MULTIPLE MATCHING AND RUNS BY THE SYMBOLIC METHOD

IrviNg KAPLANSKY AND JOHN RIORDAN
New York City

1. Introduction. The two subjects in the title have generally been treated by
distinct methods, an excellent summary of which is given by S. S. Wilks in
Chapter X of [13]. For two-deck matching, an appreciable simplification over
the classical work of MacMahon [7], which seems to underlie the generating
function used by Wilks [12] and Battin [2], has been shown by one of us [5]
to follow from symbolic methods. Here we give an elaboration of these methods
to multiple matching and to runs.

The basis of the symbolic method in both problems has been given in [6],
but for completeness a skeleton resume is given in Section 2 below. A new
point is stressed: the relation of coeflicients in polynomials of the symbolic
method to factorial moments (cf, Fréchet [4]).

The emphasis for the most part is on showing the expedition of the symbolic
method in reaching known results, but in several instances new results are
obtained.

2. Symbolic expressions and moments. Let 4,, ---, A, be arbitrary events
and let p(4;,, ---, A;,) denote the joint probability of A ,---, 4y ; let
P, be the probability that exactly r of the events occur. Then

M Pr= 3 (UG- (A, -+, Au)
and in particular

Po = l§ 2(_1)kp(A"n Tty A-‘k)’
or symbolically

) Py = [1 — p(A)Il — p(42)]--- [1 — p(da)].

The cases to be studied will be exclusively ones where so-called quasi-symmetry
holds, ie., p(4,, -+, Ay,) is either 0 or a function ¢: of k alone. In that
event (2) can be evaluated as follows: suppress all products that vanish, and
form a polynomial f(E) by replacing each surviving term p(4;) by E. Then
P, = f(E)¢o where E is a displacement operator: E‘¢, = o .

The same polynomial f(E) can also be used to obtain P, and the moments of
the distribution. From (1) we see that P, = f(E)yo, where i = (—1):Cr .
Again it is well known (Fréchet [4]) that the k-th factorial moment, defined by

n

Ma =2 i6G—1) - @ —k+ 1P,

1=0
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is also given by
M(k) = lc!Ep(A,'l y Ty A{.).

It follows that the terms of f(E)¢, are essentially the factorial moments. More
precisely, if

fEB) = 3. Sy(—E)",
k=0

then
3) Muy = klSupr .

3. Card matching. To avoid complications which add nothing to the funda-
mental idea, the case of three decks will be considered explicitly. As remarked
by Battin [2], there is no loss of generality in supposing that the three decks
have the same number of cards: let them be numbered from 1 to n. Let piu
denote the probability that the i-th, j-th, and k-th cards of the three decks are
matcehed, that is, all occur in say the I-th place. The condition of quasi-sym-
metry is fulfilled, the (symbolic) product of & of the p’s being either 0 or ¢, =
[(n — k)Y/nll.

The simplest problem is to find the probability that there be no triple matches
of the form (7, 7, 7). Since no products of the expression

(l - plll)(l - Pm) e (1 - pmm)

vanish, the answer is (1 — E)"¢y, in agreement with Anderson [1] (cf. also
problem E 589 in the American Mathematical Monthly, p. 512, 1943; solution
by John Riordan, p. 287, 1944). ‘

Suppose now that the decks are given compositions in the usual fashion by
having a,, by, ¢ aces respectively, az , b; , c; deuces, etc. 'We may number the
cards so that 1, - - - |, a, are aces, a1 + 1, -+, a1 + a; are deuces, and similarly
in the other decks. The probability of precisely r matches among cards of the
same denomination is then given by

(4) F(al)blycl)F(aZybzyc2)”'¢0)
where
F(a, b, ¢) = II(1 — pip)

the symbolic product being taken over ranges 1 = 1, ---, @, j =1,---,b,
=1---,c

A simple combinatorial argument reveals that

(5) F(a, b, ¢) = Zi(a)u(b)u(c)e(—E)*/2!

where (a), = a(a — 1) --- (@ — t + 1) is the Jordan factorial notation. The
problem of matching arbitrary decks is thus compactly solved by (4) and (5).
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4. Examples. When decks of explicit structure are in question, the com-
putation of probabilities and moments reduces to straightforward algebra, as is
illustrated in the three following examples.

1. Suppose each of three decks has two suits of two cards each. Then, since

F2,2,2)" = (1 — 8E + 4E%® = 1 — 16E + T2E* — 64E° + 16E’,
it follows that
(4)’Py = (41)® — 16(31)° + 72(21)* — 64(11)* + 16(0)*
= 576 — 576 + 288 — 64 + 16 = 240,

and the calculation of (4!)’P, may be set forth as follows:

T

0 576 — 576 + 288 — 64 + 16 = 240
1 576 — 576 + 192 — 64 = 128
2 288 — 192 + 96 = 192
3 64 —64= 0
4 16 = 16

each column being obtained by multiplying its first row entry by a binomial
coefficient. These results may be verified readily by direct enumeration.
2. In the case of three 5 by 5 decks, the polynomial is

F(5,5,5)° = (1 — 125E + 4000E* — 36000E®
+ 72000E* — 14400E°)°
=1 — 625E + 176,250E° — 29,711,250E°
+ 3,346,063,125E" - - -
The factorial moments can be obtained using (3).

Mg = 625/25° = 1,

Mgy = 2-176250/25%-24° = 47/48,
M = 7923/8464,
My = 1784567/2048288,

the first two in agreement with Battin [2].

