¢’ in the interval from 0 to s/b, less frequently than we should
in an interval based on any other statistic. This constitutes an argument for
using s rather than any other statistic such as w.

In general, Neyman makes all problems of choosing between alternative
procedures of interval estimation depend on the probability that the intervals
include values of the parameter different from the true value, as well as on the
probability of them containing the true value. This principle of choice does,
I think, appear reasonable, although its application is not, of course, so straight-
forward when statistics with properties of sufficiency similar to those of s do
not exist. It is then necessary to introduce other conditions into the formula-
tion of the problem. I intend to discuss elsewhere ways in which this has
been done.

To summarize, we may say: (a) we can make many true statements of the
type (3); and (b) if we can agree on certain further properties which thesestate-
ments should possess, we can choose which is the best statement of this type to
adopt as our general rule for interval estimation. There are certain differences
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between this approach and that of R. A. Fisher, whose attitude is expressed
clearly in his contribution to the discussion following Neyman’s paper* “On the
two different aspects of the representative method.” Fisher says there that:
“In particular he would apply the fiducial method, or rather would claim unique
validity for its results, only in those cases for which the problem of estimation
proper had been completely solved, i.e. either when there existed a statistic of
the kind called sufficient, which in itself contained the whole of the information
supplied by the data, or when, though there was no sufficient statistic, yet the
whole of the information could be utilized in the form of ancillary information.”
Thus it appears that when sufficient statistics do not exist, excepting in those
further cases where Fisher claims that the problem of estimation has been com-
pletely solved, he would definitely discourage the use of the fiducial argument
at all. Neyman, on the other hand, would allow the attempt to obtain interval
estimates on the lines described above. Where sufficient statistics do exist,
the two approaches do not lead to any final disagreement. Neyman, using
results obtained in the Neyman-Pearson theory of testing hypotheses, is led to
criteria depending in a particular way on the joint probability law of the sample,
and these criteria are seen to involve the sample values only through statistics
which have been defined as sufficient. One may regard this fact in two ways:
(a) one may say that because a certain line of approach, which seems intuition-
ally sound, leads to the use of statistics which have been defined as sufficient,
therefore this definition of sufficiency is a good one, or (b) one may say that the
definition of sufficient statistics is fundamental, and that any method of approach
which leads to their use has thereby obtained some extra support.

There remains the case alluded to above, where the joint probability law of
the sample does not depend on the unknown parameter 8 by way of one statistic
only, but where nevertheless it has been said that the problem of estimation
has been completely solved. This case will be discussed in the next section.

2. Interval Estimates of Location. R. A. Fisher has given, as a particular
example, a case where the unknown parameter is one of location, so that we can
write

p|6) = ¢(z — 0).
Now if we have a sample of n from this distribution, the (n — 1) differences
between successive observations when arranged in order of magnitude will have
a joint distribution independent of 6. Hence if we denote the sample by E,
and the (n — 1) differences jointly by C, we have

®) p(E|6) = p(T|C, 6)p(C)

where T is some statistic, such as the mean or median, whose distribution does
depend on 6 and may hence be taken as an estimate of 6. We may therefore

4J. Neyman (1934). J. R. Statist. Soc. 97, p. 617.
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read (8) as follows: the joint probability law of the sample is equal to the proba-
bility law of the estimate in samples of the same configuration, C, multiplied
by the probability of the configuration, the latter not depending on the un-
known . From this it has been deduced that all the information respecting 6
provided by the sample is given by referring T to the distribution p(T | C, 6).
Fisher,’ for instance, says that “in interpreting our estimate (we) may take as its
sampling distribution that appropriate to only those samples which have the
actual configuration observed.” Later in the same context he remarks that in
general, when 6 is a parameter of any type whatever, and not necessarily one of
location or scaling, if something can be found “corresponding with the con-
figuration of the sample in the simple case discussed above, ... one of the
primary problems of uncertain inference will have reached its complete solution.
If not, there must remain some further puzzles to unravel.”

It is clear, therefore, that more has been claimed for this method than that it is
practically useful, or that it yields the best results possible in large samples, or
that it yields results highly approximating the best possible in small samples.
There is an emphasis here on completeness that leads one to suppose that all
problems of estimation and testing hypotheses may be answered to the best
advantage by considering only the distribution of an estimate in samples of the
same configuration, the estimate thus attaining properties analogous to those
of a sufficient statistic. That this supposition is not true may be seen by con-
sidering the following simple example. This example concerns the simplest
situation that one deals with in the theory of testing statistical hypotheses.
Its relevance to the problem of interval estimation will, however, not be difficult
to see. . .

