PROBABILITY AS MEASURE

By J. L. Doos
University of Illinors

The following pages outline a treatment of probability suitable for statisti-
cians and for mathematicians working in that field. No attempt will be made
to develop a theory of probability which does not use numbers for probabilities.
The theory will be developed in such a way that the classical proofs of proba-
bility theorems will need no change, although the reasoning used may have a
sounder mathematical basis. It will be seen that this mathematical basis is
highly technical, but that, as applied to simple problems, it becomes the set-up
used by every statistician. The formal and empirical aspects of probability
will be kept carefully separate. In this way, we hope to avoid the airy flights
of fancy which distinguish many probability discussions and which are irrelevant
to the problems actually encountered by either mathematician or statistician.

We shall identify as Problem I the problem of setting up a formal calculus to
deal with (probability) numbers. Within this discipline, once set up, the only
problems will be mathematical. The concepts involved will be ordinary mathe-
matical ones, constantly used in other fields. The words ‘probability,”
“independent,’”’ ete. will be given mathematical meanings, where they are used.

We shall identify as Problem II the problem of finding a translation of the
results of the formal calculus which makes them relevant to empirical practice.
Using this translation, experiments may suggest new mathematical theorems.
If so, the theorems must be stated in mathematical language, and their validity
will be independent of the experiments which suggested them. (Of course, if a
theorem, after translation into practical language, contradicts experience, the
contradiction will imean that the probability calculus, or the translation, is
inappropriate.)

The classical probability investigators did not separate Problems I and II
carefully, thinking of probability numbers as numbers corresponding to events
or to hypothetical truths, and always referring the numbers back to their
physical counterparts. The measure approach to the probability calculus has
put this approach into abstract form, and separated out the empirical elements,
thus removing all aspects of Problem II. We shall explain this approach first
in a simplified set-up, that which will be made to correspond (Problem II) to a
repeated experiment in which the results of the nth trial can be any integer z.
between 1 and N (inclusive), in which the experiments are independent of each
other, and performed under the same conditions. (The set-up will be applicable,
for example, to the repeated throwing of a die.)
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The measure approach treats this experiment as follows. Letw:(z;, 2, ---)
be any sequence of integers between 1 and N, inclusive. We consider w as a
point in an infinite dimensicnal space @. (Each point w may be considered as a
logically possible sequence of results of the given experiment, and this fact will
guide us in solving Problem II.) A measure function is defined on certain sets
of points of @ as follows. Let p,, ---, py be any numbers satisfying the
conditions

p;i20, j=21, p+-..-+pyv=1

(How these numbers are chosen in any particular problem will be explained
below. The method of choice is irrelevant to the mathematies, but is involved
in the solution of Problem II.) The set of all sequences beginning with x, =

is given measure p.. More generally, the measure of the set of all sequences
beginning with 2, = ay, --- , Z. = aa, is defined as Pa;-Pay * * * Pa, - In this
way, as can be shown,' a completely additive measure function is determined
on certain point sets of 2, on a field § of sets so large that all the usual® Lebesgue
measure and integration theory is applicable. This means that there is a col-
lection § of sets of points of @ such that if S;, S;, - - - are finitely or infinitely

many sets in the collection, their sum Z S., their intersection H S., and

their complements are also in the collectlon. Each set S in § has a definite
measure P(8),0 = P(S) < 1,and if S;, Sz, .- - are finitely or infinitely many
disjunct sets in §,

P(Si+ S+ ---)=P(8) + P(8) + ---

Problem II, the translation problem, is solved as follows. Each relevant
event is made to correspond to a point set of Q. A relevant event is a physical
concept—defined by imposing some set C of conditions on the results of the
experiments. The corresponding Q-set is the set of sequences (z1, 2, «-- )
satisfying the same set C of conditions, imposed on the z;. Thus the set of all
sequences beginning with 2, = a; , 2 = a3, is made to correspond to the event:
the result of the first experiment is oy , of the second is oz . As is to be expected,
the mathematical picture goes further than the real one. The “event’ I occurs
infinztely often in a sequence of trials has only conceptual significance, physically,
but the corresponding point set of Q: the set of all sequences (z;, 7z, - - - ) con-
taining infinitely many 1’s, is a perfectly definite point set whose measure can
be calculated in terms of p;, ---,py. (In fact it is easily seen that this
measure is 1 or 0, according as p; > 0 or p; = 0.) By “the probability of an
event’’ we shall mean the measure of the corresponding Q-set. As this measure
has been defined, the probability that the nth trial results in a number j is p;,
and the probability that one trial results in j, and another in k, is p;-ps .

