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On the Calculation, of the Probability Integral on Non-Central ¢ and an Appli-
cation. C. C. Craig, University of Michigan.

It seems not to have been noted that the probability integral for non-central ¢ can be
calculated by means of an infinite series in incomplete g-functions which converges rapidly
for small samples. The application here considered is to a test based on the randomization
principle which is the subject of E. J. G. Pitman’s paper: Significance tests which may be
applied to samples from any populations (Roy. Stat. Soc. Jour., Vol. 4 (1937), pp. 119-130).
In case the samples come from normal populations with equal variance but with unequal
means, the chance that the hypothesis of equal population means will be accepted on this
test is given by this probability integral which is evaluated in some illustrative numerical
examples.

On Some New Results in the Sampling of Dlscrete Random Variables. WiL-
L1AM G. Mapow, Bureau of the Census.

Many statistical tables may be regarded as the result of subsampling finite populations
classified into n X s X .- tables. The main aim of this paper is to derive the associated
statistical theory including both the finite and limiting distributions. After evaluating
the fundamental distributions and the moments it is shown that under certain conditions,
the limiting distribution is multinomial, while under other conditions the limiting distribu-
tion is multivariate normal. These results are then applied to determine the adequate size
of sample, and the sampling proportions from various strata.

On the Use of Inverse Probability in Sample Inspection. W. Epwarps Dem-
NG and WiLLiam G. Mapow, Bureau of the Census.

The theory of inspection by sampling is abstractly equivalent to one part of the theory
of subsampling. The theory of subsampling finite populations is considered in this paper
in ordenr to investigate the differences that occur when the methods of fiducial inference and
inverse probability are used, particularly in regard to determining the adequate size of
sample. In sample inspection, the prior distribution of failures is almost always known,
at least approximately. = In using any system of sample inspection, a number of failures will
pass undetected. On the basis of certain prior distributions of failures, distributions are
derived for the number and percent of failures remaining after each of several different
possible systems of sample inspection has been applied. Formulas giving the cost of partial
inspection are used together with these distributions in order to determine methods of
sample inspection having various desired properties.

On a Convergent Iterative Procedure for Adjusting a Sample Frequency Table
When Some of the Marginal Totals are Known. Freperick F. STEPHAN,
“Cornell University and W. Epwarps DeEmiNG, Bureau of the Census.
The 5 per cent sample taken with the 1940 Population Census presents an interesting
problem of estimation in which the estimates are connected by equations of condition.
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These equations arise from the fact that certain sums of estimates derived from the sample
should equal the corresponding frequencies derived from the tabulations of the census
enumeration, i.e. the distribution of each of several variables may be known but their
joint distribution may only be estimated from a cross tabulation of the data furnished by
the sample. The adjustment of the sample estimates is accomplished by the principle of
least squares and an outline of the various types of conditions for two and three variables
is presented. The solution of the normal and condition equations is tedious when hundreds
of sets of estimates must be adjusted but a simple iterative procedure is available (see
Annals of Math. Stat., Vol. 11 (1940), pp. 427-444).

The Return Period of Flood Flows. E. J. GumBEeL, New School for Social
Research (N. Y.)

For any statistical variable the return period is defined as the mean number of trials
necessary in order that a certain value of the variable or a greater one returns. The return
period is a theoretical statistical function such as the distribution or the probability. In
hydraulics the corresponding observed values are the recurrence and exceedance intervals.

The main thesis is that the flood flows are the largest values of flows which have to be con-
sidered as unlimited variables. The method of return periods applied to the largest values
leads without further assumptions to a formula which gives the return period f(x) of a flood
superior to z, and at the same time the most probable flood to be reached not at a certain
time, but within a certain period. This formula contains only two constants, which are
linear functions of the mean annual flood and the standard deviation. Fuller’s formula
turns out to be an asymptotic expression of my formula.

This method applied to the Connecticut, Columbia, Merrimack, Cumberland, Tennessee
and Mississippi rivers shows a very good fit between theory and observation, superior to
the methods applied heretofore.

A Note on the Power of the Sign Test. W. M. StewarT, University of Wis-
consin.

Let us consider a set of N non-zero differences, of which z are positive and N — z are
negative; and suppose that the hypothesis tested, Ho, implies in independent sampling
that z will be distributed about an expected value of N/2 in accordance with the binomial
G 4 3)¥. As a quick test of Ho, we may choose to test the hypothesis ho that x has the
above probability distribution. Defining r to be the smaller of z and N — z, the test con-
gists in rejecting ko and therefore Ho whenever r < 7(e, N), where r(¢, N) is determined by
N and the significance level e.

In applying such a test it is of interest to know how frequently it will lead to a rejection
of H, when H, is false and the actual situation H implies that the probability law of x is
(g + p)¥, with p = }, thereby indicating an expectation of an unequal number of 4+ and —
differences. The probability of rejecting Ho when H;implying p = p. is true, is termed the
power of the test of H, relative to the alternative H: .

A table is given for the 59, significance level (e = .05) showing the minimum value of
N for which the power of the test relative to p = p1 exceeds 8 for values of g from .05 to .95
at intervals of .05; and for p; from .60 to .95 (and thereby for p, from .40 to .05) at intervals
of .05. The case of 8 > .99 is also considered for these values of p; .

A New Explanation of Non-Normal Dispersion. Hipa GEIRINGER, Bryn
Mawr College.

The starting point of the Lezis theory consists in this fact: It is to be expected, on the
average, that two expressions = and 2’ which can be computed from the results of m-n
" observations are equal, provided that the corresponding m-n chance variables z,, are
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n
equally and independently distributed. Let a, be the average a, = 1/n Z Z, and @ the av-

y=1

erage of thea, (u =1, .-+, m). Then
EZ(x;«v—a)2
Z,'_‘ 8" = L.
mn — 1 mn — 1 mn
E(an"a)2
o m __m %
E m—l82 m—1 m :

We see, however, that rows and columns ‘do not play the same role here because = depends
only on'the a,, the average valaes of the rows. If the observed value of = happens to be
larger (smaller) than the value of Z’, we speak of supernormal (subnormal) dispersion.
It is well known that supernormal dispersion can be explained by assuming that the m-n
theoretical populations are only equal ‘‘by rows’’ but not by columns (there are m different
distributions); in the same way one can explain the case of subnormal dispersion by admit-
ting that the distributions are equal by columns,” but not by rows.

Another explanation which may sometimes seem more plausible is the following: All
the m-n distributions are supposed to be equal, but we omit the assumption of mutual in-
dependence. Then one can prove that the supernormal or subnormal dispersion corresponds
respectively to an appropriately defined ‘“‘positive’’ or ‘“negative correlation.” The fact
that normal dispersion occurs rather rarely in social questions is then reflected by the idea
that social phenomena are in fact not independent of each other but are usually only as-
sumed so for the purpose of simplicity. In that way the more frequent occurrence of
supernormal dispersion likewise finds an adequate explanation.




