THE PROBABILITY FUNCTION OF THE PRODUCT OF TWO NORMALLY
DISTRIBUTED VARIABLES'

By LeEo A. ARoIAN
Hunter College

1. Introduction and summary. Let @ and y follow a normal bivariate prob-
ability function with means X, ¥, standard deviations o1, o, respectively, r
the coefficient of correlation, and py = X/o1, p» = Y/o,. Professor C. C.
Craig [1] has found the probability function of 2z = xy/ei0o» in closed form as
the difference of two integrals. For purposes of numerical computation he has
expanded this result in an infinite series involving powers of 2, p; , p2 , and Bessel
functions of a certain type; in addition, he has determined the moments, semin-
variants, and the moment generating function of z. However for p; and p,
large, as Craig points out, the series expansion converges very slowly. Even
for p1 and p, as small as 2, the expansion is unwieldy. We shall show that as
p1 and p, — oo, the probability function of z approaches a normal curve and in
case r = 0 the Type III function and the Gram-Charlier Type A series are excel-
lent approximations to the z distribution in the proper region. Numerical in-
tegration provides a substitute for the infinite series wherever the exact values of
the probability function of z are needed. Some extensions of the main theorem
are given in section 5 and a practical problem involving the probability function
of z is solved.

2. Theorems on approach to normality. The moment generating function
of z, M,(6), is [1]

(ot + o2 — 2rp1p2)8” + 2p1psf
exp
21— + o[l + (1 — )]

VL= A +901+ 1 — e

Let z, and o, be the mean and the standard deviation of z, and t, = (z — 2)/0, .
Now

(2.2) Z=pop+r, o= \pl +pit 2rpips + 1 + 72.

Using (2.2) we find in the usual way the moment generating function of ¢,

(2.1) M, (0) =

oy — 20 (01 + p2 + 2ro1p)w” + 47'0" — 20° (0" — V(o2 + 1)
©3) My = 201 — (L + Nwlll + (I — ]
’ VU= 1+ Dwlll + 1 = nw] ’

where w = 60/o..
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Consider r = 0. Then in the limit as p, and p; — « in any manner whatever,

2.4) lim M, 0) = ™",
P1:P2X
and by the theorem of Curtiss [2] on moment generating functions we see in
the limit as p; , py —  the probability function of z approaches a normal curve
with mean, z, and variance o> , r = 0.
Incase —14 ¢ < r < 0, ¢ > 0,some careis required wherever

Vot + ot + 2p1p07
occurs. If one uses p; + p3 = 2pip2 , the proof goes forward quite readily.
Hence we have proved the theorem:

TaeoreM (2.5). The distribution of z approaches mormality with mean Z,
and variance o> as py and py — © in any manner whatever, —1 + ¢ < r < 1,
e > 0.

It is evident in Theorem (2.5) we may allow p;, p, — — « without any other
changes. Theorems (2.6) and (2.7) are proved in essentially the same way
as (2.5).

THEOREM (2.6). The distribution of z approaches normality with mean z,
and variance o , if py—> ©,pp— —0, —1 7 <1 — e, ¢ > 0.

TaEoREM (2.7). The distribution of z approaches mormality if py remains
constant pp — ©, —1 + € < r = 1, € > 0; or if p; remains constant pp — — o,
—1=r<1—¢€e>0.

Naturally in any of the theorems p; and p, may be interchanged. In practice
p1 and p; are usually positive. The approach to normality is more rapid if
both p; and p; have the same sign as 7.

