DISCRIMINANT FUNCTIONS

By Georce W. BRowN
Towa State College

1. Introduction: In the following sections the development of discriminant
function techniques is approached from an elementary point of view, considering
first an essentially trivial problem, then working up to the more complex situa-
tions which may be handled by discriminant function methods. No attempt
has been made to follow the pattern of the historical development in this process,
and no consistent attempt has been made to allocate proper credit, in the text,
to those individuals responsible for the introduction and exploitation of these
methods. A more or less exhaustive bibliography of discriminant function
applications and related theory is given at the end of this paper.

Some historical perspective may be gained, however, from a very sketchy
consideration of the early background of the subject. The first published
application of the discriminant function seems to have been the work of Barnard
(1935 [1]) on craniometry, following the suggestion of R. A. Fisher. Meanwhile
P. C. Mahalanobis (1927, [30]; 1930, [31]) and, in this country, Hotelling (1931,
[25]) had been concerned with a closely related problem, the construction of
measures of the “distance’ between two sets of multiple measurements, for which
Karl Pearson’s (1926, [34]) coefficient of racial likeness was not wholly adequate.
Fisher (1936, [18]) gave a further example of the method and showed (1938, [19])
the relation between his work and that of Hotelling (1931, [25]; 1936, [27]). Thus
the theory of discriminant function analysis proper is about ten years old, but is
intimately related to researches which go back a few more years.

A simple problem: Consider the very simple case of a single measurement, say
& which may be made in each of two populations, and let us suppose, for the
sake of discussion, that ¢ is normally distributed, with unit variance, in each
population, but with possibly different means in the two populations.

Let

EI(E) =a—f
Ey§) =a+ B

be the mean values of £ over the two populations, with 8 > 0. As an example,
we may consider the pH measurements of Iowa soil samples (Cox and Martin,
[12]), for two soil populations, distinguished by the presence or absence of Azoto-
bacter. From 100 samples containing Azotobacter and 186 samples containing
no Azotobacter, we have the estimated averages of pH equal to 7.423 and 6.015
respectively, with an estimated standard error of .625 within populations (see
Fig. 1).
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&= 6.719
g= .704
= .625
g /¢ = 1.13.

Let. us suppose further that £ is the only measurement available on a single
individual, not knowing to which of populations 1 and 2 the individual belongs.

Distribution of pH Measurements

With Azotobacter : Without Azotobatter

6oIS 6719 1423
Fia. 1

The problem is to classify this individual as a member. of population 1 or popula-
tion 2. It is clear that ¢ furnishes the only information on which to base a
decision, and that essentially the only procedure available is to choose a number,
say & , such that we choose population 1 when ¢ < & and' population 2 when
& > & . Furthermore, it is evident that the expected accuracy of classification
depends on the size of 8. If we wish to have equal risks of misclassification for
members of the two populations we choose & = a. Then the probability of
misclassification is given by P{e > B}, where € is a normal deviate with unit
variance. As one would expect, the probability of misclassification tends to 0 as
B — « and tends to 4 as 8 — 0. In the Azotobacter example, if we assume
that the estimates given are the population values, we choose & = 6.719. The
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ratio §/¢ = 1.13 is exceeded approximately 13% of the time in sampling from
the normal dlstnbutlon, leading to .13 as the probability of misclassification.

Consider now the slightly more general situation in which we consider a fixed
variate, say w with méasurements £ distributed, for fixed w, with a mean of the
form a + Pw. This is the standard regression situation. As before assume
that £ is normally distributed about this mean with unit variance, that is

E=a+)3w+e

where o and 8 are constants, w may take on any or all real values, and ¢ is a
normal deviate. Note that if w is restricted to take on only two values the
structure reduces to the first structure considered. An example of the continu-
ous type might be constructed by considering w as genotypic yield of grain and &
a phenotypic measure of yield (Smith, [36]).

The simple problem formulated for the two-population case may be reformu-
lated here as follows: Given the relationship ¢ = a + Bw + €, and given £ for
*.an individual for which no other information is known, how shall we estimate w?
For selective breeding the problem may be to select individuals for which w is
at one end of the scale, rather than to estimate w itself. Whatever decision is
to be made, it is still clear that ¢ furnishes the only available information, and
that the certainty of the decision is a function of 8. Since (¥ — &)/8 = w + ¢/8,
the variance of this estimate of w is 1/8>. Note that-confidence intervals for w,
given £, may be constructed from the normally distributed quantity § — « — gw.

It should be pointed out that in the usual regression case we are interested in
predicting £ for given w, with the hypothesis as stated above, whereas in this
case £ will be observed, and the problem is that of estimating, as a parameter of
the distribution of £, the fixed variate w.

