CONTRIBUTIONS TO THE THEORY OF SEQUENTIAL
ANALYSIS, II, III

By M. A. GIrsHICK
United States Department of Agriculture

Summary. This is a continuation of a paper Part I of which was published in
the June, 1946 issue of the Annals of Mathematical Statistics. The present paper
is divided into two parts, Parts II and III, which are summarized as follows:

Part II. The Exact Power Curve and the Distribution of n for Sequential Tests
Where z Takes on a Finite Number of Integral Values.

Consider a sequential test defined by a decision function Z, = 2 z, with

a=1
boundaries —b and a where a and b are positive integers and z, is the ath ob-
servation of a variate z which takes on a finite number of integral values ranging
from the negative integer —r to the positive integer m with respective probabili-
tiesp_,, -, Dm. Letési=PlZ,=(a+12)],E=1,2 ---m —1),and &; =
PlZ.,=—-0b+),(G=1,2 ---,r—1). Furthermore, let A be a square matrix
of @ + b — 1 rows and columns with elements defined by: a;; = 1 — p, for all ¢;
Gy = —pefork =1,2,--- m;a;;_;= —p_jforj=1,2, .-+ r;and a;; = 0
otherwise.
It is proved that

r—j—1

M &= 2 pirdejois,  G=0,1,-+,r—1)

m—j—1

(i) & = 20 Ditir1datb—i1p, G =0,1, -+ ,m— 1,

where A;; is the element of the kth row and bth column in A™. Let E,;r"
and E,;r" be the conditional generating function of n under the restriction that
Z, = (a +j) and Z, = — (b + j) respectively. Then &;E;;r" is obtained by
, substituting rp; for each p; occurring in equation (i) and &,;E, ;7" is obtained by
substituting rp; for each p; occurring in equation (ii). The probability that
Z, = a + jin exactly » steps is given by the coefficient of 7" in the expansion of
£.;84;7" in a power series in 7. The probability that Z, = — (b + j) in exactly
n steps is similarly obtained.
This method is applied to the derivation of the exact power function and the
distribution of n for the sequential binomial probability ratio test.

Part IT1I. On Conjugate Distributions.

Consider a random variable X with a distribution density f(x, §) which satis-
fies certain specified conditions. Let 6, and 6, be two values of ¢ and let z =
log (f(z, 6;)/ f(x, 61)). For any hypothesis 8 = @', let (¢| 6) be the moment
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generating function of z and h the non-zero value of ¢ for which ¢(¢ | 6) = 1.
We set F(z) =¢"f(x, ¢). Then f and F are conjugate distributions. If
F = f(z, "), then ¢ and 6"’ are defined as conjugate pairs.

A method is given for obtaining the totality of conjugate pairs for the general
class of distributions which admit a sufficient statistic. ‘It is then shown that
the power of the sequential probability ratio test based on such distributions is
given explicitly in terms of these pairs. It is proven that within the approxima-
tion obtained by neglecting the excess of | Z, | over a¢ and b at a decision point
the following relationship holds:

Py(n | F) e—thb(n If)
P.n|F) = ¢*Pun|f)

where Py(n | g) and P,(n | g) stand for the probability that Z, > aand Z, < —b
respectively in exactly n steps under the hypothesis g.

II. Tar Exact PoweR CURVE AND THE DISTRIBUTION OF 7 FOR SEQUENTIAL
TEsTs WHERE 2z TAKES ON A FINITE NUMBER OF INTEGRAL VALUES

2.1. General discussions. Let a sequential test be defined by a decision func-

tion Z, = 2 z, with boundaries —b and a where a and b are positive and z,

o=l
is the ath observation of a variate z which takes on a finite number of integral
values, —r,7+1,---,—1,0,1,2, -+, m. Let P(z = 7) = p; where P(z = 1)
stands for the probability that z takes on the value . 'We shall assume without
any loss of generality that ¢ and b are integers.

When the sequential test terminates with Z, > a, the possible values that Z,
can take on are: a,a+ 1, ---, @ + m — 1. Similarly, when the sequential
test terminates with Z, < —b, the possible values which Z, can take on are:
'—by _(b+ 1)) ) —(b+’l‘— 1)- Letgan’ = P[Zn = (a—l_@)]ai: 01,---
m—1,and &; = P[Z, = —(b+1)],¢=0,1,---,7 — 1.