3. Numerical values. In order to show how closely the Type III and the
Gram-Charlier Type A series approximate the probability function of z, f(2),
or more precisely f(2, p1 , p2 , 7), we use numerical integration where

f(z) P1, P2, T) = Il(z) - 12(2)1
1 “ 1 2 2
Liz) = m[o T {(w =) = 2@ — px)(g—c - p2>

z A\ dzx
+<§9— P2)}‘a‘;‘:

and I,(z) is the integral of the same function over (— o, 0), [1]. Now I,(2)
may be written as

3.1)

1 0
62) L&) = o= [ e@ewse %,

where

—(2/2)
e T — p1 z ——s
= - = ——— = —_— —_ 2
(D(t) ‘\/% ) 53 ,\/1 — 7.2’ 123 <P2 x)/\/] re

Blts) = e, t; = rtits.
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We readily obtain /;(z) /1 — 72 by forming the product of o(4), o(t), 8(s),
and 1/x using numerical integration applying Weddle’s formula, the Gregory-
Newton formula, or the simple rectangular formula depending on circumstances.
The rectangular formula {3] is remarkably accurate when the function T =
o(t)e(t)B(ts) /« in the interval 0 to « or 0 to — « is somewhat symmetrical.
Appropriate tables for o(t), o(t) (see [4]), B(t) (see [5]) and 1/x (see [6]) are
readily available. In the important case of the independence of x and y, r = 0
and (3.2) becomes

33 Lhee= [ cwe@, w=c-pn, b=p-Z.
0 X X

4. Approximations to f(z). When r = 0, the standard seminvariants &,
and &; of 2 are

61 p2 g = 6{2(o1 + p3) + 1}

4.1 =
(1 & O+t 1)

G+ D™

remembering
Z = pip2, 0, = \/pf + p; + L
In the Pearson system (see [7]) §, the criterion, is

_ 2% — 38

4.2 )
#2) 6+ &
and for the probability function of z

(4 g) 5 = 2(Pi + Pg + 1){2(17% + Pg) + 1} - 18p§p§
" T2 P N[/ 2 2 2 3 3
(o1 + p2 + D1 + p2 + 1)° + 2001 + pz) + 1]

and if p = po = p

_ 2060+ 1)@’ 4 1) — 18y
20" + DI@" + 1) + (4" + DI

Now 6 = 0, & # 0, for the Type III function, and clearly lim § = 0.

P11P2 >0
By use of (3.3) the accurate values of f(z) have been calculated for various com-

binations of p; and p; and compared with the Type III approximation using z,
Oz, 53 .

(4.5) Investigations so far completed show that for p; = 4 and p, = 4 simul-
taneously, and | 6| =< .008, the Type III approximation will provide values
of ¢, correct to three significant figures at least where

4.4)

tgl) )
(4.6) ft) = a (Z)f(t,) = and .05 = a = .005.
— 0 [23
These are the values of ¢, which would be needed in testing hypotheses. The
exact values of ¢’ and for ¢” for various values of p; and p, less than 4 will be
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determined it is hoped in the future and will be published along with the com:-
parisons of the Type III values of ¢, with the accurate values of ¢, in the im-
portant borderline cases of p; = p» = 2, and p; = p, = 3. The values of f(z)
for py = p, = 2 and p; = p, = 4 have been calculated but these are being with-
held for a more complete table. The table of values of 2, o., &, &, and &
(Table IT) shows then that the Type I1I function is excellent along a band about
p1 = pa,since & ¥ 0, and § is very small.

We use the Gram-Charlier Type A series of three terms to approximate the
probability function of z in ¢, units.

@) 1) ~ o) — B2 500 4 82 0,

in the usual notation.

TABLE 1
ts f(t;) Correct value Normal Curve Gra’fn}-’ggailier

.9950372 . 2406367 .2431716 .2408235
1.4925558 .1275209 .130970 .127484
1.9900744 .05638243 .0550708 .053704
2.4875930 .0184606 .0180791 .0184500
2.9851116 .0052477 .0046338 .0052944
3.4826302 .0012609 .0009272 .0012804
3.9801488 .0002611 .0001449 .000260
4.4776674 .0000467 .0000177 .0000425
4.9751860 .00000745 .00000168 .00000555