1 Cf. A. Kolmogoroff, Ergebnisse der Mathematik, Vol. 2, No. 3, Grundbegriffe der Wahr-
scheinlichkeitsrechnung, where the most complete treatment of the approach to the proba-
bility calculus from the standpoint of measure is given.
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The justification of the above correspondence between events and Q-sets is
that certain mathematical theorems can be proved, filling out a picture on the
mathematical side which seems to be an approximation to reality, or rather an
abstraction of reality, close enough to the real picture to be helpful in presecribing
practical rules of statistical procedure. The following two theorems are im-
portant ones, from this point of view. These two theorems depend in no way
on observed facts. They are stated and proved in the customary language of
modern analysis.

TaeorEM A: Let j, be the number of the first » coordinates of the point
w:(z1, z2, - - - ) which are equal to j, where j is some integer (1 < j < N) which
will be kept fixed throughout the discussion. Then0 = j, < n, and j, varies from
point to point on Q:j, = j.(w) is a function of w, that is of the sequence (z,,xz, - - - ).
When n — o, j,/n has not a unique limit independent of the sequence
(1,22, - -+ ) under consideration. Infact if wis the point (k, &, - - - ),ja(w) =0
for all n, unless j = k; if w is the point (5, 7, - -+ ), Ju(w) = n for all n. Itis
simple to give examples of sequences w:(z1, 2, - - - ) for which j.(w) oscillates
without approaching a limit, as » — . But Theorem A (usually called the
strong law of large numbers) states that there is a set of sequences, i.e. an w-set S,
of measure 0, such that

1) lim

unless w is in S. In other words the sequences for which (1) is not true are
exceptional in the sense of measure theory. If a new choice {p;} of p/’s is made,
then if p;  p;, the new exceptional set includes all the sequences which were
not exceptional before, since the limit in (1) becomes p;. Thus S depends
essentially on p;. Theorem A is a generalization of Bernoulli’s classical theo-
rem which states in our language that the measure of the set of sequences
w: (71, 3, - -+ ) for which

|Jn@)/n — pi| > €

approaches 0, as n — «, for any positive e. Theorem A is stronger because it
states that there is actual convergence, whereas Bernoulli’s theorem only con-
cludes that there is a kind of convergence on the average.

Theorem A corresponds to certain observed facts, relating to the clustering
of “success ratios,” giving rise to empirical numbers p;. If the statistician
wishes to apply his calculus to a given experiment (Problem II), he sets p; = 5; .
There has been frequent discussion of the problem of determining the ;.
This discussion of the ; is sometimes held on so high a plane that the innocent
bystander may wonder to what purpose such abstract philosophic concepts could
possibly be put—besides that of stimulating further discussion on a still higher
plane. The principle purpose of this paper is to discuss Problem I, but a few
words on Problem IT might not be out of place here. Almost everyone who is
going to use probability numbers, the $;, for other than conversational purposes,

1
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derives them in the same way. There is a judicious mixture of experiments
with reason founded on theory and experience. Thus if a coin is tossed by an
experimenter who has examined the coin, and found that it had heads on one
side but not on both, that it seemed balanced, and that (as a confirming check)
tossing a hundred times gave around 50 heads, the experimenter would use %
as the probability of obtaining heads in his further reasoning. Of course there
is no logic compelling this. The experimenter may have been fooled. A coin
far out of balance may turn up 50 heads in 100 throws. But man must act,
and the above procedure has been found useful, which is all that is desired. In
many experiments, less reliance can be placed on a preliminary physical examina-
tion of the experimental conditions, and more must be placed on the actual
working out of the experiment, as in the analysis of machine products. In that
case, the actual results must be examined with great care, before attempting
to use the above mathematical set-up. It sometimes may even be possible to
change the experimental conditions to make the mathematics applicable.” In
all cases, such mathematical theorems as Theorem A and the following Theo-
rem -B give the basis for applying the formal apparatus to practice. Indeed,
the criterion of application includes the verification of special cases of the prac-
tical versions of Theorems A and B.