For any variate u, let the symbol E(u) stand for the expected value of u
under the restriction that Z, = — (b + %), and the symbol E,;;(u) stand for the
expected value of u under the restriction that Z, = a 4 7. Let ¢(¢) be the gen-
erating function of z. Then

(2.101) o(t) = fﬁ pit'.

1= —7

In terms of the generating function, the Fundamental Identity (see section
2.32 in [6]) can be written as

r—1 m—1
(2.102) 2 bt O Ble()) " + X b ™ Eale O] = 1.
It follows from (2.102) that for all values of ¢ for which

(2.103) () = }:_‘, pt =1,

= —r
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r—1 m—1
(2.104) VO =2 it + Xt = 1
= i=0

where ¥(t) is the generating function of Z, .

In the paper “The cumulative sums of random variables” [2] Wald has given
the following method for obtaining the probabilities £; and £:. Let b, t,
***y trim be the r + m roots of (2.103). Substituting these in (2.104) we get
r + m linear equations in the r + m unknowns, £,; and &; . Thus, if the deter-
minant of these equations is different from zero, the unknowns can be solved
in terms of the roots of (2.103). In a similar manner, the characteristic function
of n under the restriction that Z, = ¢ can also be obtained.

The above method has two disadvantages. First, it involves solving for
all the roots of a polynomial which will often be of a high degree and second, it
involves solving a set of linear equations with coefficients which are powers of
complex numbers.

The method outlined below is in many respects much simpler. It requires
only the evaluation of one column of the inverse of a matrix of ¢ + b — 1 rows
and columns. The elements of the matrix are given explicitly and are either
0, 1 or p;. This permits obtaining general solutions for special classes of
sequential tests.

2.2. Derivation of the exact power functions. We multiply ¢(f) — 1 by ¢
and ¢(t) — 1 by £ and obtain two polynomials.

m+r
and
r—1 m—1
(2.202) g(t) = ;o Eb]'tr_j—l — tb"'r—'l + Eo E‘" ta‘f‘b'i'f'i'}'—l
7 < g

where 8;; = 1 when ¢ = k and zero otherwise.

By the Fundamental Identity, every root of f(t) is also a root of g(f). Since
J(2) is of degree m + r and g(¢) is of degree a + b + m + r — 2, it must follow
that g(#) equals f(t) times a polynomial of degree a + b — 2. That is,

a+b—2

(2.203) g(t) = 1(0) 2._30 ot

where the ¢’s are undetermined constants. Substituting from (2.201) in (2.203)
we obtain
a+b+4+m4r—2

(2.204) g(t) = g; Q¥

1 It is assumed here that f(¢) has no multiple roots. The author conjectures that this is
true for the polynomial under consideration for all values of p.
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where
i
(2.205) Q= g (Pi—r — Sir)Cisi .

Comparing the coefficients of (2.204) with those of (2.202) and taking into
aecount the fact that p, = 0 when k > m and ¢; = 0 whenk > a + b — 2, we get

r—j—1
(2206) & = "Z‘o Di—r Cr—j—i—1, (j = 0; 1, .- yr— 1)’
and
m=i—1
(2.207) bj = ;o Diti+1Catb—i—2 5 G=0,1,---,m—1).

Thus, if the ¢’s (we require only the first r and the last m) are determined, the
probabilities £,; and & are also determined from (2.206) and (2.207). But, if
we examine the structure of g(¢) in (2.202) we see that the coefficients of ali the
powers of ¢ from r to (a + b 4+ r — 2) inclusive are zero except for the co-
efficient of £*"* which is equal to —1. Consequently, if in (2.204) we set
Q; = —8jpra, forallj =r,r+1, ---, a4+ b+ r — 2, we shall have the
required number of equations to solve for the ¢ + b — 1 unknown ¢’s.
In view of (2.205) these equations can be written as

i
(2.208) zo (8ir — Dir)Cimi = 8jprr1, G=r-,a4+b+r—2).
Changing the range of the subscript j, we get

itr—1
(2.209) 'Zo (Bir — Pi-r)Citr—ia = &, G=12,---,a4+b-1),

with the understanding that p, = Owhenk > mand ¢, = Owhenk > a + b — 2.

