THE VARIANCE OF THE MEASURE OF A TWO-DIMENSIONAL RANDOM
SET

By J. Bronowskl AND J. NEYMAN
Princes Risborough, England and the University of California

1. Introduction. In a recent paper H. E. Robbins' has solved the problem
of the variance of the measure of a one-dimensional random set. The present
paper treats a similar problem relating to a two-dimensional random set under
somewhat more general conditions.

Let R denote a rectangle of dimensions a X b whose position is fixed. Let R’
denote another fixed rectangle concentric with R, its sides @ + v and b 4 v (where
v > 0) being parallel to the sides a and b respectively of R. Finally, let p derote
a rectangle of fixed dimensions but variable position, whose sides @« < 2y and
B < 2y are parallel to a and b respectively, but the position of whose center will
be considered as random. In fact it will be assumed that the rectangle p is
dropped on the plane of R in a manner which satisfies the following two
assumptions:

(i) The probability that the center of p falls within R’ exactly s times has a
defined value P, for each s = 0, 1, 2, - - - Thus, if ¥(u) denotes the probability
generating function of s, so that

(1) Y(u) = z:,) u'P,,

then ¥(u) is assumed known but will be left arbitrary till the general result is

obtained.

(i) Whenever a fixed number s of centers of p fall within R’, it will be assumed
that the probability that exactly k centers of p fall within any chosen sub-area w
contained in R’ is given by the binomial expression

| k s—k
@) (-2
ki(s — k)!R R
Under the above conditions, denote by E the set of all those points of B which
are covered at least once by the rectangle p during the course of the trials con-
sidered. Let X denote the measure of E. The purpose of this paper is to

evaluate the first two moments of X.
First, the computations will be made for the case when s is fixed, i.e. when

(3) Y(u) = u'

The values of the two moments of X computed for fixed s will be denoted by
Mi(a,b|s) and My(a,bls). Next, the moments of X will be evaluated for an
arbitrary generating function ¥(u), and these will be denoted by Mi(a,b) and
M 2((1, b)

1 H. E. RoBBINs, ‘‘On the measure of a random set’’, 4Annals of Math. Stat., Vol. 15
(1944), pp. 70-74.
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H. E. Robbins has found the first moment

@) Mia,b|s) = ab{l - (1 - "Ri-‘-f)’}

Also, for a one-dimensional set, he has obtained the second moment, say M,(als),
when a < a.

It follows immediately from (4) and (1) that, whatever be the probability
generating function ¥(u),

) My(a, b) = ab{l - \1/(1 _ %ﬁ)}

In particular, if the probabilities P, are those of Poisson when the density of
positions of the center of p per unit of area is A, so that

(6) Y(u) = &7,
then
) Mi(a,b) = ab{l — ¢ **}

Our remaining problem, therefore, is that of evaluating the second moment of
X. Instead we shall evaluate the second moment of

(8) Y =ab — X,

and shall denote it by m(a, b | s) or m(a, b) according as s is or is not considered
to be fixed.

2. Derivative of the second moment of Y. In order to evaluate m(a, b), we
begin by calculating its second (mixed) derivative, say D(a, b | s), where

2
Dia, b|s) = 6____m§z£ls)

1
= limA— {m(a + Aa, b + Ab|s) — m(a, b + Ab|s)
alAb
9) Aa,Ab—0

—m(a+Aa,b|s) +m(a,b|s)}

1
= lim Aadb I(Aa, Ab) (say),

where Aa and Ab are the increments of a and b respectively. Once D(a, b | s)
is found, the formula for m(a, b | s) will be obtained by two quadratures. For
definiteness we shall assume Aa and Ab both to be positive, but of course the
argument which follows applies equally to other cases.

Consider the rectangle of dimensions (¢ + Aa) and (b + Ab) as shown in Figure
1, and denote by U, V and W the measures of the ‘“uncovered” parts of the three
rectangles Aa X b, @ X Ab, and Aa X Ab respectively. That istosay, U, V
and W are defined with respect to these three rectangles precisely in the same
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manner in which Y is defined with respect to the original rectangle a X b =
R. Using the letter E to denote the expectation, we easily find that.
I(Aa, Ab) = 2E(YW) + 2E(UV)
+ 2E(VW) + 2E(UW) + E(W").

