SOME COMBINATORIAL FORMULAS WITH APPLICATIONS TO
PROBABLE VALUES OF A POLYNOMIAL-PRODUCT
AND TO DIFFERENCES OF ZERO

By L. C. Hsu

National Southwest Associated University, Kunming, China

1. The main purpose of the paper is to establish some combinatorial formulas
concerning the mathematical expectations or probable values of a product of
n given polynomials. The problem may be stated more definitely as follows:

Let z;, - - - , . be n non-negative discontinuous variables for which we have
assumed that the probability that each z takes a possible value is equally likely,
and let fi(z), -+, fa(z) be n given polynomials. Then we shall ask: What
is the probable value of the product fi(z1) - - - fa(xs), provided the sum of the
variables z; , - - - , Z, is known? More generally, we may consider the problem
with certain restrictions to z suchasa < 2, < b, G =1:-- n).

By a limiting process' it will be found that all the formulas established for
the preceding problem can be extended to the case of continuous variables.
On this account, it is important to find explicit formulas for the problem merely
involving discontinuous variables.

By the definition® of MacMahon, we say that a set of numbers (21 <+ Zn)
is over all different compositions of m into n parts with each z > k, if (1 - - - 2a)
runs over all different integer solutions of the linear equation z; + --- 2. = m
with each z > k. We shall use the notation (m; k; 1 - - - ), or simply (m;
k; z), to denote that a set of numbers (z; - - - «,) is over all different compositions
of m into n parts with each z > k.

The notation E(m; 8; [fi(z)] - - - [fa(2)]) will be used to denote the mathematical
expectation of the product fi(z1) - - - fa(x) in which the sum of n variable quanti-
ties 21, - - - , & is known, namely z; + -+ + z, = m, and each quantity is a
multiple of & and m is of course a multiple of 8. Thus by the definition® of
mathematical expectations we have
(1) E(m’ d; [fl] ot [fn]) = ( Z 1)_1 Z f1($16) e fn(xna)’

(m/5;1; z) (m/8;1; z)
where the summation on the right-hand side runs over all different compositions
of m/é into n parts with each z > 1, and the given constant é is called a “varying
unit”, that is the least possible difference between two unequal quantities in
(x1 -+ - 2,). If the varying unit approaches zero, (21 « -+ Za) will become a set
of continuous variables.

1 The limiting process will be illustrated by the proof of corollary 2 of theorem 1 in this
paper.

2 MacMahon, Combinatory Analysis, Vol. 1, p. 150.

3 See for example W. Burnside, Theory of Probability, Chap. 4, 13.
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400 L. C. HSU

If fi(x) = --- = fa(z), we may write
E(m; 8;[f]") instead of E(m;§;[fil - - [fa]).

A well-known convention for (:r:) is also adopted here:

m!

(m) _alm =1
n

0 otherwise.

if 0<n<m,

2. Lemmas. In order to obtain explicit formulas desired we first establish
four lemmas as follows:
Lemma 1. Letm, 7, - - -, rs be non-negative integers. Then

. n , m+n_1
@ <m§=>v1-11(ﬂ) (r1+ oot ratn —»1)'

Proor. Construct a generating function:

1 ri+l 1 ratl
(l—x) "'(l—x) ’ lz] < 1.

It is observed that the coefficient of the term z™ “******™» in the expansion of the
above product is given by

nt o Tn + Zn) _ ) [%n
(m—rl—---z—r,,; 0; 2) ( 1 ) o ( Zn ) B (m§f) (Tl) (T”) '

On the other hand we see that the coefficient of the term z™ “'**""*™*) in the

ritecotrgtn
i— x) 18 given by

expansion of (

r1+---+r..+n+m—(r1+~--+r,.)—1)=(m+n—1)
m— (4 -+ 1) Zn+n -1/

Hence the lemma.
LemMa 2. Let a, b, ¢, - - - be arbitrary constants, and k, , ks , ks , - - - be positive
integers. Then

™ Ty T, Ty
2 () +oGo)+ <)+
—nl X ( m+n—1 )a_"‘yfc_“'
=n! (ni0;aBy--+) aky+ ke +vks+ - +n— 1/ al gl 4!