Let A be the matrix of the equations in (2.209)." Then A is of the following
form. The elements in the main diagonal are (1 — p,). In the diagonals to
the right of and parallel to the main diagonal, the elements are —p_;, —p_s, - - -,
—p—, 0, ---, 0 successively; in the diagonals to the left of and parallel
to the main diagonal, the elements are —p;, —ps, -+, —Pm, 0, -+, O suc-
cessively. Assume that the determinant of A is different from zero® and let
A7 be the inverse of A. Let the elements of A™" be designated by A:;, (i, j=
1,2, :--,a+4+ b —1). Then, in view of (2.209) we get

(2.210) C; = A,'.'.],b, (] = O, 1, 2, cee, a + b — 2).
Finally, from (2.206) and (2.207), we have,

r—j—1

(2211) &; = g pi-—rAr—i—i.b, (j = 03 1’ 2’ e, T — 1)’

L3

2 P. L. Hsu has submitted a simple proof to the author that A is non-singular.
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and
m—j—1
2.212) fai = 2 Pirin Aeriita, G=01,2--,m—1)

where, as before, it is understood that pr = 0 when k¥ > m and A, = 0 when,

k>a+0b— 1.
From (2.211) and (2.212) we can obtain the probability that Z, < —b and

the probability that Z, > a since these are given by

r—1

m—1 r—1
2 &; and IR (= 1-2 Ebj)
1=0 =0 =0

respectively. We can also obtain En, the average number of steps required
to reach a decision. For, if we differentiate (2.102) with respect to ¢ and
set { = 1, we get

m—1 r—1
EZ Z fai(a +7) — y &:i(b + 9)
(2.213) E(n) = Ez" — =0 _ i=0
2 ip;

f=—r

2.3. Derivation of the probability that the sequential test will terminate in
exactly n steps. Let ¢(¢) be the generating function of z and (¢, 7) the joint
generating function of Z, and n. Then

(2.301) o) = 2 pit’

and
r—1 m—1

(2.302) Yt 1) = D il C Byt + D Eait™  Egit™.
1=0 =0

Furthermore, let ¢,(¢, 7) = 7¢(t) — 1 and ¥1(¢, 7) = Y(¢, 7) — 1. In terms of
these functions, the Fundamental Identity can be stated as follows: For a fixed
T, every root of ¢1(¢, ) is also a root of y¥i(¢, 7). Let f(¢t, 7) = t'¢s(t, ) and
git, 7 = €7 7W(t, 7). Then

m-r

(2.303) f ) = X (pir — )t

and

(2.304)  g@,7) = :Z;:l) (Bos Enr™) 7 = 771 4 ':2: (aj Boj e
Since for a fixed 7, every root of f(¢, ) is a root of g(¢, 7), and since f(¢, 7)

is a polynomial in ¢ of degree m + r and g(¢, 7) is a polynomial in ¢ of degree
¢+ b+ m — 2, it must follow that®

3 See footnote 1, section 2.2.
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a+b—2

(2.305) g(t, 7) = f(¢, 7) ‘_Za dit'.

The rest of the argument is identical with that of section 2.2 except that the

unknowns in this case are & ,E; ;7" and £ ;E, ;»" and are given by
r—j—1

(2:306) biBoit" = 2 TPir i, (G=01,-,r—1,
and

m—j—1
(2.307) faanan = g Tpi+i+lda+b—i—2’ (j = 0’ 1’ teryM — l)’

(see (2.206), and (2.207)) where the d’s are obtained by solving the linear equa-

tions:
J4r—1

(2.308) ; (0i—r — ™Di—r) Aiyr—ic1 = 8, 1=12 ---,a+b—-1),

(see (2.209)). Thus, we see that the solution for &;Es+" is obtainable from
the solution given in 2.2 for £; by substituting 7p; for every p; appearing in the
expression (2.211). Similarly, the solution for £,;E,,v" is obtainable from the
solution given for &,; by substituting 7p; for every p: appearing in the expression

(2.212).
Let p(Z,. = k | n) stand for the probability that Z, = k in exactly n steps and
let pui(n) = plZ, = (@ + 1) | n] and pe(n) = p[Z, = —(b+ 1) |n]. Then

Pai(n) and pei(n) are given by the coefficient of 7" in the expansion of £,;E.:r"
and £, Epi7" respectively in a power series in 7. That the expansions are valid
can be seen from the following considerations: If we examine the solutions given
for faiEaiTn (7' = Oy ly tee, M — 1)) and SbiEbiTn (7' = 0, l, ce, T — l), we see
that each is a ratio of two polynomials in , the polynomial in the denominator
is, in each case, the determinant of the linear equations (2.308). Now, it is easy
to see that this determinant eqals 1 when r = 0. Hence the expansions are
valid in a neighborhood of 7 = 0.*
Let pan = plZ, 2 a|n] and py. = p[Z, < —b | n]; then

(2.309) Pan = "g Pai(n)

and

(2.310) Do = ‘:Z: Pvi(n).