However, each of the three expectations in the second line of formula (10) is
infinitesimal of an order higher than the product AaAb. In fact, none of the

(10)
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Ficure 1.

variables U, V and W can exceed the area of the rectangle of which it forms part;
that is,

0 < U < bAg,
(11) 0 <V < adb,
0 < W < AaAb.

It follows that
0 < E(UW) < b(Aa)’Ab,
(12) 0 < E(VW) < ala(Ab)?,
0 < E(W* < (AadAb)’.
Hence, from (9), (10) and (12)
(13) D(a,b|s) = 2lim ﬁ) {E(YW) + E(UV)}.

We now reduce the calculation of (13) to finite form by approximating to the
infinite sets Y, U, V, W by progressively more ample but finite sets. To do so,
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we cover R’ by progressively more ample but finite networks of points. More
precisely: consider a rectangular system of axes Of and Oy oriented as in Figure 1
so that the axes are common boundaries of & X b = R and of the rectangles ob-
tained by increasing ¢ and b. Let

(14) dn = a/(n + 1), 8 =b/(n + 1).

Consider the lattice of points (zj) with coordinates

(15) P =idh, 0" =g

fori = —of™, =i +1,-+-,0,1,2, -+, n;5 = —vs”, —os” + 1, -+,
0,1,2, ---, n, where v{™ and v{™ are the greatest integers such that

(16) 1™d, < Aa

and

(17) vs™8, < Ab.

To simplify the writing, the superscripts (n) will henceforth be dropped.

With every point (37) we associate a random variable z;; defined as follows.
If in the course of the trials contemplated none of the rectangles p covers (%)),
then x;; = 1. Otherwise z;; = 0. Further, write

Y, = dnaﬂzzxif’

=0 =0

0 n

U” = dﬂ&ﬂ Z inj’
i=—v) 7=0

(]8) n 0

V,. = dnénz Z Tij,

1=0 j=—vp -

0 0
Wn = d,.&,, E E Zij.
i=—v) j=—v3
Now the boundary of the set E, for a fixed s, consists of one or more polygons
having a finite total number of sides each of boundeéd-length. It follows that,
given any ¢ > 0, there exists, for a fixed s, a number N.(s) such that n > N.(s)
implies that

(19) | Y= Y| < ¢

with similar inequalities relating to U,, V. and W, . Hence it follows imme-
diately that
lim E(Y,W.|s) = E(YW|s),

n—0

lim E(U,V.|s) = E(UV |s).

n-—rc0

(20)
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The expectations in formula (13) will therefore be obtained as limits of those
on the left hand sides of (20). We have

(21) E(Y W.|s) = &2 ZO: > E(x;f,g 15:; Zu | s),

=2 i"""?

n n 0
(22) E(U.V.|s) = dash E ZOE(:L',; > Tl )
l-—vl 7= -9
Hitherto we have made no assumptions concerning the values of Aa and Ab.
Since these are to tend to zero, we may assume that

0< Aa<vy— a2
0 < Ab <y — B/2

On this assumption, we shall now compute the expectations of the type
E(z;jx1; | 8), of which (21) and (22) are linear combinations.

Since the variables x;; and xx; are capable only of the two values unity and
zero, the expectation of their product is simply the probability that both of them
are equal to unity, i.e. the probability that both points (¢j) and (kl) are ‘“missed”’
by all the s rectangles p falling on R’. This probability may have one of two
forms. If both

(23)

(24) do|t — k| < @ and 8.|j — 1| < B,

then

(25) E(zijzm|s) ={1 - (a—d,,lz—lel)(ﬁ—énlj—ll)}
while otherwise

(26) E@izn|s) = ( - %) ;

in each case, in virtue of the assumption (ii) of Section 1.