Proor. Expanding the left-hand side of (3), we see that the coefficient of the
term a“b’c” - - - is equal to

s () () (P - xa+ﬂ) (xa+ﬂ+l> ...(x«+ﬂ+v)
alplyl... o ke Ky ks ks ks ks )

6
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By lemma 1 it is reduced to

n! ( m+n—1 )
a!ﬁ!'y!--‘. aky + Ble + yks+ - F+n—1/°

Substituting, we get the lemma.
From now on, we shall frequently write f instead of f(x), so that

9 + (I)f"""g“’ + et (:)f‘”g") =+ 9"

LemMma 3. Let m, n (< m) be two positive integers. Then for any given poly-
nomial f(x) of the kth degree we have

_ m+n-—1 [(f 1)(v)]p-
@ (»g'z) S - fle) =l 2 (S(P) +n - I)H ’

(n:0;p)
where
f@ =5@=), 8@ =1p+- - +kp.

Proor. Since f(r) is a polynomial of the kth degree, there exist (k + 1)
values 8%, - - - , Bo such that

m(i) + o+ ﬁl(’l”) + o = f(=).

By puttingz = 0, 1, - - - , k, we find successively"

G B =r"- (li)fo—n 4o+ (—1)"(:)1"‘” = (f-1D?,
(»=0,1, -, k).

The lemma is thus obtained by means of (3).
For convenience, we denote the summation

("gz) fil@) « -« falza) by S(m, [fi] - [fal).

Thus formula (4) can be rewritten:
, _ metn =1 g g o

where 8o, 81, -+ * , Br are given by (5).
LemMma 4. Let fi(z), - -+, fa(x) be n given polynomials, Then

6) S(m,[fil -~ [fal) = L 2 (=1 8(m, [fo, + -+ + ful"),

N (vyeeoviye(leen)

4 Strictly speaking, the relation (5) is established and proved by induction on », in
which a well known combinatorial equality is applied.
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where the summation on the right-hand side runs over all different combinations
outof 1---n), (k =1---n).

For example, if n = 3, then all the different combinations out of (123) will
be: (1), (2), (3), (12), (13), (23), (123).

Proor. Consider a typical term

—7):!.7' S(m, [fvl]ql cee Uv‘]w)’

a!
wherel <t < n,q1+ --- + g, = n. Now a necessary and sufficient condition
that the term will be contained in the expansion of S(m, [f,, + -+ + fu]") is
(v1 - vo)e(ur + -+ wx), ie. (1 --- »,) is a combination out of (u; --- wx), and for

a fixed &, there are %

condition (»; +-- v)e(us - -+ ue)e(l - -+ n). Therefore the number of occurrences
of the term in the right-hand side of (6) is given by

= vfn —t n—t__Oift<’n,
Z(_l)( ):(1—1) ‘{1 it t=n

y==0 14

n : ;)—diﬁerent combinations of (u - - - u) satisfying the

The term vanishes generally except ¢1 = --- = g, = 1. Hence the right-hand
side gives S(m, [fi] - + - [fal).

3. Theorems and corollaries. In the following statement of theorems and
corollaries the notation (x; - - - z,) will be always used to denote a set of unde-
termined quantities as specified.

TarorEM 1. Suppose that (xy - - - x,) 18 a set of natural numbers in which only
the sum of the numbers ts known, namely 1 + -+ + x. = m. Then, for any
given polynomial f(x) of the kth degree, the mathematical expectation of f(x1) - - - f(zn)
18 given by

E(m, 1, [f]")
(7) — <m — 1)“1 ( m4+n—1 )[(f _ 1)(0)]1:0 [(f _ 1)(k)]pk
=n! n—1 (ngoy \S(@) +n — 1 pol -~ il .

Proor. Letm’ = m + nr. By lemma 1 we have

1 Zn m’—nr+n—1)
oo = N 1 = 1 = .
(n%z) (0) (0> (m:;:z) <m'z;r::=) < n—1

This is the number of compositions of m' into n parts with each part > r. In
particular, if r = 1, we find that the number of compositions of m into n parts is

(:7:' : 11 ) Thus by (1), the required value is equal to

(S, 0P} istm, 11, i (721 S0, 11,

n

The theorem is therefore proved by lemma 3.
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CoroLLARY 1. Let (xy::- x,) be a set of positive quantities, of which the
varying unit is 8, and the sum is m. Then, for any given polynomial f(x) of the
kth degree, we have

E(m, 8, [f1)

