ON THE DISTRIBUTION OF THE SERIAL CORRELATION COEFFICIENT

By HermMaN RuBIN
Cowles Commission for Research in Economics, University of Chicago

The distribution of the serial correlation coefficient, in samples drawn from
a parent distribution with zero serial correlation, has been studied by many
authors. Anderson [1] obtained the exact distribution. Dixon [3] and Koop-
mans [4] have given approximate distributions, each attained by smoothing the
characteristic values of the numerator of 7 in (1) below. Dixon smoothed the
characteristic values in the generating function and obtained his results by
comparing the moments of the exact distribution with those of the approxima-
tion, of which the first T' are found to be exact. Koopmans smoothed the
characteristic values in the exact distribution function. Here we evaluate
Koopmans result and show that it. is the same as Dixon’s approximation. It
thus appears that in this case it is immaterial whether the characteristic values
are smoothed before or after inverting the characteristic function. We also
add Tables comparing confidence limits for the exact distribution, for the ap-
proximation referred to, and for a normal approximation.

We define the serial correlation coefficient as
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Then Koopmans obtains, if the true value p of 7 equals 0, and the z, are nor-
mally and independently distributed with mean 0 and variance ¢, the ap-
proximate distribution 7'/2 — 2.
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Although in the distribution problem T is a positive integer, it is useful to
consider the right-hand member of (2) as the definition of h(7-T) for those

complex values of T for which it exists.
Let R(T) denote the real part of T. If R(T) > 2N + 2, we obtain
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Now, according to [2], tables 41, 42.
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N
Deonote by 2™ (0, T) the value of ;i?v k(# T) for # = 0. Then for R(T) >
2N + 2,
(=D"2"T3T + 1)
rG(T — N + D))r@1 — N))-

k(7, T) is analytic in 7 for | 7 | < 1, R(T) > 2, and is analyticin T for | 7| < 1,
R(T) > 2. It follows by Hartogs’s theorem [5] that k(7, T) is analytic in 7
and T for | 7| < 1, R(T) > 2. By analytic continuation we get that (5) holds
for R(T) > 2. Consequently

(6) If Nis odd, ®*¥(0, T) = 0;
(7) if N is even,
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Let N = 2P, then
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According to (5)
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which is the same as Dixon’s expression (3.22).

A more elementary proof by complete induction for integral values of T can
be based on the recurrent differential equation (14) which is of interest in itself.
To this end we shall write (2) in a different form which is easily obtained through
partial integration.

(10) k(7 T) =
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Differentiating with respect to 7,
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because the first and third terms in (12) cancel as may be shown by integrating

by parts.
Hence (13) reduces to the recurrent differential equation
(14) K@# T) = —2-3T#(F, T — 2).

Let us now assume that
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Integrating, one obtains
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No constant of integration occurs because (17) agrees with (5) for 7 = 0 and
N =0.
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It remains to prove the validity of (17) for the initial values 7 = 3 and T = 4.
T =4
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Substitute cos « = 7 + (1 — 7) sin® . We get
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which completes the proof.

A short table of confidence limits is included, corresponding to the 5%, and
197, significance levels, comparing the exact distribution given by Anderson [1]
(the values in parentheses being graphically interpolated by him), the distribu-
tion (10), and the normal curve with the same mean and standard deviation.

Confidence limits for 7

r 5% 1%

Exact (10) Normal Exact (10) Normal
3 .854 .729 .736 .970 .882 1.040
4 713 .669 .672 .898 .833 .950
b .622 .621 .622 .823 .789 .879
6 .570 .582 .582 .762 .750 .823
7 .545 .549 .548 714 715 775
8 (.521) .521 .520 (.682) .685 .736
9 .498 .497 .496 .656 .658 .701
10 (.477) .476 .475 (.633) .634 .672
11 .457 .458 .456 .612 .612 .645
15 .400 .400 .399 .543 .543 .564
20 (.351) .352 .3561 (.480) .482 .496
25 317 .317 317 .437 37 .448
30 (.291) .201 .291 (.404) .403 .411
35 (.271) .271 .270 (.377) .376 .382
40 (.255) .254 .254 (.355) .354 .359
45 .240 .240 .240 .335 .335 .339
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It is thus seen that the distribution (10) provides satisfactory significance levels
for T > 9 whereas the normal approximation provides satisfactory 59, signif-
jcance levels for the same range. The normal approximation appears to be
unsatisfactory, however, at the 19, significance level even for 7 as high as 45.
The normal approximation here used is not the same as that used by Anderson

([1], p. 53), which assumes \7\11—7,—7;—?2 to be normally distributed.

The following table shows a comparison between a few more confidence limits

of the Type II curve (10) and the normal curve with same first two moments
for a few values of T'.

Confidence limits for ¥

T 5% 1% 3% 2% 1%
' (10) |Normal| (10) |Normal| (10) |Normal| (10) lNormal (10) |Normal
15 .400 | .399 | .423 | .425 | .452 | .456 | .488 | .498 | .543 | .564
20 .352 | .351 | .373 | .373 | .398 | .401 | .431 | .438 | .482 | .496
25 | .317 | .317 | .336 | .337 | .360 | .362 | .390 | .395 | .437 | .448
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