The essential content of equations (24) to (26) is that, once the other variables
appearing in them are assigned, E(z;zi; | s) is a function only of the differences
i — kand 7 — [. It is this fact which allows us to evaluate the limits of the
quantities in (21) and (22) in a simple manner, in effect by holding one of the
two freely variable points (¢7), (kl) in a fixed position, say at the origin. Thus,
let

n+i ntj
@ E6.|) = &8t > 3 (x.,Equl)

i=—v] j=—vy k=t l=j

Owing to the remark just made, the expectation

n+i n4g n n
(28) (x., Z E Tk I S) = E(xoo kgo ;) Tkl I 8)

k=t 1=y,



TWO-DIMENSIONAL RANDOM SET 335
and it follows that

E@.|s) = (1 + 1) (s + 1) d3 6% E(xoo é g Th | s)
(29) a
= [ 4 1) (v + 1) dasal [d,.a,.kZ_; IZ_ZO E(zoo x| s)]-

Of the two factors in the square brackets in (29), the first tends to AaAb as n
tends to infinity, and the second tends to the integral

(30) j; ) j; bf’ (£ n) didn

where

(3D fem=1- 2= @-D@=w

ifboth0 < § < aand0 < 9 < B,and
=(1- %8
62) sem=(1- %)

otherwise. Thus the computation of the limit of E(6, | s) is straightforward.
It remains to show that it differs from that of E(Y,W, | s) in equation (21) by
an infinitesimal which is of an order higher than the product AaAb.

Since the variables z; are capable only of the two values unity and zero the
absolute value of the difference between the brackets in (21) and (27), that is,

between
n+4 nd7

(33) x;jz E Zr and x;;E Z Tri,

k=0 l==0 k=t 1=
cannot be greater than —n (7 + j) < n(y; + vp). It follows that
(34) | E(Y Wa|s) — E(0n]s)| < [dada(vr + 1)(v: + 1)][ndu01dn + ndnveda).
As n tends to infinity, the right hand side of (34) tends to the product
.(35) AaAb[bAa + aAb];

whence

. 1 .. . 11
lim ——{lim E@,|s)} = lim EEE(YWIS)

Aa,ab—0 AQAD 7o Aa,Ab—0
a b
= [ [ 5 maean
o Jo

A very similar procedure will serve to evaluate the limit of E(UV | s)/AaAb.
Here, we replace the two freely variable points (i), (kl) by two semi-fixed points,

(36)
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one being restricted to the axis Of and the other to the axis Oy. More precisely.
instead of considering E(U,V, | s) in equation (22) we consider, say,

n41 0
@7 Bulo) = st B 3 B(ssd 2 au)
4= —v] J= k=1 l=—vg
and it is easy to see that
(38) lim |E(U.V.|s) — E@®.|s)| < b(Aa)’ (Ab),

n-—r0

so that the quantity (37) may be used in equations (13) and (20) in place of the
quantity (22). However, since E(z:;xi:|s) depends only on the differences
1 —kandj — I

n+41 0
(39) By, X w0 = (z > )

k=1 l=—v;y =0 l=—vy

and therefore

(40) E(¢n|s) = {du(vi + 1)} {dnfszn g (-’001 Z Z xkzls)}

k=0 1=—uv,

Further, and in the same way, we may replace the sum in (40), namely

(41) EE(%:; E xuls) E E (xkzgxwls)

le=—vy k=0 l=—vy
by the simpler sum
n 0 ntl n n
> 2 B B wle) = 0 0 3 B 3 auls)
]-

k=0 laa—vg g

(42) an
= (1)2 + 1 kZo ]Z-‘:) E(xkoxo,-l S).

It follows that we may replace the limit of E(U.Va | s) as expressed in (22) by

(43) lim {dn (1 + 1)8. (v2 + 1)} {d on E Z E(xmxo,IS)}

n—o0 k=0 j=0

and this is easily found to be equal to

a pb
(44) aasd [ [ 1 (& n) dean,
where f(£, 1) is defined by the formulae (31) and (32).

Collecting this result with that expressed by (36), and substituting in equation
(13), we therefore have finally

a b
(45) Dabls) =4[ [ 1@ mdean.
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3. The forms of the derivative. Since the function f(£5 ) has two different
forms (31) or (32) depending on the relationships between a, b, @ and g, it will
be necessary to distinguish four different forms of the derivative (45), and of its

integral.
First, for values of a and b for which simultaneously
(46) a<a and b <

the integrand in (45) has the form (31) for the whole region of integration.
Hence the value of D(a, b | s) in the region (46) is given by, say

Dl=4f.,a fob(l _ 208 — (a —’E)(B-—n)>'d£dn

(47 g
a B
= 4[:-4: j‘;_bg (¢, 7) didr,
where
(48) git, r) =1 — 20‘BR———,:—E-

Next, when a 2 a but b < B, the integrand in (45) has the form determined
by (31) only when

