ON THE APPROXIMATE DISTRIBUTION OF RATIOS

By P. L. Hsu
National University of Peking

The purpose of this paper is to apply Cramer’s theorem of asymptotic expan-
sion’ and Berry’s theorem’ to study the approximate distribution of ratios of the
following two types:

i 1 g /%
@ Z=;1,(Yl++Y")/1_V_L(X1+”+XM)=Y/X,

(IT) Z=Y/%(X1+---+X,,.)=Y/X.

In (I) the X;, Y; are independent, the Y ; are equi-distributed,® and the X; are
equi-distributed and positive. In (II) X;,---, X, Y are independent and
positive, and the X; are equi-distributed.

1. The ratio (I). Assume that (I1) the absolute kth moment of X; and that
of Y ; are finite and positive, where £ is a fixed integer >3,
(I2) the distribution of X; and that of Y ; are non-singular.

Let

EF=eX), n=eY), F=eXD-¢ T=e)—1

and

U=‘/—a-7”_<X—e>, V=%E(7—n).

Let F(z), G(z) and H(z) be respectively the distribution functions of Z, U and

V. Let
S(2E47), vy
m n b

Then the relation Z < r is equivalent to

20U 4V _
bv/m T on/n =

1 H. CRaMER. Random Variables and Probability Distributions (1937), Chap. 7.

2 A.C.Berry. ‘‘The accuracy of the Gaussian approximation to the sum of independent
variates’’, Trans. Amer. Math. Soc., Vol. 49 (1941), pp. 122-136.

3The Y; are said to be equi-distributed if all Y; have the same distribution function.
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For simplicity we shall assume x > 0; the results are, however, general. Then

. » . . xa TV
the distribution functions of — b_\/E and b—\/;‘ are

2ol B b\/ﬁy) v _g(?V ﬁy)
Hence, by the theorem of convolution,

O Fe) = [: {1 - G(— W—L‘(:;:—y—))}dH "l{@)

Here we recall the theorems of Cramér and Berry: Under the conditions (I1)
and (I2)

k—3
@) G(x) = &(z) + ZP fﬁ) ﬁ*_w

where
3(@) = —— [ Wy, P@) = X end” ()
_\/2“, ’ =t v ’

and | Dy | is less than a positive number which depends only on k and the distribu-
tion of X;. If k = 3, condition (I2) may be removed.!

Analogously,
k-3 , D'
® H@ = o) + 2 %D+ Be,
where

Q.(z) = Zl d,-, X (@).
=

In the sequel we shall use the letter A; to denote an unspecified quantity such
that | A | is less than a positive number which depends only on k, the distribu-
tion of X, and the distribution of Y ;.

Using (2) we have

k-3
@ 1 - 6(—2) = o@) + 3 CUR@ | De

and this making this substitution in (1) we get
Fl@) = [o @(b‘/—’ﬁ(" — w) dH (b‘f‘y)
Zl (= 1) ,(b\/%‘(:; - y)) dil b\/ﬁy) .Y

T =

4 This last assertion constitutes Berry’s theorem.
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and so by partial integration,

Fo)= [ n (Ox/nw - y)) dq,(b\/‘ y)
+ 3 [ (b\/r;(u - y>) dPy(b\/ﬁy)_'_ A

= ome mie—2)

Making the transformation y = axv/b\/ﬁ and writing

bv'n ovVnz
(5) a ===, B = oy

we get

” k=3
Fz) = L, H(du — g)&'@) dv + 3 ( ,}2) [ H(au — By)P, () dv + — ;(k—»

k—3 )

(=
—I°+Z mr I, + i(k—z)‘

For I; we use (3) and obtain

k—3

I, = [ d(au — Bo)d' (v) dv + Z T [ Q.(cu — Bv)®' () dv + w‘_,,)

For I, we use (3) with % replaced by k¥ — ». Thus
k—.’i—r

L= [ #eu— P a+ 2 L[ Qe — sPlw o + 2

==rl nﬂ/z

Combining these results we get

) k—3 1 )
©6) F@) = [ Do — BIF6) db + T L Qu(ou — fo)®' () do

k—3

2( ) [ Sau — Bo)PLw) dv

k—~3 k—3—» ( 1)

+2 X

vl p=l M

[ Quleu — Bu)PL(v) dv + Ry,

V/“ nﬁ‘/2
where

Ax 1 1 k-2
By = —os nl(k—") + E L T nm— = (ﬁ + \7,;) .

Now by (5), a > 0 and a® — 8 = 1. For such values of a and 8, however, it
follows easily from the theorem of convolution that

‘[0 dlau — B)P' () dv = &' (u).
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As differentiation under the integration sign is justified by the boundedness of
the derivatives of ® we have

0
@ [ 87 (au — po)@'0) do = 2 (w).
0
Repeated partial integration then gives

[[ 8 — 0320 do = 67 [~ 64 o — o)) o

aﬁq ) Q(ﬁr’l) (u)

Hence

[w Q.(au — B)®'(v)dv = Z' dj» [w 3 (qu — Bo)d'(v) dv
v dj'

=2 o o (),
Ju-

[ 3 — P o = 3 e [ Bar — 860 6) ao
gt
= é ﬁ;,.,.:-" <I>"+”)(u),
[ e = 80)Pi0) 0 = 3 3 ducs [ 24 — e *) ao

»+25
(p+r+2i+25)
= EEdwc,.amﬁ T (w).

w! =1

Making all these substitutions in (6) we obtain the final result

| = k-3 »
(—1y ;B C,. 3" () +E;,17,Z£’3-‘1’('"”(“)

F(z) = ®(u) + Zi %

k—3 k—38—» 1
+ 21 21 (./z ),.Izﬁ: Z dinCj» d'f:::: w ] ¢0‘+7+2t+2j) )
- h—!
(T 7,:) :
If k = 3, the result remains true without the condition (I2).