TaEOREM B: Let fu(21, -+, %) (n > 1) be any function of the indicated
variables, except that we supposef, only takeson thevalues0,1. Letw: (z,2s,:-*)
be a given point of Q. Let n’ be the number of the first n integers ¢ such that

fi@1, +-+ , i) = 1, and let j,, be the number of the first » integers 7 such that
fi@y, --+ ,xiq) = 1, and 2; = j. Then j, , n’ are functions of w:(2,,2s, - - ).
Iffy=fa= ... =1,jn =jan,n = n, where j, is as defined above. Suppose

that there is an Q-set S, of measure 0 such that n’ — «, as n — «, unlessw ¢ S.
Theorem B states that there is then an Q-set S’ of measure 0, such that if
w:(T1, 2, -+ )isnotin &,
o/
Y] lim ‘7—'&2 = p;.
n—ew N

(The set S’ will depend on the given functions f , f2, - - - and on the p;, but is
fixed, once these have been chosen.) This mathematical theorem corresponds
to certain observed facts (usually summarized by stating that no (successful)
system of play is possible). In fact, it states, in the language of practice, that
rejecting certain trials, using as a criterion of acceptance or rejection the results

of preceding trials, rejecting the ¢th trial if fi(z,, - - - , ;1) = 0, does not affect
the outcome of a game of chance, or, more precisely, does not affect the validity
of the physical fact corresponding to Theorem A. Iffi=fo=... =1, (1)

becomes (1). The hypothesis that n' — « as n — o unless w ¢ S, is made to
insure that infinitely many trials will be accepted. As an example of the

t Cf. W. A. Shewhart, Statistical Method from the Viewpoint of Quality Control, Wash-
ington, 1939.
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possible variety in the definition of the f;, we might define f; as 1 if 2, = N,
and f; = 0 otherwise, so trials are accepted only if the previous trial resulted in
the number N. Or much more complicated systems can easily be devised in
which the criterion of acceptance of the nth trial depends on a varying number
of the results of preceding trials. This theorem gives a mathematical counter-
part to the physical idea of the mutual independence of repeated trials.

To summarize, mathematically (Problem I) the study has been reduced to
that of the measure properties of Q. This can be considered independently of
any physical correspondence. The physical correspondence (Problem II) makes
any event € correspond to a point set E of Q, the “probability of €’ becomes
the measure of E. Thus “the probability that the result of the first experiment
is 3"’ becomes the measure of the set of sequences (1, 22, - - - ) beginning with
21 = 3. We have given no sharp definition of probability as a physical concept.
If the above mathematical set-up, after translation, using some set of p/’s,
seems to fit a given physical set-up, any event will be said to have as its proba-
bility, the measure of the corresponding Q-set. We have attempted to give no
intrinsic a priori definition of the probability of an event: such a definition is
quite unnecessary for our purposes. All that was required was a basis for pre-
scribing the usual statistical procedures, and we have described such a basis.

In the above example, there would have been no new difficulty introduced
if the z, were not restricted to integral values, but allowed to take on any
numerical values. The general point w:(z;, 23, - -+ ) of @ would now be any
sequence of real numbers. Instead of choosing the numbers p,, - .-, Py We
choose a “distribution function’” F(x), a monotone function with the following
properties:

lim F(z) = 0, hl_‘.'fx F(x) =1, F(xz — 0) = F(2).
Measure on 2 is defined as follows. The set of all sequences beginning with 2,
such that @ < z, < b is given measure F(b) — F(a). (The number F(b) is
called “the probability that z; < b.””) More generally, the measure of the set
of all sequences (z, Z2, --- ) beginning with “z;, .-+, ,, such that a; =<
z; <b;,j=1,...,nis defined as I;I [F(b;) — F(a;)]l. Thus if F(z) defines a