(49) 0<t(t<a 0<7<Y,
whereas when
(50) a<¢t<a, 0<n<Y,

the appropriate form is that determined by (32). Therefore here D(a, b]s)
has the form, say,

(51) D, = 4b(a — a)( 20!}3) + 4[ f g’ (¢, 7) didr,
Similarly, for

(52) a<a but bz

D(a, b|s) is given by, say,

(53) D; = 4a(b — ,3)(1 - 3%3) fa - f g, ) didr.
Finally, in the region in which simultaneously

(54) a=a and b =5

D(a, b|s) has the form, say,

(55) D, = 4(ab — aB)( 2"“3) +4 f [ 74, 7) dtdr.



338 J. BRONOWSKI AND J. NEYMAN

4. The second moment of Y. We have now to determine m(a, b | s) for all
non-negative values of ¢ and b, from the equation

’m(a,b|s) _

(56) W = D(a, b I 8).
The general solution of this equation is
a pb
(57) m(a,b|s) = fo fo D(a, b|s) dadb + A(a) + B(),

where A(a) and B(b) are each functions of one variable. These functions are
determined by the boundary conditions, namely

a'm(a, 0 I 8) = am(O’ b l S) =0
da ab ’

which are a consequence of the inequality 0 < ¥ < ab. It is then easily found
that the only solution m(a, b | s) satisfying (57) and (58) has the following four
different forms, depending on the values of a and b.

If a < aand b < B, then

a b
(59) m(@,b]9) = [ [ Die,v) dady = m(a,b|s) (say).
0 0
Ifa = aand b < B, then
a b
m(a, b)) = mi(e b]6) + [ [ Dute, ) dudy

(58) m(a, 0 | s) = m(0,b]s) =

(60)
= my(a,b|s) (say).
Ifa < aand b = B, then
a b
o m(a,b]8) = m(a,815) + [ [ Dite, v) dady
ms(a, b|s) (say).
Finally, if a = «@ and b = B, then

a pf a pb
m(a,b|9) = me819) + [ [ Dato,v) dsdy + [ [ Duta,v) dody

(62) a b
+ f., fﬁ Dy(z, y) dxdy = my(a, b|s) (say).

The procedure used to evaluate the integrals (59) to (62) follows the same
general pattern, and we shall confine ourselves to outlining it in one case, say (59).
There

a b
m@ws=££amwmw

63) =4fo“fobdxdyj;; j;:g’(t,r)dtdr

=4[dxf:_z dt{j:bdyj:yg'(t,f)df}.
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Integrating the double integral in the braces by parts for y we get, say,

It) = fob dy f:ﬂ g'(t, ) dr = [y fﬁ: g'(t, 7) df]:

(64) ,
- 'i yg'(t, B — y) dy,

whence, substituting 8 — y = 7 in the last integral,

8 8
10 =5 [ gt —[ 6-nrend
(65) o
= [ Fb- ey
s—b

Proceeding now in the same manner with the other double integration in (63),
we conclude that

mvl9 =4 [(a [ 10d=4] @+o-at0a
(66) . a;’ a—a
=4j;_adtL4(t+a —a)(r+ b — B¢, 7)dr,

where, throughout, g(¢, 7) is defined by (48).

Formulae for ma(a, b | s), ms(a, b | s) and ma(a, b | s) are obtained by a similar
procedure. They may conveniently be summarized in the following single
expression. Define a symbol [z] for any real number z by the equations
[gl=2z if 220
[zl =0 if x§0.‘

With this notation, whatever be the relation between a, b, « and 8, we have

a B8 — T‘
m(a,b|s) =4 fw—b] t+a—a)r+Dd —3){1 —%} dtdr

[a—a]

(67)

(68) 208\
+ {a'b — B + bla — o)’ — [a — o' — ﬁ]2}<l - F?) .

We now allow s to take all values s = 0, 1, 2, - - - with probabilities P, given
by the generating function (1). Then it follows, from the form of (68), that

a

8 —
m(a,b) = 4 fM t+a—a)r+b— BV (1 - %BT,tT>dtdf

[a—a]

(69)
+ {d’lb — B’ + bla — o — [a — of]b — ﬂ]*}\l'(l - 2%3).