We have also:

(2.311) g Dan = 2_".‘: (s = p(Zn 2 0)

4 It can be seen from (2.303) that for a fixed 7, f(¢, ) = 0implies that ¢(¢) = 1/r. Hence
if 1 <1, ¢(r) > 1. Thus, the Fundamental Identity is valid in the neighborhood of r = 0,



288 M. A. GIRSHICK

and
0 r—1
ma Lo

where my is the smallest integer greater than or equal to a/m, and m, is the
smallest integer greater than or equal to b/r.

2.4. Application of the method to the binomial distribution. We shall
consider the binomial in terms of acceptance inspection although the results
are general.

Let a sequential acceptance inspection plan be defined by p:, p:, o and g8
where p; is the fraction defective which can be tolerated in the lot, p, is the frac-
tion defective which cannot be tolerated, « is the maximum probability that the
lot will be rejected when the fraction defective is p; or less and 8 is the maximum
probability that the lot will be accepted when the faction defective is p. or
greater. Then the sequential criterion is given by two parallel lines ([1] and [3]).

(2.401) di= —h + sn
(2.402) ds = hy + sn
where
1l —«a
log 5
2.403 h=—
( ) ! log p2(1 — p1)
pi(l — po)
log ! : B
2.404 =«
( ) & log Pl — p1) .
pi(1 — p2)
log 2
1 — p.
(2.405) = - " P2
log D2 (l _ pl)
p1 (1 — p2)

and n is the number of observations taken sequentially. We assume that
a+ B <landp; < p;. Then h; and h; are positive and s lies between 0 and 1.

The sequential procedure is as follows: Items are examined one at a time in
sequence. If at any stage, the cumulative number of defectives found in the
sample thus far taken is less than or equal to d, given by (2.401), the lot is ac-
cepted; if the cumulative number of defectives is greater than d, given by
(2.402), the lot is rejected; if neither holds then another observation is taken
and the process continued.

It is easy to show that the sequential test described above is equivalent
to the following: A variaté z takes on the values —s and 1 — s with respective
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probabilities ¢ and p. A sequential test is defined by the two boundaries —h,
and h; and by the decision function Z, = le,. where 2, is the ath observa-

tion on 2. The sequential test terminates if and only if Z, < —hior Z, > h, .

As was mentioned above, s lies between 0 and 1.° We shall derive the exact
power and the distribution of » for this sequential test by assuming that s =
u/v where % and v are integers and ¥ < ». This restriction is not serious since
every value of s can be approximated to any degree of accuracy by a rational
fraction; and, moreover, when the sequential test is applied in practice, s is
always taken as rational.

Suppose s = u/v. Then the sequential test is equivalent to a test in which
the variate z takes on the values —u and v — u with probabilities ¢ and p,
respectively, and the boundaries are given by —hw and hw. Let b be the small-
est integer greater than or equal to hw and a be the smallest integer greater
than or equal to hw. Then, since « and v are integers, there is no loss in gen-
erality in assuming that the boundaries are —b and a. We shall also assume
that u and v are prime to each other (i.e. the fraction /v is reduced to lowest
terms) so that the interval (—b, a) is the shortest possible for this test.

The above discussion shows that a sequential test based on the binomial
can be considered as a special case of the class of tests treated in this section.
Since z takes only on two values, the linear equations (2.209) assume the simple
form: :

(2.401) —=2C ju—va + Ci1 — qCj1u1 = &5, G=1,2---,a+b—-1)

where C; = 0 when k is negative or greater than ¢ + b — 2. In terms of the
C’s, the & ;and E,; are given by

(2-402) foj = qC — =1 (.7 =01, ---,u— 1):
(2.403) toj = @Catbru—otiz, (G =0,1, -0 —u—1).

The conditional generating functions of n are obtained by solving (2.401)
with 7p substituted for p and rq substituted for g.

Since the first ¥ — u and the last » equations in (2.401) contain only two
terms and all the other equations contain only three terms, the C’s can be ob-
tained without too much difficulty by direct substitution provided a + b is
not very large. When a + b is sizeable, a general solution is called for. So far,
the author has been able to obtain this only for the case = 1. This special
case also has been considered by Walter Bartky [4].

