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means of any two rectangular populations, and has in the limit the distribution

(10), if the means of the populations are equal.

z can be used to test the hypothesis of equality of

6. The one-parameter rectangular distribution. If f(z) = 1/A, (0 < z < N),

then f(z1, -+, 2. |») = »"™". Thus v is a sufficient statistic and is evidently
the maximum likelihood estimate of \. Here F(v) = (v/N)"; f(v) = " A™™;
and w(v) = N*n/(n + k). The normalized error y = n(A — v)/\ has the prob-
ability density function f(y) = (1 — y/n)""", which tends to ¢ as n increases.
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ON THE POWER FUNCTION OF THE SIGN TEST FOR
SLIPPAGE OF MEANS

By Joun E. WaLsH

Princeton Unaversity

1. Summary. This note compares the power functions of the sign test for
slippage with the power functions of the most powerful test for the case of nor-
mal populations. The sign test is found to be approximately 959, efficient for
small samples.

2. Introduction. Let us consider a univariate population whose mean equals
its median and whose cumulative distribution function is continuous at the
mean. A sampling method of testing the supposition that the mean of this
population exceeds a given constant value uy (slippage to the right) is furnished
by considering how many values of the sample are less than gy . An analogous
method applies for testing whether the mean is less than u, (slippage to the left).
A particular class of populations for which the sign test is valid are the normal
populations. This note compares the power functions of the sign test with the
power functions of the most powerful test for slippage for the case in which the
population is normal (Table I). It is shown that the sign test is approximately
959, as efficient as the most powerful test (the Student ¢-test) for samples of size
4, 5 and 6, and that although the relative efficiency of the sign test decreases as
the sample size increases, its efficiency is approximately 759, for samples of size
13. This supports the idea that for normal populations little efficiency is lost
by using attributes instead of continuous variables if the sample size is small.

In choosing between the sign and Student i-tests for slippage the following
considerations may be of interest :
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(a) The sign test is valid for a more general class of populations than the é-test.

(b) The sign test is almost as efficient as the ¢-test for small samples from nor-
mal populations.

(¢) The sign test is much more easily computed than the ¢-test.

(d) The sign test has a very limited choice of significance levels for small
samples while the t-test can have any desired significance level for any size
sample.

The considerations (a) to (d) also apply in choosing between the sign test and
the Daly test based on (& — po)/R, where £ is the mean and R the range of the
sample used for the test (see [1]).

In section 5, Table II shows that for small size samples the significance levels
of the sign test do not change greatly if the mean is only approximately equal
to the median.

3. Statement of sign test. Let x,, -, 2, be a sample of size n from a uni-
variate population whose mean equals its median and whose cumulative distribu-
tion function is continuous at the mean, that is, which has the property that

1) Prizx < p) = Pr(z > p) =3
where u is the population mean.

The significance test to decide whether u exceeds a given constant value o
is defined by

(2) If m or less of the sample values z, , - -+ , &, are less than py , accept p > po .

The significance test to decide whether u < w is given by
8) Ifmorlessof 1, -+, x, are greater than uy , accept u < po .

It is to be observed that in both (2) and (3) the null hypothesis tested is that
&= po. In(2)the alternative is u > uoand in (3) the alternative is u < wo .

From (1) it follows immediately that (2) and (3) both have the same signif-
icance level a(m, n), where

m

1y n!
a(m, m) = )" 2 .

Appropriate choices of m and n will result in values of a (m, n) suitable for sig-
nificance tests. For example

«(0, 4) = .0624, a(l,8) = .0352
«(0, 5) = .0312, a(1,9) = .0195
a(0, 6) = .0156, (1, 10) = .0107
a(l,7) = .0625, a(2, 13) = .0112.

If the population has a continuous distribution function, Pr(z; = z; ;¢ = 7)
= 0. In this case let 2(; be the ith largest of z;, ---, ,. Then (2) can be
restated as

@ If T(m41y > po, accept p > po -
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Test (3) is seen to be equivalent to
(5) If Z(nm < o, accept p < po .
Thus for the case of populations with continuous distribution functions it is

only necessary to determine one order statistic and compare it with u, in order

to apply a test.

It is to be observed that a particular class of populations which satisfy (1) are
those which have distribution functions which are symmetrical and continuous.
Thus the normal populations represent a particular class for which (4) and (5)
are valid.

