NOTES

This section is devoted to brief research and expository articles on methodology
and other short items.
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ON SEQUENTIAL BINOMIAL ESTIMATION

By J. WoLrowiTz

Columbia University

The present note, written after a reading of the very interesting paper by
Girshick, Mosteller, and Savage [1], is for the purpose of adding a few remarks
in the nature of a supplement. For the sake of brevity the notation and ter-
minology of [1] are adopted in toto.

Theorem 1 below generalizes Theorem 1 of [1]. In Theorem 2’ we formulate
explicitly the fact which lies at the basis of the GSM method of estimation. Parts
of the proofs of Theorems 3 and 4 of [1] are simply proofs of special cases of this
(e.g., equation (2) of [1]). We then use this fact repeatedly in proving Theorem
3, which states that the Girshick-Mosteller-Savage estimate is the only proper
unbiased estimate for sequential tests defined by regions which we shall call
doubly simple.

A doubly simple region is defined precisely below. Intuitively we may de-
scribe such a region as the one between two curves ¥y = fi(x) and z = fo(y),
where fi(z) is defined and monotonically non-decreasing for all non-negative
z, f2(y) is defined and monotonically non-decreasing for all non-negative y,
f1(0) > 0, f2(0) > 0. If the two curves intersect, the region is finite, and the
values of the functions f; and f; beyond the point of intersection are of no inter-
est. This description is of course purely heuristic, because in actual fact only
integral values of the variables come into play, and intersection of the curves,
for example, is not needed to make the region finite. Since the question of finite
regions is completely settled by [1], Theorem 7, only non-finite regions remain
to be discussed, and the precise definition given below is such as to imply that
the region is not finite. It seems to the present writer that at least many of the
non-finite sequential tests which may be developed for meaningful statistical
problems will require doubly simple regions. The Wald sequential binomial
test [2] defines such a region, which also falls within the scope of Theorem 6 of
[1]. It is easy to see that there exist closed regions which are doubly simple
and do not satisfy the conditions of this theorem.

By a “‘proper” estimate p(«) we shall mean an estimate such that 0 < p(a) <1
for every a. It is difficult to see how any estimate which is not proper can

make much sense.
A
TrHEOREM.1. A sufficient condition that a region R be closed is that lim inf __\(/_1%2

< o, where A(n) is the number of accessible points of index n.
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Proor: The hypothesis of the theorem implies that there exist a positive
number H and an increasing sequence of positive integers n, nz, n3, - - -, with
the following properties:

a) niy1 > 2n; (7 =1, 2, --- ad inf.)

b) An;) < H/n;.

For n; sufficiently large, the conditional probability of reaching theaccessible
points on z + ¥ = 741, when an accessible point on £ + y = n; has been
reached, is < K < 1 by the normal approximation to the binomial distibution,
where K is constant (and depends on H). Hence the probability of passing
through accessible points on all members of thesetz +y =n; (¢ = 1,2, -+, L)
approaches zero as L — «, so that the region is closed.

THEOREM 2. Let R be any region, B its boundary, and ¢ = (a, b); any accesstble
point in R. Let l,(c) be the number of paths from t to (x, y) = aeB. Let Q(t)
be the conditional probability that a path, which has reached t, will reach the boun-
dary B. Then

2 U(@p"q = QWP "

TaeorEM 2’. (Corollary to Theorem 2)

If R s closed, then
€Y 2 L@p's ='¢

Proor: Let k(f) be the number of paths in R from the origin to ¢. The
probability of reaching « € B by a path which passes through ¢ is k(¢)l:(e)p¥q".
The probability of reaching ¢ from the origin is k(f)p°q®, and hence the prob-
ability of reaching the boundary via t is Q(£)k(t)p°q". From this the desired
result follows.

We now define a doubly simple region. The boundary of the region consists
of the two infinite sequences of points

(0, a0), (1, @), (2, as), -~
and
(bo, 0), (by, 1), (be, 2), +--

where ap, @1, @z, --- and by, by, by, --- are two infinite non-decreasing se-
quences of positive integers. The accessible points of the region are all points
which can be reached by a path from the origin which does not contain a boun-
dary point. (It is to be noted that since a boundary point is, by definition,
a point not in the region which can be reached by a path in the region, the above
definition implies that a doubly simple region is not finite. The reason for
making this so has been given above.)

TrEOREM 3. Let R be a closed doubly simple region. Then p(e) is the unique
proper unbiased estimate of p.
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ProorF: Suppose there were two proper unbiased estimates pi(a) and ps(a).
Writing m(e) = pi(e) — Px(e), we would have

©)) Z; m(a)k(a)p’s” = 0

with

3 o me) | L1
First we prove

Lemma 1. If ag > 1, then m(by, 0) = 0.

Proor: Let k*(a) denote the number of paths in R from the point (0, 1) to
the boundary point «. For all points « € B except (be , 0) we have
@ bok*(a) 2> k(e).
From (1), (2), (3), and (4) we have, since k(b , 0) = 1,

| m(bo, 0) | ¢*° = . ;b ,, M@k()p"g"
(5) {1 0

< > k(@p' < b % k*(a)p¥q” = bep.

aeB,ay(bo,0)

Now as p — 0, the left member of the inequality (5) approaches | m(bo, 0) |,
and the right member approaches zero. This proves Lemma 1.

LemMma 2. For everyz < ag — 1, m(b, , z) = 0.

