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ON THE POWER FUNCTION OF THE ANALYSIS OF VARIANCE TEST'

By ABraAHAM WALD

Columbia University

It is known® that the general problem of the analysis of variance can be re-
duced by an orthogonal transformation to the following canonical form: Let the
variates 1, - ,¥Yp, 21, ***, 2, be independently and normally distributed
with a common unknown variance ¢*. The mean valuesof z , - - - , 2, are known
to be zero, and the mean values n1, ---, n, of the variates y;, --- , y, are
unknown. The canonical form of the analysis of variance test is the test of the
hypothesis that

(1) m=n=---=2=0 (r<p)

where a single observation is made on each of the variates y;, ---,y,,

21, y2n.
In the theory of the analysis of variance the test of the hypothesis (1) is

based on the critical region
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where the constant c is chosen so that the size of the critical region is equal to
the level of significance @ we wish to have. The critical region (2) is identical
with the critical region

L > ¢
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It is known that the power function of the critical region (3) depends only on
the single parameter

(4) T A= 2a.

Denote the power function of the critical region (3) by 8(\). P. L. Hsu has
proved® the following optimum property of the region (3): Let W be a critical
region which satisfies the following two conditions:

(a) The size of W 18 equal to the size of the region (3).

1 Presented at a joint meeting of the Institute of Mathematical Statistics and the Ameri-
can Mathematical Society in New York, December, 1941.

? See for instance P. C. Tang, “The power function of the analysis of variance tests,’”’
Stat. Res. Mem., Vol. 2, 1938.

3P. L. Hsu, ‘“Analysis of variance from the power function standpoint,’”’ Biometrika,

January, 1941.
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(b) The power function of W depends on the single parameter \.
Then B(\) < Bo(N) where B(N) denotes the power function of W.

Condition (b) is a serious restriction in Hsu’s result. In this paper we shall
prove an optimum property of 8o(A) where By(\) is compared with the power
function of any other critical region of size equal to that of (3).

For any given values 7,41, -+, np, o’ and A denote by S(n41, -+, np, 0’y \)
the sphere defined by the equations

B A=A m=al=r4l,p); o=

For any region W denote by 8w(n1, - -, 7, o) the power function of W,i.e.
Bw(m, -+, np, o) denotes the probability that the sample point will fall
within W calculated under the assumption that %1, -- -, 9, and ¢ are the true
values of the parameters. We will denote by 'yw(n;+1 , My, a’, A) the in-

tegr’al of the power function Bw(ni, - -, 1p,d) over the surface
S(r41, -+, 0, o', ) divided by the area of S(nj41, - , 1p , ¢, A), Le.

’ ’
'YW("Ir+l )y "My a, \)

—1
’ ’
=[f : dA]f Bl ey, o) dA.
S(nr+10m - mpra’ N 8(nr 4117 mpia’ N

We will prove the following
TuaeoreM: If W s a critical region of size equal to that of (3), t.e.

Bw(0, -, 0, r41, =y Mp, o) = B(0), then
(7) ‘YW(":‘+1 y "%y n’p ] 0',7 )‘) S BO(A)

for arbitrary values Mal, =, n;, ,a’ and \.

If W satisfies Hsu’s condition (b) then the power function Bw(n1, -+ , 7, )
is constant on the surface S(wr41, -, M, o, A) and therefore
Ywltegr, =+, Mo, 0, ) = Bw(m, -+, np, o). Hence Hsu’s result is an imme-
diate consequence of our Theorem.

Denote [\/yf 4+ -4+ i+ 24 + .-+ 24| by t and for any values
Gr1, ***,0p,blet R(a;41, -+, ap, b) be the set of all sample points for which

(6)

ye=a;6=r+1---,p) and ¢ = b.

For any region W of the sample space we denote by W(yr41, -+, ¥», t) the

common part of W and B(Yr41, ¥, ¥Yp, t).
In order to prove our Theorem we first show the validity of the following

LemMA 1:  For any critical region Z there exists a function oz(Yr41, *** , Yp, t)
of the variables Y,4+1, < - , Yo, t such that the critical region Z* defined by the in-
equality

yf + -+ yf > ¢Z(yf+17 e ,yﬁat)
satisfies the following two conditions:

(8.) BZ(O)""O: Nr+1 "')7’?)0') =BZ‘(O,"')O; 7’T+1)"')"7P)0');
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(b) 'YZ("IT+1 y "y Mp, 0,y )‘) < 72‘(7lr+1 y """y Mp,y O, )‘)-