Suppose that we have a sample from a population involving only a parameter
of location 6, and that we wish to test whether 8 is equal to 6, (say), and that
besides 6 there is only one value 6, (say) which it is possible for 8 to take. Sup-
pose we require to set up a statistical test which will reject the hypothesis
6 = 6, in only a small proportion e of cases, when it is true. Many such tests
are possible, and it is natural to choose from them that test which will lead most
frequently to the rejection of the hypothesis that § = 6, when the single alterna-
tive @ = 0, is true. Neyman and Pearson® have shown that the best test from
this viewpoint is provided by the criterion

_ p(E|[6)
® 7= b Ew)

This criterion must be referred to its distribution in all samples when 8 = 6, .
We must therefore choose a constant J, such that

(10) P(J > J|0=06) =e

5 Fisher, R. A. (1936). ‘‘Uncertain Inference.” Proc. Amer. Acad. Arts and Sciences,

71, No. 4, p. 257. “
6 J. Neyman and E. S. Pearson (1932). ‘‘On the problem of the most efficient tests of

statistical hypotheses.”” Phil. Trans. Roy. Soc. A 231, p. 300.
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and reject the hypothesis that § = 6, when J > J.. This is known to be the
best test in these circumstances, and we may demand that any other procedure
which claims to use the data exhaustively should be equivalent toit. Now if we
decide to use only the distribution of the statistic 7 in samples of the same
configuration, we are led to take as the most powerful test based on 7' | C one
which would reject the hypothesis that § = 6, when the ratio of p(T | C, 6.) to
p(T | C, 6,) exceeds a certain value. Now by (8) this ratio is exactly the criterion
J of (9) above. There is, however, this difference, that J has now to be referred
to its distribution in samples with the same configuration C as that observed.
We shall therefore have to choose J.(C) such that

(11) P(J > J{0)|C, 8} = e

A test, then, which rejects the hypothesis that § = 6, when J > J(C) will
be such that it is the most powerful possible with respect to the alternative
6 = 6, based on samples with the same configuration. However, in actual
sampling from a population, we derive samples with all configurations, and the
real power of the test will therefore be measured by

@ P >IOla) = [ P> 0O1¢ alpQ) e
7

This quantity cannot be greater, and will in general be less, than the power
of the other test, viz. P(J > J. | 6,). (If J.(C) is the same for all C, and there-
fore equal to J. , the powers will be equal. This will be the case when there is a
sufficient statistic for .) We must therefore conclude that, in relation to this
simple problem at least, 4 method which takes account only of distributions in
samples with the same configuration will not use the data to the best advantage.

Of course the type of problem to be solved is usually not so straightforward
as the present one. There will'usually be more than one value of § alternative
to 6, and no uniformly most powerful test will, in general, exist. It is legiti-
mate, however, to consider the above example, because any procedure claiming
properties of sufficiency should be able to deal with it in the best possible way.

An example may make the above points clearer, and will show their relevance
to the problem of interval estimation. Consider a rectangular distribution
with mean 6, and range from (8 — %) to (6 + %). Let z; and z be a sample of 2
from this population, and suppose we require confidence limits for 6 such that
the chance of them enclosing 6 is «.

If we represent z; and x, as codrdinates of a point with respect to rectangular
axes, the joint probability distribution is constant over a square centered at the
point (6, ). This is shown by ABCD in Fig. 1. We have .

p—%<%<o+%
(13) p(xl, xz)dxldxz = dxldxz
0—3<z2<04 3.

7 Power is used throughout in the Neyman-Pearson sense, i.e. to denote the chance of a
test rejecting a hypothesis when a given alternative is actually true.
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If we write 21 = 3(21 + 2,); 22 = 3(x1 — 72), 22 will represent the configuration
of the sample, and 2z, may be taken as the estimate, T, of 8 in our discussion
above. We can then show that

(14) (21, 22)dz1dzs = 2dz1dzs,
(15) P(ea)dzs = 2{1 — 2|z |}dzes .- —F <2 <},
and

dz

(16) p(e1|ze)dey = -3tz <u<0+3— |2l

1-2]z|
That these are the correct limits for 2, and 2; may be seen by reference to Fig. 1,
noting that z; and 2 are constant along lines parallel to the respective diagonals

BD and AC of the square.