Proor: In view of Lemma 1 it is sufficient to prove the following:

IfZ < a — 2, and if m(b,,2) = 0forz =0,1, ---, Z — 1, then m(bz, Z)
= 0. Let kz41(a) denote the number of paths in R from (0, Z + 1) to the
boundary point «. For any point « € B whose ordinate is > Z + 1 we have

(6) boby - - - bzkz+1(a) > k(a).
From (1), (2), (3), and (6) we have
™ | mbz, Z) | k(bz, 2)p°¢? = | Zm(a)k(a)p’d | < Zk(a)p'q"

< boby --- szkz+1(a)p”q$ = boby --- bzpz"‘l

where the summations take place over all boundary points whose ordinates are
>Z 4+ 1. Hence

Im(bz , Z) | k(bs, Z)g"* < beby -+~ bap.

and letting p — 0 we obtain the desired result.
LemMmA 3. m(bag—1, @0 — 1) = 0.
ProoF: Let s be the smallest integer such that (s, ao) is an accessible point.
We proceed as in Lemma 2, with (s, ao) playing the role of (0, Z + 1), and
eventually obtain the following inequality:

| m (bao—h a — 1) | k(bao—l: ap — l)pao_l qb“-l = l 20 m(a)k(a)p” qzl
s—1
® <o (GG, g’ + by - b,
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where =, denotes summation over all boundary points with ordinate > aq-
The desired result follows.

Lemma 4. Let h(> ao) be the smallest ordinate for which at least one boundary
point (w*, h) exists such that m(w*, h) = 0 (If no such h exists the theorem is proved).
Of all such points let w be the one with the smallest abscissa. Then the point (w, h)
18 a member of the sequence

0, @) (1, ay), (2, az), - -+

Proor: If the lemma, is not true, then for all boundary points « with ordinate
h, m(a) = 0, except that m(bs, ) ¥ 0. Let W be that accessible point of R
whose ordinate is & + 1 and whose abscissa v is a minimum. Let k, (o) be the
number of paths in R from W to the boundary point . For boundary points
o accessible from W we have

) boby « + + brkw(a) > k(c).
From (1), (2), (3), and (9) we have
(10) l m(bh ) h) l k(bh ) h)phth = l El(m(a)k(a)p”qz I S 22k(a)ph+lqz
+ bobl e bhph+lqv — K*ph+l’

where:

a) Z; denotes summation over all « € B for which y > &

b) Z; denotes summation over all boundary points « of ordinate h + 1 and
abscissa < v.

¢) K* denotes a constant.

From this it easily follows that m(bs , ) = 0, in contradiction to the definition
of h. This proves Lemma 4.

Proor or THEOREM 3: Let (w, h) be as defined in the statement of Lemma 4.
From Lemma 4 it follows that, if any other boundary points with abscissa w
exist, they must be members of the sequence (b, , 0), (by, 1), (b2, 2), --- and
hence their ordinates are < h. From the definition of (w, k) and from Lemma 4
it follows that for any « € B whose abscissa is < w, m(a) = 0.

Now in the proofs of Lemmas 1-4 the roles. of # and y are not symmetrical.
However, symmetry of course exists, and analogous lemmas follow. In par-
ticular, the analogue to Lemma 4 has as a consequence that, since w is the
smallest abscissa such that m(a) = 0 when abscissa of @ < .w, and m(w, h) = 0,
there exists a boundary point (w, h’), such that m(w, A') # 0 and (w, #') is a
member of (by, 0), (b1, 1), (b2, 2), ... Then A’ < h. But this contradicts
the definition of A and proves the theorem.

It is easy to see that, if the boundary points of a closed region constitute
a single “curve’” instead of two ‘‘curves’” as in a doubly simple region, the
estimate D(«) will be the only proper unbiased estimate of p.

It is interesting to consider some of the consequences of Theorem 3 for all
unbiased estimates (not necessarily proper) for doubly simple regions. An
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examination of the proof of Theorem 3 shows that it would go through with
little change if equation (3) were replaced by the requirement that |m(a) |
be bounded. We therefore obtain the following result: If for a doubly simple
region there exists an unbiased estimate p(«) of p, not identically equal to p(a),
then not only is p() not proper, but also, no matter how large M, there exists a
boundary point a such that | p(a) | > M. The uselessness of such an estimate
is manifest.

The author is of the opinion that freedom from bias is not necessarily an in-
dispensable characteristic of an optimum estimate. In general there is no
reason for requiring the first moment of the estimate rather than any other
moment to be the unknown parameter. The justification in any particular
case must be based on special conditions of the problem.

The author is indebted to Mr. Howard Levene for reading the present paper
and making valuable suggestions.
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DIFFERENTIATION UNDER THE EXPECTATION SIGN IN THE
FUNDAMENTAL IDENTITY OF SEQUENTIAL ANALYSIS

By ABrRaHAM WALD

Columbia University

1. Introduction. Let {z.} (@ = 1, 2, ---, ad inf.) be a sequence of random
variables which are independently distributed with identical distributions.
Let a be a positive, and b a negative constant. For each positive integral value
m, let Z, denote the sum 2z, + --- + z,. Denote by n the smallest integral
value for which Z, does not lie in the open interval (b, a). For any random
variable «, let the symbol E(u) denote the expected value of u. The following
identity, which plays a fundamental role in sequential analysis, has been proved
in [1].

(1.1) Ele”™o()™" = 1,

where
(1.2) o(t) = E(e™)
and the distribution of z is equal to the common distribution of 2, , 2, - - -, ete.

Identity (1.1) holds for all points ¢ in the complex plane for which ¢(¢) exists
and |g(f)| > 1.