(4.8) For | %] < .5 and & < .4 simultaneously the Gram-Charlier Type A
series is quite adequate for finding probability levels such as those of (4.6).
These will in general give 3 significant figures for ¢& or {2. In the special case
p1 = 0, p» = 10, the Gram-Charlier Type A series differs from f(¢,) very slightly
in the range 1 < |¢,| < « (see Table 1). Naturally the Gram-Charlier will
be used wherever Type III is not indicated, although there exist some over-
lapping regions where either one may be used. It should be noticed that the
approach of f(z) to normality is more rapid along a row than down a diagonal.
In case either p; or p; is negative, we may make use of the equation

(4.9) f(zy —P1, p2, r) = f(_z: Py Pz, —T).

We note that when r = 0, f(z, p1, p2) always possesses a discontinuity at z = 0,
(see [1]). A table of 2, ¢, , &, £, and § is provided for values of p; and p» from

0 to 10 inclusive.
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A P
pz\ 2 4 6 8 10
0 0 0 0 0
2.236068 4.123106 6.082762 8.062258 10.049876
0 0 0 0 0 0
2.160 .685121 .319942 . 183195 . 118224
.529 .205 .101 .059 .039
4 8 12. 16. 20.
3 4.582576 6.403124 8.306624 10.246951
2 .8 .498784 . 274256 .167493 .111531
1.259259 .557823 .289114 .172653 .113742
.020 .056 .056 .042 .031
16. 24. 32. 40
5.744563 7.280110 9. 10.816654
4 . 506408 .373206 .263374 .189641
.358127 .224279 . 147234 .102126
—.0084 .0049 .014 .016
36. 48. 60
8.544004 10.049876 11.704700
6 .346314 .28373 . 224503
.163258 .118224 .087272
—.0054 —.00083 .0038
64. 80
11.357817 12.845233
8 . 262088 .226472
.092663 .072507
—.0034 —.0015
100.
14.177447
10 .2105651
.059553
—.0023

* The first value in a cell is 2, the second o3, the third &, the fourth & , the

fifth 4.
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b. Some extensions. We may generalize our results to any case where
and y are distributed approximately in a normal distribution such as the dis-
tribution of the product of two means, when the sizes of the samples N; and N,
are large and consequently p; and p, will be large. Another example occurs if
z and y each follows a Bernoulloi probability function with parameters p; and
p2 respectively where the number of trials in each case is large. We must warn
the reader that the condition p; — «, p, — ® alone does not mean that the dis-
tribution of z approaches normality. Both 2 and y must be distributed normally.

The actual problem which gave rise to this investigation was the question
of determining the sum of a great many variates [8]. Let T’ variates v, vy,
-+, vy be given whose sum A = D1 v;is desired. Clearly

A=TV,,Vp=2 v/T.

=1

Now let us estimate A by A = T,V, where T, is an estimate of 7' and ¥, is an
estimate of V,. If oz, is very small, p = T/oz will be large and p, = V,,/or;s
= +/NV,/o, will be very large. Assuming T, is distributed normally and
obviously V, is distributed normally for N large, we see by the theorems of this
paper that 4 will be distributed normally. Confidence limits for A may be
calculated in the usual fashion as 4 =+ yoy, where v is determined by

[ owit =,

t=7

with « generally chosen as .025 or less and

= =5 3 7 3
oy = \/Tsa‘-,s + Vi oz, + o5, 0% -

Stratification is also possible. It is interesting to note that many functions which
occur in life insurance are products. Such applications will be treated fully
elsewhere. Naturally the critical region whether both tails or one tail of the
distribution should be used depends on the alternatives to the hypothesis being
tested.

Generalizations of the main theorem are possible for the probability function
of z = H§=l x; where 21, &3, -+, «, follow a multivariate normal probability
function. These will be investigated in a later paper. It may be noted that
J. B. S. Haldane has investigated the distribution of a product along different
lines [9].
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