Setting 4 = 1 in (2.401) we get

(2.407) —pC,'_., + C;.1—q0,- = Bb,', (] = 1, 2, e, G + b — 1)_,

where Ci = 0 when k is negative or greater than @ + b — 2.

8 In fact, it follows from Theorem 1, section 3.2 below that p; < 8 < ps.
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Consider a general set of equations of the form (2.407) with the subscripts
ranging from 1 to an arbitrary integer k. Let the determinant of these equa-
tions be designated by A;. Then by direct expansion it can be shown that
Ay satisfies the difference equation.

(2408) Ay = Apy — pqv—lAk.‘,
with the initial conditions
(2.409) Ai=1, i=12---,0—-1; A =1-—pg
The difference equation (2.408) can be solved by well known methods. We set
(2.410) #(z) = 2 A2
j=1
and then multiply each side of (2.410) by 1 — = + pg°z°. This yields
(2.411) (1 —z+ pg" 2")(x) = Z‘i [A; — Ajy + pg” Al
=

But by (2.408)' and (2.409) we find that the right-hand side of (2.411) equals

»—1_v-—1

1 — p¢" z". Therefore,

v—1 ov—1

l1—p¢g 2«
1 —2 + pqv—l x°
If we expand (2.412) in a power series in z, the coefficient of z* will be Axy; .
This expansion can be performed readily and we get:

(2.412) ¢(z) =

mL . . o : m2 —p—5 (9 9—]
(2413) e = X (=D'CF 0Ty = 2 (=17 O g Ty

where m, stands for the largest integer less than or equal to,k/v m; stands for the
largest integer less than or equal to k— v + 1/v and C; =r!/ti(r — t)1.

Let us define Ay = 1and Ay = Owhenk < 0. Then, in terms of the extended
definition of A, C;is given by
_ A,'Aa_l - Aj—b Aa+b—1

A

forj =0,1, ---, a+ b — 2. To prove this, we substitute in the left-hand
member of (2.407) the expression for Cx given in (2.414) and get

Aars1(Ajs — Ajss + pg” " Aivs) — Aaa(AjAi1 + pg” 7 Ap)
qj - Aa-l—b—l

But in view of (2.408), (2.409) and the extended definition of A; , the expression
in (2.415) vanishes forallj ¢ b. When j = b, ]the expression equals 1. Hence,
it follows that (2.414) is the desired solution.

Let L, = p[Z, < —b]. Then L, , when plotted against p, gives the operating
characteristic curve for this sequential test. But L, = ¢C,. Hence, we have

(2.414) C;

(2.415)
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(2.416) L, =

As a final remark, we wish to point out that the solution to the sequential
problem presented in this section, where taken in conjunction with Wald’s
solution, is of mathematical interest, since it relates each element of the inverse
of a square matrix (designated by A4 in this section) with the roots of a poly-
nomial f(¢) given by (2.201).

III. CoNJUGATE DISTRIBUTIONS

3.1. General discussion. Consider a random variable X with a distribution
density f(z, ). Let 6, and 6, be two specified values of 6 and let

(3.101) z = log

For any hypothesis § = ¢, let ¢(¢| 6') be the moment generating function
of 2. That is,

(3.102) o]0 = [ e’f(z, 0’) dz.
Let h be the real non-zero value of ¢ for which ¢( | 6") = 1" and let
(8.103) F(z) = *f(z, 0).

Then F(z) is a distribution density. Following Wald [5], we shall call F(x)
and f(z, ¢) conjugate distributions.

The distribution density F(r) depends on 6;, 6., and ¢’. In some instances
F(z) will be a member of the class of distributions f(z, 6). This is the case,
for example, when z is a discrete variate. It is the case also if 6" = 6,. For
then h = 1 and F(z) = f(z, 6;). If F(x) belongs to the class of distributions
f(z, 6), we shall designate F(x) by f(z, 6”) and call ¢’ and ¢" a conjugate pair.

3.2. Conjugate pairs and the power curve for sequential probability ratio
tests in which the underlying distributions admit a sufficient statistic. Let
f(x, 6) admit a sufficient statistic and let a sequential test be defined in terms
of the probability ratio z given by (3.101) for some specified hypothesis 6, and
alternative hypothesis 6, with 6; < 6.. Let the boundaries be given by —b
and a where a and b are positive. Since f(z, 6) admits a sufficient statistic,
it can be written in the form

(3.201) f(x, 6) = @ OHETO
The probability ratio z is then given by the simple expression
(3.202) z = u@)(8) — v(6)] + w(b) — wiBy).

