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A NOTE ON NEYMAN’S THEORY OF STATISTICAL ESTIMATION'

By Soromon KuLLBACK

In this note we shall examine a section of a recent paper by Neyman' dealing
with statistical estimation. Consider the following quotation from thatsection®
which deals with the statement of the problem:

“Consider the variables [z;, 22, - -, 2,] and assume that the form of the
probability law [p(z1, -+, 2, | 61, 62, - - -, 8:)] is known, that it involves the
parameters 6, 0;, - - - , 6; which are constant (not random variables), and that

the numerical values of these parameters are unknown. It is desired to estimate
one of these parameters, say 6; . By this I shall mean that it is desired to define
two functions 6(¥) and §(E) < 8(¥), determined and single valued at any point
E of the sample space, such that if E’ is the sample point determined by observa-
tion, we can (1) calculate the corresponding values of §(E’) and 8(E’) and (2)
state that the true value of 6, , say 07, is contained within the limits

9(E’) < 6 < (B (18)

this statement having some intelligible justification on the ground of the theory
of probability.

1 Specifically we refer to J. Neyman ‘“Outline of a Theory of Statistical Estimation Based
on the Classical Theory of Probability,”” Phil. Trans. Roy. Soc., vol. A236 (1937), pp.
333-380.

2 J. Neyman, loc. cit., p. 347. The material in brackets are slight alterations of the
original text in order that the quotation do not refer to previous matter in the original

paper.
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This point requires to be made more precise. Following the routine of thought
established under the influence of the Bayes Theorem, we could ask that, given
the sample point E’, the probability of 63 , falling within the limits (18) should be
large, say o = 0.99, etc.. If we expressed this condition by the formula

P{O(E") < 6} < 8(E") | E'} = a (19)

we see at once that it contradicts the assumption that 6{ is constant. In fact,
on this assumption, whatever the fixed point E’ and the values (E’) and 8(E’),
the only values the probability (19) may possess are zero and unity. For this
reason we shall drop the specification of the problem as given by the condition
(19).”

We believe that the following approach to the problem, emphasizes to a greater
extent the fact that if the practical statistician follows the steps recommended
as a result of Neyman’s solution, then ‘in the long run he will be correct in about
100a percent of all cases’.

Let us return again to the condition (19) of the quotation, and write

1) =(E) = P{4(E) < 61 < (E) | E}

where of course 7(E) = zero or unity according as the true value of 6, say 67
does not or does satisfy the inequality

)] 0(E) < 6, < B(E)

We may however calculate the average value of =(E) i.e., the percentage of cases
in which in the long run the statistician will be correct.® In accordance with
the definition of an average

3) @ = [ < EpE|6, 6, - ,0) drrdaa - dan

R
where the region R is the entire sample space. If we let R, be that portion of the
sample space for which (2) is satisfied, then since n(E) = 1 if E falls in R, and
zero otherwise

(4) W(E) = L p(Elogy 021 ttt ol)dxldx2 b dxn

Thus, if we want our rule to lead to a correct statement in 100« percent of cases
in the long run, we must look for two functions §(E) and 8(E) such that for the
corresponding region R,

(5) ‘x(E) = f p(Elog,oz, ---,Oz)dxldxz---dx,.=a
Ry

holds good whatever the value 6} of 6, and whatever the values of the other
parameters 6z, 03, -- - , 8, involved in the probability law of the X’s may be.

31 Cf. A. Werteimer, ‘‘A Note on Confidence Intervals and Inverse Probability,’”’ Annals
Math. Statistics, Vol. X (1939), pp. 74ff.
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If we apply to the preceding the calculus of probability in accordance with-
Neyman," we find that (5) may be written as
6) x(E) = P{9(E) < 6, S H(E) | &) = @

which, with the conditions stated for (5) is identical with formula (20) on page
348 of Neyman’s paper.

THE GEORGE WASHINGTON UNIVERSITY
WasHINGTON, D. C.

¢ J. Neyman loc. cit. pp. 333-343.

A NOTE ON A PRIORI INFORMATION

By C. EISENHART

A survey of recent literature on mathematical statistics is sufficient to reveal
the fact that in approaching certain types of problems some writers assume
more information known a priori than do other writers. Indeed, it soon becomes
evident that great care is necessary in wording (and in reading) propositions in
mathematical statistics. Furthermore, propositions which are true and power-
ful when certain information is known a priori may become either useless or
irrelevant according as more, or less, information is available a priori. Once
this situation is appreciated some apparent contradictions are resolved, and
certain exceptional examples can “be reasonably regarded as bearing out the
principle to which formally they are anomalous.”

So far as I know it was Bartlett [1, p. 271] who first clearly pointed out how a
slight change in the amount of information known a priori can greatly alter
the complexion of a problem. He was indebted to Neyman and Pearson
[5, p. 122] for his problem, which was to develop a test of the statistical hypothe-
sis, Ho , that 8 = Bo and v = ¥ for a random sample from the distribution

Be“ﬁ(z—'r) forz >y

® pla) = [0 forz < .

If (1) expresses all the information (about the distribution of z) that is to be
considered as known a priori, any value of 8 > 0 and any finite value of vy
being admissible, then it follows immediately from a result of R. A. Fisher’s
[2, p. 295] that no uniformly most powerful test, in the sense of Neyman and
Pearson [4; 5, p. 115), can exist for Ho, since Ho involves the simultaneous
testing of two unrelated parameters.’

1 Since Fisher’s wording is important it will be well to quote him here: ‘It is evident,
at once, that such a system [of maximum likelihood relations needed to insure the existence
of a uniformly most powerful test] is only possible when the class of hypotheses considered