2. The ratio (II). Here we make the following assumptions:
(II1) The kth moment of X; is finite and positive, where k is a fixed integer
>k, «X;) = 1)5 G(Xf) - 1=4"
(II2) The distribution of X; is non-singular.

5 As the case ¢ (X;) = 0 is excluded, there is no loss of generality in this assumption.
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Let U = vVm(X — 1)/0, and F(z), G(x) and H(z) be respectively the
distribution functions of Z, U and Y. Then

Fz) = Pr{Y - ”\%—% < x}

Because of the positiveness of X; and Y we may always assume £ > 0. Then,
by the theorem of convolution,

Fz) = [:{1 - G(— ‘/——mf7?’gg—“—”2)} dH ().

Using (45 we have

Flz) = L{ (\/‘«c > (=L P(\/m:x— y))}dH(y)+"7ﬁT"—m,

—t mvlz

where, as throughout the rest of this paper, A represents an unspecified quantity
such that | A | is less than a positive number depending only on k, the distribu-
tion of X; and the distribution of ¥. By partial integration we get

M Fe = [ HE -y d{ o Vmv) 3 VP (\/jy)}mﬁ—_)

=1 m’ /2

[ ) (e £ b
An interesting special case is the following: Suppose that (1I3) H*™®(x)
exists and is continuous for all z > 0; (II4) the functions
&) = HY(2) w=1--,k — 3)
are bounded, i.e.
&(x) = A
(I13) there is a positive constant ¢ < 1 such that
xk—2H(k—2)(y) = Ak
forallz > 0and (1 — ¢)xr < y < (1 + ¢)z. Under these conditions we have
H(:c _ _{ig) _ "ff (=1yd 2’2" H” ()

'\/;I: y=0 v! my/2
(— l)k—z dk—2'xlc—2 22 ) dox2
+ *k — 2)! mi¢—> H z + \/‘_ (l‘sl <1,

and so, for |z| < =7 cv/m we have
g

oxz k-3 (_l)r 0" Erz, A zk—2
8) H ( - ﬁz) =2 + m:(";“-” :

y=0 vim?
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Separate now the integral in (7) into two parts:

L = , I, = .
' 'LISGV;/U ’ '/l.=l>c\/'7»/v
Now
k-3
L] < hw+2lﬁi@
|2|>ev/m/o

Evidently this last integral is exponially small and so is Ax/m**™®. By (8),

_ SIGTATAY (- 1) P (z))
h= ~/|;|Sc\/?7l/u (Z vim’2 )(q) @ + ,Z dz + w:—z)

v=0

_‘[ k—3( 106" ¢2 )(@l(z)+’§w)dz+mﬁk’;’.

o\t vim? mr?

Combining these results we obtain

k-3 v v k=3 p—
Fl@) = -[ ( l) U’va )(<I>'(z) + g(m'llz) Z "(I,(v+2:+1)(z)) dz + ;(k—z)

00 \\ V=0
k=3 d k=3 k=3 u
a 'E’ .uw £r Ak
= 1 D,, p 2541
,z_% m2 Ii + Z—:; Z:l ,21 mdn Troseint T g mi=2

E+Z+,HV

where
Lo = [ 23 () da.

Now the following facts can easily be established by means of partial integration:
9) I,s = 0 when a — B is even,

(10) I,. =0 when 8 — a > 1.

By (9), the non-vanishing terms in Zl; are the even terms and the non-vanishing

terms in Y, are those for which u 4 v is even. Hence
2

(k=31

z___ Z e &

]
1 v=0 m”

[$(k=3)] ($(k=3)) 2 HE=01 3E=4] 2ut1 /

E = Z Z Ze,,.,, 'Izr sut2i+1 + E Z Z eﬂgé%%llz'ﬂ- 2u+2542 +
2 y=0 p=1 v=0 p=0 j=1 M



210 P. L. HSU

Using (10) to reduce Y further we get
2

BBt e BG=0) =t bl o
JH 4 $1: 4
PIPIR_ALY SPIRE D I MDD p ol TR SEDE

) =2 p=1i=1 mrt v=1 =0 =1
(k=7 k—6 ’
= e z':gnvfzr-H + mz:)] N
y=0 mutr+3 —0 =0 metr+2
[#(k—9)1, 1 a [($(x—6)] 1 a A
= — h + - B + =F
az-:o mets ﬁ-[l(EaH)] o bapsa a=0 met? ﬁ-[l(zaﬂ)l =8 fp43 mi*—2)
[f(i”] 1 '23 [l(kE—G)] 1 § 4/:
= —_ l + —_ 3 + -
= om e i1 s = maGem Lijbaie miG=o ©
Hence
4 [$(x=3)1
_ er&s | ek + ks 1
M N - D M
»—3 »—2
'(er &, + E lp &IH + E lu' EM)"" }(k 1
u=(}(»—2)] p=[}(x—2)]
k=3
= SO + 'z_: m ’-Z Dij» f,' + }(k—z)

Hence

F($) = 'EO + Z Z pJ'EJ }(k_g)

y=1m eyt

Our final conclusion is: Under the conditions (II11)-(II5) formula (11) is true;
if k¥ = 3, (11) remains true without the condition (II2).