4, Comparison with Student {-test. Consider the case in which the popula-
tion is normal with mean u and variance o°. Then the power function for (4)
is given by

Power Function = Pr(x(m+1 > o)

= Pr (m<,,.+1) — Kk S Mo — M)
g g

B ;,7@“—%:"17: f:([.,f @) dy)m ( f ) dy)"—"—}(x> dz,

where

IS N _Mo—
f@ > e and é —

For a normal population, however, it is well known that the most powerful
Studentized test of the one-sided alternative u > uo is the appropriate Student
t-test. Values of the power function for the ¢-test are found for given values of
& by using the normal approximation given in [2].

The method of measuring the relative efficiencies of the two types of tests will
be different from the common method of measuring the relative efficiencies of
estimates, which consists in taking the ratio of the variances of the two esti-
mates as the measure of their relative efficiency. The principle followed here
will be to consider a sign test based on a given sample size and vary the degrees
of freedom of the ¢-test having the same significance level until the power func-
tions of the sign test and ¢-test agree in the sense that in the half-plane § < 0
the area between the two power curves for which the sign test power function
exceeds the ¢-test power function is equal to the analogous area for which the
sign test power function is less than the ¢-test power function. The considera-
tions are limited to the half-plane § < 0 because the test is one-sided. The size
oi the t-test sample having this property divided by the size of the sign test sam-
ple is called the relative efficiency of that sign test. Intuitively this relative
efficiency measures how much more data must be added if the sign test is to
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furnish an amount of information equivalent to that supplied by the ¢-test. In
obtaining the relative efficiencies in the manner described above, the degrees of
freedom of the t-test are allowed to assume fractional values and the values of
the power function are computed using the normal approximation as if it were
valid for fractional degrees of freedom. The number of degrees of freedom, of
course, can only be integral. This method, however, gives an interpolated

,/
N

TABLE I
A comparison of the power functions of the sign and t tests
Approx- | Values of Power Function

T | m | on | gimete, e
Efficiency d=—3} | d=—1 | 6=—1} | 6=—2
t 3.8 .0624 .219 .484 | .755 | .920
sign 0 4 959, .0624 .229 .500 .755 | .908
t 4.8 .0312 .150 .402 | .709 | .909
sign 0 5 969, .0312 .159 | .420 .703 | .888
t 5.7 .0156 .098 .330 .660 | .899
sign 0 6 959, .0156 .110 .355 | .655 | .863
t 5.6 .0625 .306 .695 .932 | .995
sign 1 7 809, .0625 311 J711 .920 | .988
t 6.4 0352 | .225 | .619 | .908 | .989
sign 1 8 80% .0352 .239 .630 .869 | .978
t 7.4 0195 | .171 | .565 | .803 | .988
sign 1 9 829, .0195 .182 .573 .879 | .974
t 8 .0107 .117 .468 .848 | .983
sign 1 10 80%, .0107 .137 .515 | .853 | .964
¢ 9.75 .0112 .162 .631 950 | .998
sign 2 13 759, .0112 .165 .661 .949 | .998

measure of the size sample of the {-test having the properties outlined above.
Table I supplies a comparison of the relative efficiencies and the powers of the
sign test and the ¢-test obtained in the manner just described. Thus for samples
of size 4, 5 and 6 the sign test is approximately 959, as efficient as the Student
t-test. The relative efficiency decreases as the size of the sample increases but
even for samples as large as 13 is approximately 75%,.
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For normal populations it is also well known that the most powerful Student-
ized test of the alternative u < po is given by the appropriate Student ¢-test.
It is clear that Table I can also be considered as a comparison of test (5) with
the corresponding Student ¢-test if § is replaced by —é and m by n — m.

6. Approximate cases. Suppose that (1) is only approximately satisfied by
the population in question.
Let Pr(x < u) = % 4+ r. Then the significance level of (2) is

m

n!

gm' (% + T)j(-% — T)n—j.

(6)

Significance levels of (2) for small size samples are given in Table II as a func-
tion of r.

TABLE II
A comparison of the significance levels of the sign test when the mean differs from
the median
Significance Level
m n
r=0 r=-—.02 r=—.05 r=.02 r=.05
0 4 .0624 .073 .091 .053 .041
0 5 .0312 .038 .050 .026 .019
0 6 .0156 .020 .028 .012 .008

Table II shows that for small samples the significance level of (2) does not change
greatly from a(m, n) if (1) is only approximately satisfied. Expression (6)
shows, however, that for large size samples even a small value of r can cause a
large change in the significance level of (2).

For Pr(x < w) = % -+ rit is apparent that the significance level of (3) is (6)
with 7 replaced by —r so that Table II applies to tests (3) if this replacement is

made.
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