NON-PARAMETRIC ESTIMATION. I. VALIDATION
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1. Summary. Previous work on non-parametric estimation has concerned
three problems: (z) confidence intervals for an unknown quantile, (4z) population
tolerance limits, (¢72) confidence bands for an unknown cumulative distribution
function (cdf). For problem (777) a solution has been available which is valid
for any cdf whatever, but for (z) and (47) it has heretofore been assumed that the
population has a continuous probability density. This paper validates the
existing solutions of (7) and (#¢) assuming only a continuous cdf. It then modifies
these solutions so that they are valid for any cdf whatever.

2. Introduction. There are three problems of non-parametric estimation
(we exclude point-estimation) for which fairly satisfactory solutions are available;
their present status was summarized in a recent paper [4]. The purpose of this
series of articles is to extend and complete the theory of non-parametric estima-
tion in directions of both theoretical and practical interest.

In this series we shall employ the following conventions of notation: We dis-
tinguish between a random variable and an arbitrary point in the Euclidean
space containing its domain by using a capital Roman letter for the former and
the corresponding lower case Roman letter for the latter. Thus if X is a (scalar)
random variable, and z a real number or &+ «, we speak of the probability that
X < zand denote it by Pr{X < z}. Roman capitals will also be used to denote
cumulative distribution functions' (cdf’s): A monotone non-decreasing function
F(z) will be called the cdf of X if F(x + 0) = Pr{X < z}. The definition of
F(x) at its points of discontinuity will be immaterial. Again, E = (X;, ---,
X,) will denote a random sample from a population with cdf F(x), whereas e =
(1, -+, x,) will denote a point in the sample space R, . If ¢ is a function of e
only, t = ¢(e), then the random variable T = ¢(E) is a statistic. The order
statistics of the sample E are defined tobe — «©, Z;, ---,Z,, + o, wherez; <
zp < -+ < 2, is a rearrangement of z;, 22, ---, .. We shall write Z, =
— o, Z,1 = + ». The device of including + « and — « among the order
statistics will enable us to avoid special statements to cover the case of one-sided
estimation. Confidence coefficients will be denoted by 1 — «. Finally, it will
be convenient to symbolize’ the following three classes of cdf’s: Q, is the class of
all univariate cdf’s F'; Qs , the class of all continuous F; Q4 , the class of all F with
continuous derivative F’(z).

1 One of the authors wishes to point out the need of a clear, concise, and adequate term
for this basic and important concept.
2 The notation follows [3].
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We now list the three problems. In each case it is understood that the solu-
tion sought is to be valid for all cdf’s in some chosen class. The names® asso-
ciated with the problems are () W. R. Thompson, K. R. Nair, (77) Wilks, (4%1)
Wald, Wolfowitz, Kolmogoroff.

(?) To find confidence intervals for an unknown quantile ¢,, where ¢, is
deﬁr:ed by F(g,) = p,0 < p < 1;in other words, to find statistics 7, T such
that

(1.1) PriTi< ¢ <T:|F} =1—a.

(72) To find tolerance limits 7, T» which, with confidence 1 — «, will cover a
proportion b or more of the population, that is,

(1.2) Pr{F(T,) — F(Ty) 2b|F} =1 — o

(4#7) To find a confidence band for an unknown cdf F, that is, a random region
R(E) in the z,y-plane such that

1.3) Pr{R(E) coversg |F} =1 — q

where g is the graph of y = F(x).

The existing solutions of problem (i77) are known to be valid for F in Q,,
but those of problems (7) and (i7) have been validated only for F in @,. The
extension to F' in €, is an immediate consequence of the theorem in section 4;
this section also contains a discussion of some other implications of the theorem.
In section 5 the appropriate modifications of the solutions of problems (7) and
(72) are found which extend their validity to the general case F in @,. Whereas
Pitman ([1]; also [4], p. 310) has shown how non-parametric tests may be ex-
tended to the possibly discontinuous case, the only solution of the three estima-
tion problems previously extended to this case is that of Kolmogoroff for problem
(727). Extension from Q. to Q is of considerable practical interest, not only
in the case of populations ordinarily considered discrete, but also as affecting
the problem of the finiteness of the number of significant figures in measurements
and the resulting occurrence of ‘ties’” in ranked measurements. Before making
these extensions we discuss in the next section the transformations on which
they are based.

3. Two useful transformations of random variables. We shall reserve the
symbol X* for a random variable having a uniform distribution on the interval
from 0 to 1. Its cdf is

‘Pﬁﬁ<&
(1.4) U@E*) = PriX* < a*} =4z*if0 < 2* < 1,
\Lif z* > 1.