Proor: Denote by Pz(y;41, -+ ,¥n,t) the conditional probability .of
Z(Yr41, =+, Yo, t) calculated under the condition that the sample point lies
in RWr41, +*+,Yn,t) and under the assumption that 9 = --- = 4, = 0.
Denote by F(d, t) the conditional probability that

yi+ -ty >d

calculated under the condition that the sample point lies in R(Yr41, *+* , ¥p, £)
and under the assumption that 9y = .-+ = 5, = 0. It is easy to verify that the
values of F(d, t) and Pz(yr41, -+, ¥Yn,t) do not depend on the unknown
parameters 9,41, -+, 1, , 0. Since F(d, ) is a continuous function of d and

since F(£, f) = 0, there exists a function ¢z(y,41, * - , ¥, , ¢) such that

F[¢Z(yr+17 oy Yny t)’ t] = Pz(yr+1) s Yp, t)

For this function ¢z(yr4+1, -+, ¥», ) the region Z* certainly satisfies condition
(a) of Lemma 1. We will show that condition (b) is also satisfied. Consider
the ratio

1 & s 1 & 2]
-5 i — ) — 5 a |dA
-L(,,,ﬂ,..._,,,,,a,x) exp[ 242 ;;1 (v ) 202 :,; 2

1 r ) n
exp[—z-ﬁ(z_} yi + 2 -+ éé)]

7=y

(8)
E' yinilo?

—3\ =1
=¢t f e dA.
8(0p+1s°*Mp0N)

by r,. Then we have

Denote ' ,‘/ Zr: yf
1==]

9)

r
2 vinilo?

im1 =
[ 5 i = [ VA rvestale gy
s("""l""'ﬂpl’v)) (nr+1 v""’lw"v»

where a(n) denotes the angle (0 < a(n) < =) between the vector y with the
components ¥, ---, ¥ and the vector n with the components 7., ---, #..
Because of the symmetry of the sphere, the value of the right hand side of (9)
is not changed if we substitute B(n) for «a(y) where B(5) denotes the
angle (0 < 8(n) < =) between the vector 9 and an arbitrarily chosen fixed vector
u. Hence the value of the right hand side of (9) depends only on r, , i.e.

Ar [a(n) /e
f eV v dA
S(np+11**s0p0A)

(10) _ ,
_ f e\/x ry cos [B(n)1/e dA = I(r,).
S(ny+1 'Ipv"v)\)

Now we will show that I(r,) is a monotonically increasing function of r,. We
have
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V/Arycos (B(n) /e
Y dA.

(a1 al(ry) _ ﬂfm oy cos (BT e

dry 7
Denote by w; the subset of S(7,41, *--, 75, o, A) in which 0 < 8(n) < 1—2rand by

w2 the subset in which 1—2" < B(n) £ m. Because of the symmetry of the sphere

we obviously have

cos [B(n)leVArveos Bwlie g4 f cos [m — B(n)]eV>Tveos r—bwile g 4

wg w1

(12) )
- f cos [B(n)]e" Vv cos BIle g4
w1

It

Hence

dry w1

The right hand side of (13) is positive. Hence I(r,), and therefore also the left
hand side of (8), is a monotonically increasing function of r, .
’
Let Pi(Yr41, 3 Yp, s m, ==+, 1p, 0) dYpp1 - - - dy, dt be the probability
that the sample point will fall in the intersection of Z and the set
yi—3dyi Sy <yt idyG=r+1,-,p), ¥ —-}d<t<+ b

Similarly let Pg(y:“ , e, y; U, my, ey M, @) AYry1 -+ - dy, dt be the un-
conditional probability that the sample point will fall in the intersection of Z*
and the set

yi —ddyi Sy Syi+ddpG=r+1,---,p), ¢ —3d <t <+ bd
Since the function ¢z(yr41, -+, ¥», t) has been defined so that

(13) dI(ry) _ % f cos [ﬁ(r’)]{e\/i—r,, cos [B(Ml/e __ e—\/k_ry cos [ﬂ(ﬂHIW} dA.

Pz(yf+1) ’yp’t) = F[¢(yr+l, ttt 7ypyt)’t]7
we obviously have

(14) Pl(yr+1""7yp7t’01"'10777r+1""777p70')
= PZ(yr-H)“'yypy t 0"“)07 NMr4ly ", Np, U)'

Using a lemma’ by Neyman and Pearson, we easily obtain

P2(yr+1y oy Yps bmy, e ymna')dA
S(ﬂr-’-l""'ﬂp""x)

(15)
_>_.f Pl(yr+1:"':ypyt;ﬂl7"'7"lpy0')dA
S(p41s-0m, )

110

4J. NEYymaN and E. S. Pearson, “Contributions to the theory of testing statistical
hypotheses,” Stat. Res. Mem., Vol. 1, London, 1936.
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from (14) and the fact that the left hand side of (8) is a monotonically increasing
function of v, = yi 4+ .-+ 4+ y2. Condition (b) is an immediate consequence
of (15). Hence Lemma 1 is proved.