On subtracting from this the square of the first moment of Y, which by (5)

and (8) is
ab¥ (1 — %?,) R
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we obtain the variance oy of Y. But the variance of Y is necessarily equal to the
variance o3 of X.

6. Particular cases. (i) ¥1(u) = u’. This is the case, considered originally,
in which the number s of centers of the rectangles p falling within R’ is fixed.
The explicit evaluation of the variance ¢% depends in this case on the evaluation
of the integral

(70) f[ :_a] f[:_b] t+a—a)r+b—g) {(1 - 2-1‘;‘_‘?) + g-} dtdr.

The evaluation is easy if one expands the binomial under the sign of the integral
and integrates term by term. Each such integral is a product of two simple
integrals.

(ii) Wa(u) = €' Poisson Case. This is the case where the probabilities
P, that there are exactly s centers of rectangles p within R’ are given by the
Poisson Law, P, = (\R’)’¢*'/s!. Substituting the expression of the probability
generating function into (69), we obtain for this case

a

Y] 0
— —2aN _ _ ~
gy v =4[ f[ L Ha—ar+b-p 3

+ e d'b — BI° + b'la — of’ — [a — o' — B}
On performing the integration term by term, and contracting the first term

of the resulting infinite series into the second line of equation (71), we readily
obtain the result

—2aph S (AaB)’ B
m(a, b) = 4¢ 2afN ‘Z=l ( Z! (s + l)l:(s + 2)2

O g
s!

i 8+1
(72) X{(s+2)a~a+[a—a](1—g) }

8+1
X {(s + 2 — B8+ [8 -0 (1 —'—’B) }+ e,

where [z] continues to have the meaning defined by (67). In virtue of equations
(7) and (8), however, the last term of the expression (72) is precisely the square
of the first moment of ¥ when s is Poisson distributed. Hence, for s Poisson
distributed, we have the expression for the variance of Y and of X,

02 = az =4 e—2aﬂ)\ > (Aaﬂ)a 043
vroox sl (s Ds + 2)
a 8+1
(73) X{(S+2)a—a+[a—a](l—~—a) }

X{(s+2)b —8+ 8 —b](l —%>'H}.
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(iii) Ws(u) = ™"V Contagious case. This is the case where the prob-
abilities P, that there are exactly s centers of rectangles p within R’ are given by
the contagious law of type A with two parameters’. The evaluation of the
second moment of Y is made easy by noticing that the probability generating
function appropriate to the contagious distribution may be expressed as
a series in terms of the probability generating function of the Poisson Law
k
m

Yi(u) = e " Wi (u)

wzo k!
(74)

k
—m M AR’ (u—1)

o k!

Thus the evaluation of the integral intervening in the formula for the second
moment of Y is reduced in the present case to that of formula (71).

6. Remarks on other cases. (i) It may be of interest, in amplification of
H. E. Robbins’ results, to exhibit the analogues of formulas (68), (69) and (73)
in the one-dimensional case. Fot this case, then, if the interval a is embedded
in a larger interval @/, we obtain by similar methods beginning with the calcula-
am(a | s)

da ’

75) mal|s) = 2];:_01 t+a— a)<1 - 2aa7 t)‘ dt + [a — a]2(1 - _25>a’

whence

tion of

a

() m@) =2) (t+a- aN(l _ 2 ‘)dt+ la —a]2\11(1 —?i',‘);
] a a

[a—a

in particular, if s is Poisson distributed,

2 _ 2 —2a\ - (ax)‘ o
ox = v =2 3;1 sl s+ Dis+ 2

X {(8 +2)a — a + la — 4a (1 — g)sﬂ}.

The close parallel between these formulas and those for two dimensions make it
natural to conjecture analogous formulas for » dimensions; but we have not
attempted to establish such formulas.

(ii) For the evaluation of the higher moments of Y it may be useful to notice
that precisely the same method as that described above leads to the conclusion
that the derivative of the n-th non central moment of Y is

@7

8> ma(a, b) o 1 n—1 _ n—2
(78) —3adh = ._\al,lAI?—»o Aadb (nE(X"' W) 4+ n(n — NE(X""UV)}.

2 J. NEYMAN, “‘On a new class of contagious distributions’’, Annals of Math. Stat.,
Vol. 10 (1939) pp. 35-57.