—
> 0r4,6+4
\
%, \ \ %,
weoN
=\ !
A B

X, Xy
F1a. 1 Fic. 2

First let us confine ourselves to samples with the same configuration z, .
Then, from (16), we can say that

17 Plo —a} —|lz]|) <a <0+ oG —|2]|)} =«

This statement is true for given z; , and will be a fortior: true when this restriction
is removed. It is equivalent to saying that the chance of a point falling into
the shaded area in Fig. 1 is (1 — «), where a denotes the proportion of the
diagonal AC lying in the non-shaded area.® Confidence limits for 6 are then
obtained by transposing (17), giving

(18) P{Zl—a(%—|22‘)<0<21+a(%—l22‘)}=(x.

1
8 We are assuming that confidence limits are required such that the chance is (é - g)

1 o s
of 6 being above the upper limit, and <§ — 3) of it being below the lower limit.



ON CONFIDENCE LIMITS AND SUFFICIENCY 65

That this is not the best way of constructing confidence limits is seen as follows.
Let us denote the lesser of z; and z: by 2., and the greater by 6. Then if we
consider the possible values of z. and z¢ which will satisfy simultaneously the
inequalities

1
0—%<$L<0+%—'/‘/§—g

9 — %+ %—g<xa<0+%

(19)

we see that they lie in the non-shaded area of the square ABCD in Fig. 2 where

the sides of the shaded squares are 1/ % - g. The chance of the inequalities
holding simultaneously is therefore «. Further we see that these inequalities

can be transposed to read

(xa—%<0<x1,+% When(:cg—xz,)>/‘/%_.g
1 1

k when(xa—xL)<,‘/%—g

and therefore we can take these to define our confidence limits for 6.

The intervals defined by the confidence limits in (18) and (20) are equivalent
in the sense that each covers the true value of 6 in a proportion « of cases. To
decide which is the better rule of interval estimation we shall follow Neyman,
and consider how often the intervals cover values other than the true 4. In
particular let (8 + A) be any other value, and consider the expressions P; and
P; where

(21) P1=P{z1—a(%—lz2l)<(0+A)<z1+a(%—lz2l)
and P, is the probability that one or another of the following inequalities holds

<@+A) <z.+ % when (¢ — 1) >

[

20

(22) <xL—%+V%—g<(0+A)<xa+%—1/ —g

when (z¢ — z1) <

ﬁ

_¢
2

[ TR

[T
NIR

Now (21) can be written

23) Pi=P{0+8) —al} —|2])<a<(@+8)+aG — |2}
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Referring to Fig. 1 we see that we have to evaluate the chance of the sample
falling into a lozenge-shaped area like the unshaded area in ABCD, but moved
bodily along the diagonal AC to such a position as is indicated by the dotted
lines. Difficulties are introduced by the discontinuities, but we can show that
for A positive

(P1=a when A =0

4o/’ 1l a
. <[l —= =
1—a? 0SA"'<2 2)

(24) 1 |« 2A® 1 «a 1l «
P‘"(2'+§)—2A+m"'<é"2‘)5A5(é+é>

1 o
= > — —
P,=0 A.__.<2+2>

P,

\

with similar expressions for A negative. The graph of P; against A is shown
in Fig. 3, a for convenience being taken = 0.92. From it we can read off the
probability of the confidence interval covering (6 4+ A), where 6 is the true value

of the parameter.
Similar calculations may be made for P,. Without going into details, it is

seen that

(Pz =a when A =

P2=a—2A(1~—4/%—(25) 0<A<
(25) 1 a 2 /1 a
A -

P2=0

TR
I
0, R

=
|
IR NI+
|
NIR

[)
[

\

" P, is plotted against A in Fig. 3. It is seen that, whatever value of A we take,
the chance of (§ 4+ A) being included in the confidence interval, is less for the
second method of estimation than it is for the method based on the distribution
of 21| z2.° This circumstance would, I think, contradict the view that the latter
method was deriving the utmost from the sample. Whether the method is
still a good one, though not necessarily the best, is not a question at issue in the
present paper. The curves in Fig. 3 are very close together, and we are led to
expect this by the fact that (12) is the weighted mean of the powers within the
separate configurations, the weights being the probabilities p(C) of the con-
figurations. I am only concerned to show that certain methods, for which

¢ It will be noted that, when inverted, the curves of Fig. (iii) represent the power func-
tions of tests for which the regions of rejection are those in figures (i) and (ii) respectively,
the test being whether the parameter has the specified value 6, and different alternative
hypotheses being represented by (6 + A).
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properties analogous to those of sufficiency have been claimed, do not satisfy
conditions which I think they should, if these claims are to be upheld.