simple rectangular distribution: F(z) = Oforz < 0, F(z) = zfor0 = z £ 1,
F(z) = 1 for x > 1, Q-measure becomes (infinite dimensional) volume in the
(infinite dimensional) unit cube. : The correspondence (Problem II) between
events and point sets of Q is defined just as before. Sometimes it may be useful,
in considering experiments giving rise to pairs of numbers, to let each z. be a
pair of numbers so that @ becomes a sequence of points of a plane instead of a
sequence of points of a line. In all cases there are mathematical theorems
true of the resulting @ which guide us (Problem II) in deciding just how the
Q-measure is to be defined, that is, how F(z) is to be defined, in dealing with a
given practical problem. But the essential point is this. Once Q-measure has
been defined, no changes or further hypotheses are possible or necessary. All
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relevant probability questions are answerable. Thus consider a question of the
following type: if the experiments are grouped in some way,® with what proba-
bility will the groups have some given regularity property?* The question singles
out a set E of sequences of 2 and asks: what is the measure of E? The problem
may or may not be difficult mathematically,’ depending on the grouping, but
the original definition of measure on 2 needs no enlargement to answer it.

Technically, the mathematics has become the mathematics of a special type
of measure defined on a space of infinitely many dimensions. If, however there
is an integer » such that only at most » experiments are to be considered, we
need only consider the »-dimensional space of points (z;, ---,z,), defining
measure in this space in the same way as on Q. Thus if z, has the rectangular
distribution defined above, the measure in (z;, - - - , z,)-space becomes ordinary
v-dimensional volume in the unit cube. Perhaps the most common measure a
statistician considers is that in which the measure of an (z1, ---, z,)-set £
becomes ‘‘the probability that the point (z;, ---,2,) representing an inde-
pendent sample of » from a normal distribution of mean 0 and variance "
will lie in E:

0) P{E} = ¢ (20" f f et DIt g o da, .
E

This example makes it obvious that the statistician is always doing measure
theory, even though he may not state that fact explicitly. If the number of
experiments has no upper bound conceptually—mathematically when the num-
ber of dimensions » may increase without limit, as in Theorems A, B, it is much
more convenient to use the space €, in terms of which experiments with varying
numbers of trials can be considered simultaneously. The classical proofs of
probability theorems, such as Bernoulli’s theorem (the law of large numbers)
are perfectly correct. If the ‘“‘probability of an event” is interpreted as the
measure of a set, these proofs do not even need verbal changes. There can be
no question of the need for any axiomatic development beyond that necessary
for measure theory, and the probability calculus can lead to no contradiction,
unless the theory of measure is faulty.

It is customary for probability theorists to stop their discussions when the
present stage is reached, so that the beginnings of a formal calculus have been
constructed to deal with a repetition of independent experiments, conducted

3 A grouping is necessary, for example, when two players are playing a game in which
two out of three wins in the trials win a game. The trials are then grouped into successive
groups of two or three, depending on how they come out.

4 Continuing the preceding note, the question might be: will the ratio (games won by
player «)/(games played) approach a limit with probability 1, that is, for all of the original
sequences {r.} except possibly some forming a set of measure 0?

5 The answer to the question of the preceding notes is simple. If p is the probability
that player « wins a trial, the ratio in question approaches p? 4+ 3p*(1 — p), the probability
that « wins a game, with probability 1.
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under the same conditions. Perhaps this is because of the following widely held
syllogism : probability is something dealing with random events; random events
are events having no influence on each other; therefore.... Unfortunately
mathematicians and statisticians must deal with many problems involving de-
pendent probabilities, whose solutions require the most delicate and careful
applications of modern analysis. The rudimentary calculi which the outsiders
find esthetically or philosophically pleasing are usually either insufferably awk-
ward or completely insufficient for the needs of professionals. There is a strange
situation, which one observer has facetiously described somewhat as follows: it
is true with probability 1 that the technical workers in probability use the
measure approach, but that the writers on “probability in general’’ descendants
of Carlyle’s professor, do not consider this approach worth much more than a
passing remark.” The following pages outline how our previous treatment is
generalized to deal with problems in which it is desirable to have the distribution
of z; vary with j (so that physically the experiments are no longer the same),
and in which the z; do not have to correspond to the results of independent
experiments. Some attempt will also be made to show how the modern mathe-
matical theory of real functions is applied to the probability calculus.