® m((?) B

n—1

- m Do k) Px
1) > <(3) - 1>[<g = )Pl = DB

(ni0:p) S@) +n—1 Dol -+ il
where
g(x) = f(xd), S@) =p1+ -+ + kpi.
Proor. It follows immediately by the relation:

Bm, 3, " = B (7)., 1, tGo)

COROLLARY 2. Let (x; - -+ x,) be a set of non-negatively real numbers, of which

the sum is known, namely 2, + --- 4+ x, = m, m being a known real number.
Then, for any given polynomial f(x) = ao + -+ + ax®, (ax ¥ 0) we have
E(m, 0, [f1")
9 (n)? mh e (0lag)®  (klay)®
T on (7;0;p) (1-(11 + .-+ ka +n -1 g! Qk!

ProoF. The proof of the corollary depends essentially on the concept
that two unequal real numbers may differ by an arbitrary small number 2.

Let h be an arbitrary positive number and write f(zh)/h* = g(x, h), where
the number k is the degree of f(z). Then, since

0 if p<n
S v (nY, e ! if p=n
;( 1) (V)(n "= n+ 1), .
9 ! if p=n-41,

we may write

o0, = (1) o = 11+ -+ (=1 () 00,1 = 5 bl + 1RO,

where

s ()7~ Qo (.2
= (V -|-2- 1) u!a,+1 .
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Now we pass to the limit h — 0 in which we assume that & runs through a sequence
of real numbers of the form 2 ¥’ N being a natural number. Thus by corollary 1
we have

lim E(m, h, [f]")
A0

= allim > <(%L) e 1) (GZ) - >— W I_Io V'a;,;;ﬁ,R;(?)}p',

o T \S(p) +n — 1/\ n - 1

. . ((’—,:') +n - l)!(n ~ 1! ((%’) - n) 5
i Y S) +n — 1”((5) S )) ((_) 1)!}

{ H["ar+h

h—0 y=0 py !

R, (h)]"}

_ alln — M@ & (la,)?™ _
- (r%p) (S(p) + n — 1)!1;10 pv ’ (S(p) - l'pl + s + k’pk).
Hence the corollary.’

CoROLLARY 3. Let (x, - - z,) be a set of positive real numbers under a known
condition a < x1 + -+ + xo < b, where a (< b), b are two positive real numbers.
Then, for any given polynomial f(x) = a0 + « -+ + axx®, (@ # 0), the mathematical
expectation of the product f(xy) - - - f(xn) which we denote by E((ab), 0, [f]") is given
by the formula

n!(n - 1) prHs@ _ 148@
10 Bab, o, ) = —a (a4 S@)-(n — 14+ S(g)!

a! c-oq! Sl@=aqa+ - + kq).

Proor. Since the probability that the sum of z;, ---, z, takes a value
between @ and b is equally hkely, we see that the required mathematical expecta-

tion will be the mean of f E(u, 0, [f1")du, that is

E(@), 0, (1) = 5 [ 5w, 0, 1) au.

8 This corollary can also be proved by means of Dirichlet’s integral. In fact, the right-
hand side of (9) is given by the quotient of the two integrals:

(S ... L f@r) ... f(xs) dzy ... dza)/(S ... Sdzy ... dza),
the integrals being taken over the region: 2, + ... 4+ 2z, =m, 2. >0, ... , 2. > 0.
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The formula (10) is therefore obtained by integrating the right-hand side of (9)
and dividing it by (b — a).
On the other hand we find that

lim E((a, a + 1), 0, [fI") = Ea, 0, [f1").
This shows that the corollary 2 can be also deduced from 3.

TrEOREM 2. (A generalization of theorem 1). Let fi(z), - -« , fa(z) be n given
polynomials whose degrees do not exceed k. Then we have

E(my 1) [fl] e [fn])

(1) \ (m—}—n—l)k )
A n— S(p) + n—1 [(fr B 7o 1) J]p[
= -1 100 ,
(r1-+94) € (Leevn) (rgé:'p) =D m— 1 ;';](; ;!
n—1
where

fnn-v; = fvl(x) + -+ f.,,(:c), S(P) = lpl + e+ kp,
ProoF. In the proof of theorem 1 we have shown that

Bem, 1,01 = (72 1) stm,

Hence, by similar reasoning and lemma 4 we obtain

B, 1,150+ ) = (7 2 1) St 15 -+ 1)
(=1

= Z N
(vpe-+vg) € (1oeon) 1 m—1
n!
(v =)
( m-+n—1
-t \S(p) +n — 1
—q)rt M VT 7
(y,...g;u.-.n) (n;0:p) ( ) m— 1
n—1

k [(frlu-r‘ — 1)(17]?[
;[-Io ;!