For the proof of our theorem we will also need the following

LemMmA 2: Letwvy, --- , v be k normally and independently distributed variates
with a common variance o*. Denote the mean value of v; by a;(i = 1, -+ , k) and
let f(vr, -+, v, o) be a function of the variables vy, - - - , vy and o which does not
involve the mean values s , - -+ , ax, . Then, if the expected value of f(v1, - -+ , v, 0)
18 equal to zero, f(v1, - - - , Ui, o) 18 tdentically equal to zero, except perhaps on a set
of measure zero.

Proor: Lemma 2 is obviously proved for all values of ¢ if we prove it for
o = 1. Hence we will assume that ¢ = 1. It is known that a k-variate distri-
bution which has moments equal to those of the joint distribution of 1, - -+ , v,
must be identical with the joint distribution of v1, --- , v;. That is to say, the
joint distribution of v, , - - - , v is uniquely determined by its moments. Hence if

o R —lé (vi—a;)?
(16) f von f vilvgz ...v;;kg(vl’ ...’vk)e t=1 dvl...dvk=0

-]

for any set (r1, ---, ) of non-negative integers, then g(vy, - - , vx) must be
equal to zero except perhaps on a set of measure zero. Now let f(v1, -+, &)
be a function whose expected value is zero, i.e.
k
+eo Foo -1 2 (vi—ay)?
17) f f fr, -+, v)e =t dvy--- doe =0
identically in a1, -+, ax. From (17) it follows that
+o +o 4 3 od+ 3 o
(18) f e f(vl , Tt vk)e i=1 =1 d?)]_ cee d’/[; =0
identically in a1, -+, ax. Differentiating the left hand side of (18) r, times
with respect to ai, r; times with respect to az, - - - , and r times with respect to

ai , we obtain

+o0 +o0 D (vi—a
(19) f f 1){‘ "‘vzrc"f(vn ---,vk)e 42 )zdvl---df)k=0

0

From (16) and (19) it follows that f(v1, -+, %) = 0. Hence Lemma 2 is
proved.

Using Lemmas 1 and 2 we can easily prove our theorem. Because of Lemma, 1
we can restrict ourselves to critical regions W which are given by an inequality
of the following type

y?_l._ ...+y32(p(y,+1, "';ypyt)

where ¢(Yr41, *** » Yo, t) is some function of Y,41, -, ¥ and ¢{. The above
inequality can be written as
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2 2
(20) zil—iT_}—_yjz'p(yr-f-l, "’7ypyt)'

For any given values of y,41, -+, ¥p, t denote by P(y,41, - 3 ¥p, t) the
conditional probability that (20) holds calculated under the assumption that
m= -+ =19,=0. Itisobvious that P(y,41, ---, ¥», £) does not depend on
the unknown parameters 7,41, -+-, 7,, 0. If we denote by W the critical
region defined by the inequality (20), we have

ﬂW(Oy"'30777"+1y'”y77p)0')
+00 +00 %
(21) =f f j; P(yr+1’”'»yp’t)Pl(yr+1y"';yp)777+1r"'y77p;0')
— o0 -0

X pa(ty @) Ayrpr - -+ dy, di

where p1(¥r41, *** , Yps M+1, *** , Mp, 0) denotes the joint probability density
function of ¥,4+1, -+, ¥ and p:(¢, ¢) denotes the probability density function
of ¢ calculated under the assumption that y; = -+ = 5, = 0. In order to
satisfy the condition of our Theorem, the function ¢ in (20) must be chosen so

that
’ g +e0 o0
(22) .[w e [a j; P(yr+l, e ’yp’t)Pl(yr+1, e UYp oy Mrply ’np,o_)
X pa(t, ) QY1 -+ dYp dt = B8(0).
Let
(23) l P(?/r+1 y s YUp, t)pz(t, o’) dt = Q(?/r-n o Up s 0).
Then we obtain from (22)
-+o0 +00
(24) [“ .. ‘[ Q(yr+1 y T, yp , a-)pl dyr+l oo dyp . BO(O)-

From (24) and Lemma 2 it follows that

(25) Q(yr+1 y Y o) = 60(0)

except perhaps on a set of measure zero. From (23), (25) and a result’ by P. L.
Hsu we obtain

(26) P(yr+1 y * sy Yny t) = 60(0)
except perhaps on a set of measure zero.
It follows easily from (26) that ¢(y,41, - , ¥» , £) is equal to a fixed constant

except perhaps on a set of measure zero. This proves our Theorem.

5 P. L. Hsu, ‘“Notes on Hotelling’s generalized T,”” Annals of Math. Stat., Vol. 9, p. 237.