3 For bibliography see [4].
1 The notation Pr{R | F,} denotes the probabilityof the relation R being true, calculated
under the assumption that the cdf of the population is F,(x).
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The device of transforming from any random variable X with cdf F in @
to one with cdf U was early used by Karl Pearson and more recently by many
others; it is known in the literature as the “probability integral transformation.”
We define the transformation x* = hg(x) as follows: For —o < 2 < + o,
he(z) = F(x), he(+ ) = 4+ 0, hp(— o) = —oo. If Fisin Q,, the following
statements are evident for the transform X* = hp(X): X* has U(z*) as its cdf.
With X; = he(X;), a random sample E = (X, ---, X,) from F transforms
into a random sample E* = (X7 , X} from U. The order statistics
{Z;} of E transform into the order statistics {ZF} of E* with ZF = he(Z)),
1 =0,1,:---,n 4+ 1.

It is easily seen that if F is not in Q,, the above transformation ¥V = hy(X)
does not give Y the cdf U; indeed, if F is not in Q;, the cdf of any single-valued
function Y of X is also not in @, , for there will be at least one point = x, with
positive probability, and likewise for its transform y,. Nevertheless our argu-
ments in section 4 depend on relating a random variable with arbitrary cdf F in
Q to the uniformly distributed X*. While it is not possible to transform from
X to X*, without introducing a further random process, it is possible to transform
directly from X* to X. This suffices for our needs. We shall always denote
this transformation by X = ¢gr(X*). The following definition of the function
z = gr(2*) makes it independent of the normalization of F at its discontinuities:

(1.5) Fz — 0 < U@ < F(z + 0).

A sketched diagram may aid the reader in following the argument: To every
2* (—w < x* < + =) there corresponds at least one z, and this z is unique
unless it lies in an interval to which F assigns zero probability. In the latter
case we shall assume that some z in the interval is designated to be gr(z*). It

will be seen that it is immaterial which z is thus chosen. However if x = —
or + o isin an interval of constancy of F we specify gr(— ©) = — o, ge(+ ®) =
+ .

To prove that gr(X*) has the c¢df F(x) and thus can be identified with X, it
is sufficient to prove that Pr{gs(X*) <z} = F(x + 0). Now g»(X*) < zif and
only if X* < z3, where

zi = sup z*.
=g p (z*)

Hence Prige(X*) < z} = Pr{X* < z}} = U@} = F(z + 0). It follows
that a random sample E* from U transforms into a random sample E from F.
The transformation preserves the relation “<,” that is, if z, = gp(x: ), xp =
gp(x: ), then x < x implies z, < z,. This means that the order statistics
{Z’f} of E* transform into the order statistics {Z;} of E. We remark that
zy < 3 does not imply z, < 2, ; there is trouble when 2; < 0 or z;, > 1, and
more serious trouble if x, and z; both go into the same discontinuity of F.
However, we shall need to utilize the fact that x, < z;, implies xe < xp .
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4. Extension to continuous cdf’s. A sufficient condition on T, and T for a
solution (1.2) of problem (i) to be valid for all F in Q, is clearly that the joint
distribution of F(T,) and F(T:) be independent of F in @. If Pr{F(T;) =
p|F} =0 (@ = 1, 2), then (1.1) is equivalent to

(1.6) PriF(T) <p<F(T) |F} =1—gq,

and so a sufficient condition that a solution (1.1) of problem (z) be valid for all
F in ©, is again that the joint distribution of F(T1) and F(T?:) be independent of
Fin Q, .  We are thus led to consider sufficient conditions on a set Ty, T2, -- -,
T, of statistics, which will insure that the joint distribution of F(T,), F(T>),
---, F(T,) be independent of F in Q..

TuEOREM: A sufficient condition for the joint distribution of F(Ty), F(T%), - -,
F(T,) to be independent of F in Q, is that the {T';} be a subset of the order statistics
{Z;} of the sample.

To prove the theorem it will suffice to show that the joint distribution of the
set of n random variables F(Z,), F(Z,), --- , F(Z,) is independent of F in Q.
Let the cdf of the joint distribution be

(L7) Ge(a, Aay vy M) = Pr{iF(Z) < M, -+, F(Zs) < M| F}.

Employing the transformation z* = he(z) discussed in section 3, we see that the
above probability equals

*

(1-8) PT{Z:‘ < )\ly"':Zn < An}’

where Zy , 2%, - 2 ¥ .1 are the order statistics of a random sample E* from the
uniform cdf U. But this probability does not depend on F.

Since the existing solutions of problems (i) and (i7) are obtained by taking
T, and T, to be order statistics, we have validated these solutions for all F in
Q. That the existing solutions of problem (z72) are valid for F in @, has been
demonstrated by their authors; this is however also an easy consequence of the
above theorem. The sufficiency condition expressed by this theorem together
with a necessity condition of Robbins’ [2] may indicate a natural path to the
formulation and solution of further problems of non-parametric estimation.