S(m: U"l + o+ fn]n)

Theorem 2 is proved.
CoroLLARY 1. Let & be a varying unit. Then

m
Bom (5 D= X F (=) (gﬁ) - 1)

vy-cevg)e(leeen) (ni0p)
() +n—1

(m - 1)_1 fI (R 1)07]m’

n—1/ j ;!

(12)
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where
gl’(x) = fv(xa)) (V =1--- n) and Gvyeevy = gvl(x) + v + gvt(x)'

Proor. This is almost trivial because of

Bm, o, (@) - 15@) = B((2), 1, a0 -+ 1169).

CoroLLARY 2.°  For any given positz’ve real number m, we have

p,,'(n - 1)! mpl+...+p"
(P2 + + p» +n — D! '

Proor. By a passage to the limit 6 — 0, we get

(13) E@m,0,[z™] .- [z™]) =

tim Bm, 3, ]+~ [£]) = tim 3 ) ~ Bm, 5, U 4 - + 50

Z( l)n_t hm E(m, 8, [fo,..»]").

l.e.

Bm,0, [ -+ ) = 5 50— Bm, 0, ().

The corollary is then deduced by (9).
TueoreM 3. (Further generalization of theorem 1). Let (21 -+ ) be a set
of arbitrary integers restricted to the conditions:

B4 Fr.=m alzlb

where m, a, b are all known integers. Then for any given polynomial f(x), the
mathematical expectation of the product f(x1) - - f(z,) denoted by (EI},’ (m, 1, [fTV)
- a, )

1s given by the following
> = (2) st 1)
(14) E(m,1, /1) == —
L))

where
g@x) = flz+b), h(x)=fx+a—1), m=m—(a—Un+(a—b— L.

Proor. Define

0 for m > 0,

S(m, [fI") = 0 form <nand S(m,[f') = [
1 for m= 0.

¢ This can also be deduced by Dirichlet’s integrals.



SOME COMBINATORIAL FORMULAS 407

We shall show that
;, (-1 (7) S/, [g' ") = m;z )f(xl) co Sz,
aszs'l;

where on the right-hand side of the expression the set (z; - - - z,) under the
summation runs over all different compositions of m into n parts with each
aLz;<b,t=1---n).

We denote the left-hand side of the expression by &, then by decomposing
S(m’, [gI'[h]""") we have

n m’

S = Zo > (=1 (’:) S(m, [fx + B))S(m’ — &, [fx + a — DI*™).
Let f(z1) - - - f(Z.) be a term contained in S, i.e. & + -+ + &, = m, & > a, -,
I» 2 a. And we suppose that Z,, > b+ 1,---, %, > b + 1, where »; = v;
if ¢ # j. Then it is found that the number of occurrences of the term in & is

given by
t t) : 0 if tZl,
—1’( =1-1"=
R A

This shows that the term f(z,) - - - f(Z,) of © generally vanishes except a < s
< b. Hence we have

&= X f@) - f).

Next, we shall find the number of compositions of m into n parts with each
a < z; < b, i.e. the number of terms in &. By the result just obtained we see
that the number is given by

ii(—l)'(") >1 % o1

y=0 m=0 14 (n;1;z) (m'—m;l;z)

e (EE D))

-Ser ()

Hence the theorem.

The theorem just proved shows that the mathematical expectation
E (m, 1, [fI") can be expressed by S(, [g") and is therefore expressible’ in
(a,b)

terms of the linear combinations of the coefficients of the polynomial f(x).
ab .
, = are all integers. Then

CoroLLARY 1. Let 6 be a varying unit for which 1—:, 55

n —_ 111 n
(a.El:) (m’ 6) [f(x)] ) - (%Eg') (5 ’ 1) [f(ax)] )'

7 See lemmas 3 and 4.
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CoroLLARY 2. Let fi(z), + -+ , fa(x) be n given polynomials. Then

E (m, 5, [fl] et [fn]) = Z (_1)”— (ﬂ) (m7 5) Lf"l + e +f':]")'