¢ If X is discrete, then f(z, 6) stands for the probability that X = z when @ is true.
7 See section 2.31 and Lemma II, section 2.32 in [6].
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Let
_ b
(3.203) b* = = v(fh)
a
(3.204) a* = TS
(3.205) s = W) — w(E:)

(6 — 0(6)
In terms of b*, a* and s, the sequential criterion is defined by two parallel
lines®
(3.206) A, = —b*+4 sn
(3.207) R, = a* +sn

and the decision functions . u(z.). The hypothesis 6 = 6, is accepted
am=]
whenever ZI u(zs) < A, and rejected whenever 5:’1 u(r.) > R,. If

A, < > u(zs) < R,, another observation is taken. This process is con-

a=1
tinued until one or the other decision is reached.

In what follows, we shall restrict ourselves to the general class of functions
J(x, 6) for which the differentiations under the integral sign indicated below
are permissible and »(6) is a monotonic function of 6.

Consider the function

(3.208) ¥(0) = sv(6) + w(6).

We shall show that ¥(6) = constant has exactly two roots in . To this end,
we prove the following theorems. 7

TaeoREM 1. Let Eu(x) | 0 be the expected value of u(x) under the assumption
that 0 is true. Then there exists a value of 6 = 6o such that (a) Bu(z) | 6 = s;
() 6, < 6 < Gand Eu(x) | 6, £ s < Eu(z) | 6, 3f v(0) is an increasing func-
tion of 0, and the inequalities are reversed if v(0) is a decreasing function of 6.

Proor: Assume that v() is an increasing function of 0. Let 2* = u(z) — s
and let ¢(f) | & be the moment generating function of z* under the hypothesis
that 6 is true. Then, it is easy to see that ¢(h|6;) = 1 and ¢(—h|6) = 1
where h = v(6;) — v(6,). Since & is positive, it follows by Lemma 1, section
2.6 of [6], that Ez* | 6, < 0 and Ez*| 6; > 0. Therefore, Eu(z) | 6 < s and
Eu(z) | 2 > s. Moreover, as we shall see in the proof of Theorem 2 below,
Eu(zx) | 6 is assumed to be a continuous function of 6 and proved to be mono-

8 It is here assumed that v(82) — v(6:) > 0. If this is not the case, then a* and b* have
to be interchanged.
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tonically increasing. Hence it must follow that there exists a 8 = 6, such that
Eu(z) | 6o = sand 6, < 6, < 6.. This proves the theorem in case v(6) is mon-
otonically increasing. However, the argument is identically the same in case
v(0) is monotonically decreasing.

TaEOREM 2. Let (6) be defined as in (3.208). Then Y(6) is a monotonically
increasing function of 6 in the interval 8 < 6, ; assumes a marimum at = 6, ;
and is a monotonically decreasing function of 6 in the interval 8 > 6, .

Proor. If we differentiate twice the identity

(3.209) [” SO OH @O g g

with respect to 6 we get

(3.210) " V() Eu(x) | 6 + w'() =0

and

(3.211) v"(0)Eu(@) | 6 + w'(8) = ['(0) o2

where %) is the variance of u(x). Also, if we differentiate under the integral
sign the function Eu(x) | 6 with respect to 6, we get

(3.212) ‘@é—?—“’ = VOl

Now by hypothesis, v(6) is monotonic in §. Hence from (3.212) we see that
Eu(z) | 0 is also monotonic. Moreover, if »(6) is an increasing function of 8,
so is Eu(z) | 6, and conversely. Let us assume that v(6) increases with 6.
Then for all § < 6,, Eu(z) | @ < s and for all 6 > 6,, Eu(z) | 6 > s. Conse-
quently, we have

(3.213) ¥'(0) > v'(0)Eu(z) | 6 + w'(6)
for all 8 < 6 and
(3.214) V'(0) < v (6)Eu(z) |0+ w'(0)

for all § > 6,. But by (3.210) the right-hand side of these inequalities is equal
to zero for all 9. Hence ¢'(6) > 0 for § < @ and y'(6) < Ofor 8 > 6. The
same argument holds when v(6) is a decreasing function of 6. Now let § = 6, .
Then by (3.210), we see that /() = 0. Hence, ¥(6) is a maximum at § = 6, .
This proves the theorem:.