3. The symbolic method can be applied to more intricate kinds of matching,
as this final example shows. Suppose that the six matches represented by
(123) and its permutations are forbidden, likewise the six matches represented
by permutations of (456), and so on in groups of three. Then

1 — ps) — P)(1 — Pas)(1 — Paa)(1 — Parz)(1 — Pam)
=1 — 6E + 6E° — 2E°
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and so the answer is
(1 — 6E 4+ 6E* — 2E%)"3,
The analogous problem for 4 decks has the solution
(1 — 24E + 108E* — 96E® + 24E*)™",

The generalization to an arbitrary number of decks involves the enumeration
of Latin rectangles, in itself a formidable problem.

6. Moment formulas. It is possible to deduce from (4) and (5) fairly explicit
formulas for the factorial moments. Let us define ' = (a)(b)«(c)¢. Then
(5) may be written symbolically as

F(a, b, ¢) = Z,u(—E)'/t! = exp (—uE).
Writing F(a;, b;, ¢;) = exp (—u;E), we then have
Py = exp [—(ur + uz + -+ -)Elo

(=B

= Zy(u + w + ee)t o

4’0’

or finally, if m + 1 decks are being matched,
(6) Py = Z(=) (s + wa + -+ )/t )T
It is to be borne in mind that after expansion of (u; + us + - --)* by the multi-
nomial theorem, the term wfuju; --- is replaced by u{®ui¥u{? ... with the
u’s defined as above.
By (8), factorial moments corresponding to (6) are given by
(7 My = (w+ w+--)/@)7.
Thus in particular
"My =wm+ w+t o = Zad; -
2" — D)"Me = (w+ ua+ ---)°
= Z;a‘(a.- bl l)b.(b. - 1) e + 22.-,‘,-a.-a,~b.-b,- L
‘the cases m = 1, 2 in agreement with Battin [2].

In the simple case where m = 1 (two decks), a; = b; = a and n = sa, we have
u? = (a); and

8) MWMy=@u+ut+ - w'

with su’s in the parenthesis. The right of (8) is the multi-variable polynomia,l
of E. T.Bell 3], Y:(¥1,¥2, - , y:) with yx = (s)u® and (s) a symbolicfactorial
such that yu; = (8)u®u'®, etc. Instances of (8) may be compared with

Olds [9].
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Expanding (8) we obtain
)My = (8)u®]' + €o(s) @™ + ---
= (8)d® + Co(s) a0’ (@ — 1)* + - -

and, since (s)./(n); — a”‘ as n — =, it follows that M, — a’, i.e., the limiting
distribution is Poisson with mean a. As indicated in [6] one may proceed to
obtain successive terms of an asymptotic series for the distribution. These
results generalize to the case where My = Za;b;/n approaches a finite limit as
n — . In certain instances where M — o, asymptotic normality can be
proved (cf. [1] and [8]).

6. Successions and runs. As shown in [6], enumeration of permutations with
a specified number of 2-successions like 12, 42, - -- may be accomplished by
introduction of symbols like ¢12, gus , denoting probabilities that 1 immediately
precede 2, 4 precede 2, resp. For permutations of objects a, of which are of one
kind, a; of a second, - - - with a1 + a2 + - -- a, = n, the probability of exactly
r 2-successions is ([6] p. 914)

9 P, = G(a1)G(az) - - - G(a:)yo
with ¢ = (—1);C.(n — k)!/n! and

G(a) = ;ﬂ (@)@ — 1)(—E)! /1.

It is to be noted that in deriving (9), elements of the first kind are numbered
1 to a;, of the second a; + 1 to a; + a2, --- and a succession occurs if either
1 precedes j or j precedes ¢ with 7 and j in the same set.

For s = 2, i.e., two kinds of elements, there is a simpler formula due to Stevens
[10], but for the general case (9) seems to be the only reasonably explicit solution
known. In particular, for the function F(a,, -- -, a,) of Mood [8] which enu-
merates the number of permutations with no 2-successions, we have

F(al y T al) = n'G(al) e G(‘h)‘ﬁo .
Factorial moments for 2-successions are given at once by (7):
(10) My = (m + wu + -+ w)/n),

with ’M?) = (a.-),-(a; - 1), .

It is more usual to classify permutations according to the number of runs,
say 7', a run consisting of a succession of ¢ like elements (z = 1,2, --- ). Since
every 2-succession causes the loss of a potential run, we have ' = n — 7, i.e. the
number of runs is n diminished by the number of 2-successions. Factorial
moments M, for runs are then given by the usual formula for change of origin:

¢
(11) My = 2; (=1"Ci(n — )i M.

Examples. 1. Introducing «; for the i-th elementary symietric function
of the a’s,
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a=a+a+--a=mn
oy = My + @b + - + Geily,
as = 1003 + - - -,
we may derive from (10) and (11) the formula
(12) ﬂ(x) =1+ 2a3/n
for the mean number of runs. The variance o°, the same for runs and 2-succes-
sions, is given by

(13) @ =Ma + Mgy — My

- 2&2(2(!2 - n) — 6nag
na(n — 1) '
For runs of two kinds of elements, formulas (12) and (13) specialize to those
given by Wald and Wolfowitz [11].
2. For runs of elements of a single kind, factors in (9) pertaining to other ele-
ments are suppressed. Thus if @ is written for a,, and terms in a;, - - - , a, are
suppressed, (9) and (10) become

P, = G(“)#’O ’
My = (a)a — 1),/(n)..

Moments for runs are given by
13
My, = Zo (=1)'Ci(ln — &)es My = (@)e(n — a + 1)./(n),
in agreement with Mood [8].
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