(a,b) (v1eeepg)e(leceon) n!
CoroLLARY 3. The number of compositions of m into n parts with each a; < x;
<b;,E=1---n)isequal to

1.0 01

(__ 1)11+-' vy

11-0' cee y"-O

.(m+n-(a1+---+an)+(a1—b1—1)vl+---+(an—bn—1)v,.—1>

n—1

Proor. We have shown that the number of compositions of m into n parts
with each ¢ < z < bisgiven by

§ (—1)’ (?)(m (a 1)n1;l—_(a1 b— 1) 1).
Hence the number of integer solutions of the equation

2ut o F b F o F Tt T, =m
witheacha, < 2,, <b(p=1---s;u=1:..-mn,)isgiven by

S S (mpyte H(")

(miLimy+om,) vym=0 Vo0 i=1 \Vi

. (m; - (a.- - l)n. + (a,- - b.' - 1)1’.’ - 1)

n,‘—l

23 o 1 (%)

y1=0 i=1 \Vi

. Y (mi — (@i — Ung 4 (@s — by — Dy; — 1
{(m%.-) 'I-;Ix < n; — 1 )}

o I AN
- 71—0,-2-.1',-0 ( 1) (VI) (V.)
'(m—— 1= 2 (m—n+ 2 (a—bi— Dn
At e 0 — 1 ’

The corollary follows at once by puttingn, = «-- =n, = 1,5 = n.

The last corollary may be restated as follows: Let there be n stores,
b1, -+, by being the numbers of stocks contained in 1st, 2nd, - -+ , nth store
respectively. Then m stocks containing at least a; stocks of the ¢th store can be
taken from these stores in

l.i.l (i <m +n—=1—2 a4+ 2 (a—b — 1)y1)

y 1m0+« Ym0 n — 1

— different ways.
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We have now established several combinatorial formulas concerning the
mathematical expectations of the product fi(z1) - - - fa(x,) under certain condi-
tions, Apparently, there are many examples which can be solved by means of
the results just obtained. For brevity, we may state a general criterion as
follows: The mathematical expectation of a function, F(z,, -+, z,) say, can
be estimated by the above mentioned formulas, if and only if 1) the sum of
Z1, +-+, T, is known, and 2) there exist n polynomials fi(z), -+, fu(x) such
that F(z,, - - - z,) is proportional to fi(x;), ({ = 1-.-n). The undetermined
quantities in (z1,.-+ -, z») may or may not be continuous, if the quantities are
discontinuous, the varying unit is necessarily known.

4. Convenient formulas for differences of zero.?
Given f(z) = Bo + Bz + - -+ + Bax®(Bx # 0) we may write

k k
(f - 1)(y) = Z V!ﬁcSv,a = EOBcAyO’,

s=0

where S, , is a Stirling number of the second kind, as used by Jordan and defined
by

WISy, = NO = D (=1)"° (”) z’,
z=0 z

A’0° being in the language of the calculus of finite differences, “a difference of

zero”.
In terms of the differences of zero, the formulas (7) and (11) may also be re-

stated as follows:
n m4+n—10Im—n)nln — 1)! .
B, 1, UMY = % n = SG)IEH) F 7 = Ditm = 1!

) Eog ,
X I_](;p—l B0 + - + B AOY.
Em, 1, [fi -+ [fa) = > (="
(oo vg) € (Loov2)
, m+n—1m—n)l(n— 1)
(1) Bt G = SENIEE) + 7= DT = D1
k
X H) 1_71_1 (B,A0" + -+ + BA"0Y™,
where

(@) = B+ "'+kaxk: By =B+ - + Baw, S@)=1p+ --- + kpr .

8 The methods for obtaining convenient formulas for diffcrences of zero as stated in the
first part of this paragraph are similar to those used by Paul S. Dwyer in his paper ‘““The
computation of moments with cumulative totals,”” Annals of Math. Stat., Vol. 9 (1938),
pp. 288-303.
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The formulas (7)" and (11)’ tell us that the difference of zero plays an important
rdle in the calculation of mathematical expectations of a polynomial product
under known conditions. On account of this fact, we are now going to investigate
some recurrence relations and approximations for the differences of zero.