Let.c be any constant < y(6) within the domain of ¥(6). Then by Theorem
2, the equation ¥(6) = ¢ has two roots in 6. Let these roots be designated by
¢ and ¢’. We now prove the following theorem.

TaeorREM 3. Let 2* and ¢(t | 6) be defined as above. Then (a) ¢(¢|6) = 1
Jort = v(0”) —v(0 ); (b) (t|6”) = 1 for t = v(6') — v(8”); and (c) ¢’ and 6”
from a conjugale pair with respect to z*.
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Proor: By definition

(3.215) ¢(t I 01) = fw eu(z)[0(0')+¢)]+r(z)+w(0')-tc dx.

Now let t = v(6”) — v(¢') = h. Then, in view of the fact that ¢(8") = y(6”),
we get

(3.216) ¢(h ' 0/) = f eﬁ(:)u(an)+r(z)+ﬂ:(0u) de = 1.

In a similar manner, it can be shown that ¢(—h | ”) = 1. Moreover, the same
argument also shows that f(x, 6”) = ¢"’f(z, 6’). This proves the theorem.
Turning now to the sequential test defined by (3.206) and (3.207), we see that

it is equivalent to a test with the decision function Z% = Yz and the two

a=1
boundaries —b* and a*. Let Lg be the probability that the sequential test will
terminate and Z% < —b* (i.e. the hypothesis 6; is accepted) when 8 is true.
Then (neglecting the fact that at a decision point Z% might exceed a* or fall
short of —b7), L and L. are given by (see for example (2.406) in [6]).

LETRAYS *h
e(a+b) _eb

3.217 Lp=% __—¢€
( ) ¢ @R ]
and

L — ghamen L he .
(3.218) 9’ = WT‘ =e La'

where h = v(6”) — v(¢'). Thus, we see that the two roots of the equation
¥(6) = ¢ determine two points on the power curve for the sequential test. By
assigning various values to ¢ we obtain as many pairs of points as desired.

The above results show that for the class of distributions under consideration,
the real non-zero roots of ¢(t | 6) = 1 are obtainable from the roots of ¥(§) =
constant. Since ¥(0) is completely defined by the form of the distribution
f(z, 6), the power curve of the sequential test can be obtained without a knowl-
edge of the moment generating function of z*. This might be advantageous
in some cases.

3.3. The distribution of n under conjugate hypotheses. Let Py(n|g) stand
for the probability that a sequential test will terminate with Z, < —b in exactly
n steps when the distribution density of xisg. Let Po(n | g) be similarly defined.

TaEOREM 1. If we neglect the excess of Z. over a and —b at a dectsion point,

(3.301) Pyn|F) = e"Py(n|f)
(3.302) Pu(n | F) = “P,(n|f)
where f and F are conjugate distributions as defined in (3.103) and h is the non-zero
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real value of ¢ for which ¢(t | f), the characteristic function of z = log f(z, 6;)/ f(x,61)
underthe hypothests f, equals 1.

Proor: Since, by definition, F = ¢”f, it follows that y(t — h | F) = ¢(¢|f)
where ¢(t | F) is the characteristic function of z under the hypothesis F. Let

(3:303) #(t|f) =e”

where 7 is a pure imaginary. Furthermore, let #,(7) and %(+) be the roots of
(3.303) such that lim #{(7) = 0 and lin‘l) t:(r) = h (see [2], page 289). Then

0
t(r) — h, and £(r) — h will be the corresponding roots of
(3.304) V(| F) =¢".
Now by the Fundamental Identity we have
(3.305) L™ OBye™ + (1 — L)e**PEye™ = 1
(3.306) LB e™ + (1 — L)e"* B e™ = 1
and
(3.307) Lee PO Mg o™ 4 (1 — L)@ ™ME 6™ = 1
(3.308) Le e ™ME, 6™ + (1 — Lot * P ™MEqpe™ = 1

where L; = P[Z, < —b|f], Es,; stands for the expected value of ™ under the
hypothesis f and the restriction Z, < —b; E,, stands for the expected value of
¢’ under the hypothesis f and the restriction Z, > a; and the symbols Lg , .
E,r and E,p are similarly defined.

By comparing equations (3.305) and (3.306) with (3.307) and (3.308) we
see that

(3.309) LyEwre™ = € Ly Eyse™
and
(3.310) (1 = Lp)Eope™ = €“(1 — Ly)Eope™.