From a theoretical point of view it is of interest to note that even in those
pathological cases where no probability density function exists for the cdf F
in @, (F is non-absolutely continuous), the joint distribution (1.7) of F(Zy),
F(Zs), -+, F(Z,) always possesses a density. That this density is n! for 0 <
F(Zy) < F(Z,) < --- < F(Z,) < 1, and zero elsewhere, is evident if we consider
(1.8). By ‘“‘integrating out” the other variables we are led to the following
practically useful result (it is well known for F in ©,): Choose any set {r;}
of sintegers (1 < r <1, < --- < r, < n), and consider the joint distribution
of F(Z,), F(Z.,), ---, F(Z,). This has a probability density function f(t,
o, -+, 1), providing F is in Q,, given by the formula
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a7 = )" (e — )T
1. ceet) =
1.9  fl, 4, -, ) (mn—=1D'n —r)tici (i — i — 1!

for0 <4 <t <--- <t <1,and f = 0 elsewhere. As is conventional, the
0

result of applying J] is to be interpreted as unity, and the meaning of f is
=1

given by
PT{F(Zr,-') S ai('i = 1) 2, ) S)iF}

a) az ag
=[ f -.-f f(tl,tcz,"‘,t.)dt,“‘dt2dt1-

6. Extension to discontinuous cdf’s. Suppose we have a solution of problem
(2) based on order statistics and hence valid for F in Q;, say,

(1.10) PriZi £ ¢y X Z:|F} =1—gq,
where 0 < k <t < n + 1. In particular this is valid for the uniform case,
(1.11) PriZi < p < Zi} =1 — a

We now transform from the uniform cdf U to an arbitrary F in , by means of
the transformation z = gp(z*) described in section 3. Suppose g, is defined
by ¢, = ge(p). This means the quantile g, of the distribution with cdf F is
determined from the relation

Flgp — 0) < p < F(g, + 0),

which assigns to the quantile its usual meaning if F(x) is continuous and non-
constant at £ = ¢,, and a sensible definition if F is discontinuous or constant
at ¢, . From the discussion in section 3 we have

(Zr < ¢p < Z,) implies (Zi < p < Z/) implies (Z: < ¢, < Z)),
and hence the probability relations
PriZi < ¢, < Z.|F} < PriZ{ <p < ZI} < Pr{Z: < ¢, < Z.| F}.
Substituting (1.11), we have
(1.12) PriZi < ¢ < Zi|F} £1 — a < Pr{Z: < ¢, < Z,| F}.

The statistical interpretation of (1.12) is the following: Consider any solution
(1.10) of problem (7), giving a confidence interval for the quantile ¢, , valid for F
in Q. Then with the same values of n, k, t, and «, the probability of the random
interval from Z; to Z, covering the unknown quantile ¢, is <1 — « for the open
interval, >1 — « for the closed interval, no matter what the unknown cdf F.
If F is continuous, the two probabilities are of course equal.
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To extend the soluuon of problem (iZ) to the general case F in Q, , suppose we
have a solution (1.2) using order statistics,say Ty = Z;, T = Z, 0 < k <1 <
n + 1). Such a solution will be valid for all F in Q,, in particular for F = U,

PriU(Z}) —UZ{) 2b} =1 —a.
Given now any arbitrary distribution F, we again use the transformation z =
gr(z*). From (1.5),
F(Z; — 0) < UZY) < F(Z; + 0) G =kt.
Hence A
B. < B* < By,

where

B_=F(Z, - 0) — F(Zy + 0),

B* = U(Z;) — U(Zi),

B, =F(Z,4+0) — F(Z: — 0).

Il

The implications
(B- > b) implies (B* > b) implies (B, > b)
yield the relations

Pr{B_ > b} < Pr{B* > b} < Pr{B, > b).

These may be written
(113) Pr{F(Z;—0) — F(Zr+0) >2b|F} <1 — «a
< Pr{F(Z. + 0) — F(Zx — 0) > b|F}
To interpret (1.13), let us say that a Borel set S covers a proportion = of a
population with cdf F(zx) if _/; dF(x) = =. If S is an interval from 2’ to z”,

then the proportion covered by Sis F(z” + 0) — F(z' — 0) if S is closed, and
F(z" — 0) — F(z’ + 0) if S is open. The proportion covered by a point z,
is the jump F(zo + 0) — F(zo — 0) of the cdf F at z,. The statistical meaning
of (1.13) is now clear: For the random interval from Z; to Z., the probability
that the open interval cover a proportion > b of the population is <1 — «, the
probability that the closed interval covér a proportion > b of the population is
>1 — a, regardless of the population. Again, for a continuous F the two
probabilities are equal.
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