As m is larger than ¢, we may find a convenient recurrence relation as follows:

m ~Am+t
A = S = M) (’" + ‘) +.x2(t)(’" + ‘) + e

m! t+1 t+ 2
m

(15) AmOm-H-H— — ) m+t+ 1
pooy = Spmterr = M+ 1) t+1+1
m+t+1 m+t+1
+>\2(t+1)<t+1+2)+"'+>\t+1(t+1)( 2% + 2 ):
where

¢+ DNl + 7M@) =M+ 1), =Xult) =0, MO =ME+1) =

and Aq(f), - -+, A (f) are all independent of m but depending on ¢.
Starting with the first equation of (15) and using a well known relation (due
to Jordan) Sn,n+1 = Sm-1,» + M- Sn,», successively, we get

Smomttr1 = 2 (m— v+ I)Sm—r+l mt-t+1—»

=§>\f(t)§;(m+ttijl_y)(m-v+ 1)

=Zx(t){ ] AP TR R

yame] t+J

5 m+t+1 . m+t+ 1) .
‘?Qk’(‘){(tww)(‘*“1)+(t+j+ 1)”}

ey . m+t+1
= };1 {¢t + DN ) + 0} <t Fi+ 1).

The recurrence relation thus follows.

By successive applications of the relation A ;(t + 1) = (¢ 4 7)-Nji=1(8) + 7-1;(@),
after nth time say, we may express A ;(t) as a linear combination of \;(t — n), - - -,
A ,_a(t — m), but the coefficients are too complicated.
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For ¢t < 9, by applying the recurrence relation as obtained above, the coeffi-
cients may be exhibited as follows:

to| a0 | NG )] As(t) Ns(8) (@) Ao(8) N(®)
3
10 15
25 105 105
56 490 1260, 945

119] 1918 9450 17325 10395
246| 6825 56980| 190575 270270, 135135
501| 22935] 302995 1636635 4099095 4729725 2027025
1012) 74316| 1487200, 12122110 47507460 94594500| 91891800(34459425

© 00 O Uk W~

For example, when ¢ = 4 we have, according to the table:

o (Y () (1) (o
n+t

We shall now proceed to find some approximations for S, ... and A"0
Firstly, we may write

n An+t
b= £ 0 () 0 ().

According to the recurrence relation we have

@) M) = (2t — DAt — 1),
(ii) Aa(t) = 208 — DXt — 1) + (¢ — 1) Aat — 1),
(iii) Ne2(®) = (2t — 3) Ns(t — 1) + (¢ — 2)-Xea(t — 1).
Hence
() = @)!, i) = (¢ — 1127706 (2);

.2t

Ns(l) = 2"*2« — 2 =2 =)t — 1B)olt — 1 — ),

where
Mo (2
o(k) = Z@(m)’ t—15);,=(@¢— 150 —25) --- ¢t —7— 0.5).
z=1
. i n+t n+t n+t
Evidently, the orders of <2t _ 1), (215 _ 2>, , (t + 1) are all less than 2t as

n tends to infinity.
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Now, it can be easily found that
()= B0 - @30+ (-5
-5E) (+D)0-7) (-5
“a(3) i R o)
A,_l(t)(n + tl) _2‘t-t:_ 1(n;;t>o(t) ~G= ?zilf!il).(zt)v"(‘) (n + t) )

SO LE e

[a—sy

i

o (5F8) = 4 (5) (20 10 (1))

Hence, we may write

16) St = & (’—;-) {1 By 0( )}

where
¢ 2t o 4°-t181a(2)
— 30 — _ 4@ — 1)

Moreover, it can be shown by Wallis’ formula that

z—1 z [2x T
1/1r <z—<x)<1/,: ©=123 .
Thus we have

Again, by Wallis’ formula we have

—_ o 2t =1 T2
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Combining these inequalities we get

Wit t—2¥< 4‘(2t) o) < gi/t_i_”l(t;_l

- 2
W -2 ~ 3, 51/ Lo -~

where

Therefore,
L+ 3VIVE—2F < <t+3WVIF1WE - 1), »~3
Next, by Stirling’s formula

1 1
nl = ( > V2 {1 + — + 288 + O(ﬁ,)}
we obtain

nantt _ [T \/21rn n+2t_\/2‘1?ﬁ( 2t2)
A™0 _<e). (22) {1+ +2 +o( )} a5 )

where

01=PI+T1‘2'N%“'2’
0z = p2 + 5o + zis.
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