Since the above relationships hold for the characteristic functions of n, they must
also hold for the distribution of n. This proves the theorem.
If we set + = 01in (3.309) and (3.310) we also get

(3.311) Ly = e™L,
and
(3.312) 1 — Ly = ¢“1 — L.

In view of (3.311) and (3.312) we see from (3.309) and (3.310) that
(3.313) Eype™ = Byye™



296 M. A, GIRSHICK

and
(3.314) E,ve™ = E,;e™.

From (3.313) and (3.314) we obtain the following rather surprising theorem.

THEOREM 4. Except for the approximation indicated in' Theorem 1, the con-
ditional distribution of n under the restriction that Z, < —b as well as the restric-
tion that Z, > a 1s identical for the two hypotheses F and f.

The above theorems are of particular interest when F is a member of the
class of distributions f. In any given sequential test the results of Theorem 1
can be used to facilitate the computation of the probabilities of making a de-
cision. Furthermore, the results of Theorem 4 show that the conditional dis-
tribution of #» throws no light on the parameter 6 involved in the distribution
of z. This follows since the conditional distribution of n is identical for the con-
jugate pair ¢ and 6", and, in any practical problem, ¢ and 6” will represent
opposing hypotheses.

We shall now establish exact relationships of the type considered above when
the variate z takes on a finite number of integral values.

Let z take on the values —r, —r 4+ 1, ---, —1,0,1,2, - - -, m with P(z = 1) =
pi . Furthermore, let P; = ¢**p; where h is the real non-zero root of

(3.315) 2 piet = 1.

Then the probabilities P; and p; are conjugate. We set ¢ = u and define
#(u | 6) to be the generating function of z under the hypothesis p(z = 1) = 6; .
Then

3310 sulp) = 2 i
and
(3317) sulP) = 3 P = 3 niw’

fm—t [

Consider a sequential test defined by two boundaries —b and a and a decision
function Z, = >_z.. Let £b; and £ stand for the probabilities that Z, =

am=l

—(b + 7) and Z, = a + ¢ respectively under the hypothesis that 6; = P(z = 7).
Furthermore, let Py;(n | 6) and Pai(n | 6) stand for the probabilities that Z, =
—(b + 9) and Z, = (a + 1) respectively in exactly n steps, under the hypothesis
0; = P(z = 7). Also, let the symbols Ej}; and E%; stand for conditional expecta-
tions under the hypothesis 6; = P(z = ¢) and under the restriction that Z, =
—(b+ ) and Z, = a + i respectively.

Since z takes on a finite number of integral values, the Fundamental Identity
for the two conjugate hypotheses, p and P can be written as:
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—1 m—1
(3.318) 3; e Blo(u | P + 3 g Blg(u | pI " = 1

and

r—1

m—1
(3319 X ELls@ | P + X gl Ellot | P = 1.

‘For any real number 7 let u(7), uz(7), * - -, Urim(7) be the  + m roots of the
equation:
m : 1
(3.320) $ulp) = 2 pu' =-.

Then, in view of (3.317) the corresponding roots of

(3.321) s(u|P) = > P = %

p——

are given by w(r)e™, us(r)e™, -, Uppm(r)e™ Substituting these roots in
(3.318) and (3.319) successively, we get

r—1 m—1

(3.322) f__‘s giui ()" Efir” + }”; ghui()* T EL = 1

and

(3.323) g Eilui(r)e T Bt + ':2: Eailui(1)e 1" Bt = 1

forj = 1,2, .-+, r 4+ m. Since the roots u;(r) are assumed to be known, the

unknowns in (3.322) and (3.323) can be solved in terms of these roots provided
the determinant of the equations is different from zero. But in section 2, we
have indirectly shown that for a sufficiently small r, the determinant is dif-
ferent from zero. Thus, assuming that the solution has been obtained we see
from (3.322) and (3.323) that

(3.324) EiErit" = "L ER
and

(3.325) taiEai " = TN EL
Setting 7 = 1, we get

(3.326) s = €L

and

(3.327) £ai = TR

Moreover, if we expand the expressions in (3.324) and (3.325) in a power series
in = (which by section 2 is permissible), and compare coefficients of 7 we get
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(3.328) Po(n| P) = ¢ "™ Py (n| p)

and

(3.329) P.(n|P) = " Pu(n| p).
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