3. Fiducial Distributions. In the first section of this paper I discussed certain
points of difference between the approaches to the problem of interval estimation
made by R. A. Fisher on the one hand and J. Neyman and E. S. Pearson on the
other. The differences are not, perhaps, of the same magnitude as those between
all these writers and the protagonists of inverse probability, and the results
reached are so often the same that the reader may be excused for being some-
what impatient with what appear to be rather fine distinctions. However,
as was seén in the last section, the approaches do not always yield exactly the

Fic. 3

same final results, and therefore I think it may be profitable to discuss them
still further.

Closely connected with Fisher’s desire to restrict the use of the fiducial method
to situations where statistics exist which possess some property of sufficiency,
is his introduction of the concept of a fiducial distribution for the unknown
parameter. One can talk about the fiducial distribution for a parameter only
if it is a unique distribution. Neyman, however, never makes use of fiducial
distributions, and would, I think, claim that any valid results reached with the
concept can equally well be reached without it. Where the results are the same
there is room for two opinions on this matter. Some writers find it convenient
to think in terms of fiducial distributions, and others prefer always to carry
forward their reasoning as far as possible in terms of direct probability state-
ments about the observational values, before transposing them to obtain con-
fidence or fiducial limits for the parameters.
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Greater objection can be made to the use of simultaneous fiducial distributions
of several parameters. For instance, in the case of the normal distribution
with parameters u and o, a simultaneous fiducial distribution has been defined
in the following way.® Starting with the fact that the joint distribution of

~ (= 2
n = \/n(t'—u) and g = :21)8

1
%"P(%)r(’i}l)

Z and s are treated formally as fixed, and ¢; and ¢, are transformed to x and o,
treated formally as variables. This gives

1 Vi St 2 {(n - 1)82}*“—” ddo

2 —
¢ Mg I ¢§(n ¥ depy depy )

df =

(26) df =

[
o

2T (3T (Zl’_.;,_l) o o

This distribution would be useful if it were legitimate to integrate it out to obtain
a fiducial distribution for any function g(u, o) say, of p and s. However, as for
instance Bartlett has pointed out, this is not necessarily permissible. It seems
to me therefore, that distributions defined as in (26) should be dispensed with
entirely, for their very form encourages the belief that they can be integrated
out at will. That this belief is still held is illustrated by a recent paper by
Miss D. M. Starkey" concerned with the difference between the means of normal
populations where the standard deviations are not assumed equal. This is the
original problem to which Fisher” applied a method equivalent to integrating
out the joint fiducial distribution of the two population means. Bartlett™
raised an objection to this method of treatment, and I have also discussed the
matter further.® Miss Starkey proceeds from the assumption that Fisher’s
method is sound.

The concept of the fiducial distribution has also been used in those problems
of location and scaling, which have been treated by the procedure discussed
above, of considering distributions in samples with the same configuration.
Indeed it is one of the attractions of this procedure that we are led to distribu-

10 R, A. Fisher, (1933). ‘“The fiducial argument in statistical inference.”” Ann. Eugen.
VI, p. 395.

11 Dajsy M. Starkey (1937). ‘‘A test of the significance of the difference between means
of samples from two normal, populations without assuming equal variances.” Ann. Math.
Stat. Vol. IX. No. 3, pp. 201-213.

12 R. A. Fisher (1935). loc. cit.

13 M. S. Bartlett (1936). ““The information available in small samples.”” Proc. Camb.
Phil. Soc. 32, pp. 560-566.

14 B, L. Welch (1937). ““The significance of the difference between two means when the
population variances are unequal.”” Biometrika, XXIX, p. 358.
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tions with, so to speak, one degree of freedom, so that the fiducial method may be
safely applied. However, although probability statements based on such a
fiducial method are here quite valid, I do not think that such statements can
claim a unique validity. As I have shown in the previous section, there is no
necessity to confine oneself to sampling within a configuration in order to obtain
interval estimates for parameters, and we may fare better by not so confining
ourselves, even if we have to dispense with the fiducial distribution.

4. Summary. Certain points which arise in the problem of estimating an
interval in which a population parameter should lie have been discussed. In
the second section it has been shown that in estimating location parameters
it is not sufficient to consider the distribution of estimates in samples of the
same configuration, meaning by sufficient that the sample is thereby utilized
in the best possible way.
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