Let z; = z;(w) be the jth coordinate of the point w:(x;, 22, --- ). Then as
the sequence w:(z,, 22, - - - ) varies, z; does also: z;(w) is a function of w. The
functions z,(w), Z2(w), - - - are functions defined on 2, an abstract space on which
a measure has been defined. Moreover Q-measure has been defined in sueh a
way that the Q-set for which z;(w) < K (j, K fixed) is an Q-set whose measure
has been defined. (This set is composed of all sequences (z,, 2, - - - ) whose
jth coordinate is <K, and the measure is F(K), using our last definition of
Q-measure.) In the terminology of measure theory, z;(w) is thus a measurable
function. The study of the measure relations of @, and this is the whole of our
probability calculus, can be considered, from this point of view, as the study of
the properties of a sequence of measurable functions, one with very special
properties, as we shall see, defined on some space. A measurable function
defined on © is usually called a chance variable, in the theory of probability.
(This terminology is somewhat dangerous, because it mixes Problems I and II.)
The whole apparatus of modern real variable theory is applicable to these
chance variables. Thus if f(w) is a chance variable (measurable function of w)
(physically, a funétion of the observations), it is customary to define a number
called its expectation. This number is simply the integral of f(w), with respect
to the given Q-measure. The fact that the expectation of the sum of two chance
variables is the sum of their expectations is simply the familiar theorem that the
integral of the sum of two functions is the sum of their integrals. Let S(j, K)
be the Q-set defined by the inequality z; < K. Up to now we have supposed

¢ This analysis, like every other probability statement, is only an approximation to
reality, but a fairly close one.
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that the measure of S(j, K) is independent of j, that is that the distribution of z;
is independent of j. We have also supposed that’

3) P{8(, K)) --- 8S(n, K,)} = P{8(1, K1)} --- P{S(n, K.)}
for any positive integer n, and numbers K, , ---, K,. That is, we have sup-
posed that z,(w), 72(w), - - - are mutually independent chance variables.! In

fact probability measure on © has been defined just to make the foregoing two
facts true. Mutual independence is a very strong hypothesis to impose on a
sequence of functions. In many probability problems (Markoff chains for
example), more general measures must be defined on ©. The sequence z:(w),
z2(w), - - - whose properties are those of Q-measure, is then no longer a sequence
of independent functions, and the distribution of z; can vary with j.

At this level, the study becomes the study of any sequence of measurable
functions, defined on some space of total measure 1. If f, g are given chance
variables, they may turn out to be independent. In that case the theorem that
the expectation of their product is the product of their expectations becomes,
when translated into mathematical language, the familiar theorem that

[[ 1@ dzay = [ 1) dz [ o(o) dv.

The mathematical theorems are not simply analogues of the probability theo-
rems—they themselves are those theorems. When stated mathematically, the
probability theorems need no proof: they need only recognition as standard
results.

Empirical needs suggest that certain functions called conditional probability
distributions, and conditional expectations, should be defined in a certain way.
This is possible, as a formal matter,” and the theorems then proved about these
functions gives them their usual meaning when translated into practical language.
These functions are extremely useful tools in dealing with mutually dependent
(that is not independent) chance variables.

The above approach is easily generalized to the stage needed in the study of
Brownian movements or of time series, in which, instead of the proper initial

7 P{S} was defined as the measure of the Q-set S.
8 The n chance variables fi(w), f2(w), -+ , fa(w) are said to be independent if for every
set of n numbers K, , ---, K, , the following equality is true.

P{fiw) <K;, j=1,---,n}= I;[P{ff(w) < Kj},

where P{ --- } denotes the Q-measure of the Q-set defined by the conditions in the braces.
Thus in the example of a normal distribution in v dimensions given above, z1, -+, 2»
are independent functions on the space of » dimensions, a fact which follows readily from
the fact that the »-dimensional density function is the product of » functions of the separate
variables.

9 Cf. Kolmogoroff, loc. cit.
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abstraction being a sequence {z,} of numbers, we have a one-parameter family
{z.} (t takes on all real values). The number z, may, for example, be thought
of as the z-coordinate of a particle at time ¢. There is no difference in principle
here: © is now the space of functions of ¢, instead of the space of sequences, that
is functions of . From the other point of view, instead of studying the proper-
ties of a sequence of measurable functions, it becomes necessary to study the
properties of a one-parameter family of measurable functions.