Obviously 8 must not,vanish if £ is to perform any discrimination among w
values. In practice, of course, « and g will not be given as known values and the
variance of € will not be known, but a finite set of ‘observations may be available,
for which w values are known and £ has been observed. The usual analysis of
variance provides a significance test for the non-vanishing of 8, which is equiv-
alent to testing for the significance of the regression of £ on w.

It is to be noted that this analysis reduces to the conventional between-within
analysis (F or t-test) when we have the special case of two populations. More-
over, if we had treated £ as the fixed variate instead of w, and considered the re-
gression of w on £, the Analysis of Variance would have differed only in replacing
(¢ — £)? throughout by Z(w — %)% and the relevant F-t=st would have been'un-
changed.

When probabilities of misclassification are estimated from finite samples, as
in the soil classification example, there are three sources of error, sampling error
in the estimate of the separation value & , sampling error in the estimate of the
distance between the population means, and sampling error in the estimated
standard deviation of ¢ within populations. It does not appear difficult to set
up confidence intervals for the probablhty of misclassification, assuming repeated
classification of individuals given fixed initial samples.
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2. The one-dimensional discriminant function. We have been dealing so far
with the simple situation in which only one measurement per individual is
available for purposes of discrircination. Suppose we still have this measure-
ment, call it £ , now, but we have other measurements as well, say &, - - , &, .

As before & = o + Bw + €. For the moment suppose that the remaining
measurements have mean values independent of w, so that

E;rt=am+em,, (m=2,...’p)’

and let us assume also that the {¢,} are mutually independent, (m = 1,2, - -+ , p)
and are normal deviates with unit variance. It is safe to assume that nobody
would ever argue, in this case, that the measurements &, - -, £,, provide
information about the w value for an individual. If, then, we were so fortunate
that we were in this situation, and knew so, we could say that £ is our dis-
criminant function, since, if any discriminating is o be done, £ has to do it.

TABLE 1
Analysis of Variance for Regression
d.f. Sums of Squares
Regression - 1 l rZ(¢ — £)?
Error N-2 (1 —mz¢ - 8
' Total N -1 (¢ — B
‘ (¢ — Hw — ®)

Vi - D - op

. Suppose, now that the measurements & , &, - - -, £, are not explicitly avail-
able, but that we are able to observe a linearly equivalent set z;, 22, -+« , 2,,
related to the {£.} by the transformation

Tm = il lmn En
where the l., are unknown. For fixed w, x» has expected value

D

Z:l Lyn otn lmBw = tp +‘bm’w,

N==
so that in general ‘each Znm obsgrvat'ion provides information about w. ~ More-
over, the z,, are not in general mutually independent; it is evident that the
population matrix of variances and covariances for fixed w is given by omn =

y
X Lokl

k=1
As an example of a set of correlated measurements, consider the Azotobacter

example referred to above.  In addition to pH values, determinations of avail-
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able phosphate content and total nitrogen content were made on soil samples
in each of the two populations. Means were as follows:

pH  Phosphate Nitrogen

Mean of 100 samples with Azotobacter 7.423 133.120 29.400
Mean of 186 samples without ” 6.015 51.113 21.140
Mean difference 1.408 82.007 8.260

Clearly the differences are proportional to the hypothetical b,’s. The variance-
covariance matrix, estimated from the 284 degrees of freedom within populations,
is given by Table 2.

TABLE 2

pH Phosphate Nitrogen

pH 111.0879 2,202.7102 198.4026
984(cms) = Phosphate 1,042,799.1800 | 5,066.2645
- Nitrogen . 29,422.3655

Estimated correlation coefficients within populations are not'large, .213 for pH
and Phosphate, .110 for pH and Nitrogen, and .029 for Phosphate and Nitrogen.

Another example is furnished by Fisher’s Iris measurements [8], provid-
ing sepal length, sepal width, petal length, and petal width for each of 50
individuals of Iris setosa and 50 individuals of Iris versicolor. This example is
an unfortunate one in that either petal length or petal width alone is sufficient
to discriminate the two populations as completely as anybody has a right to
expect anytime. The petal lengths, for example, vary between 1.0 and 1.9 cm.
for the 50 setosa, and between 3.0 and 5.1 em. for the 50 versicolor.

Let us proceed, under the assumption that available measurements, .,
are distributed normally about mean values ¢. + bn.w, with variance covari-
ance matrix o, for fixed w, keeping in mind the underlying model of & , &, - - -,
£, , with

:cm=f:llm£n, H=oa + pw+ e; b=t e; ;& =oa+ €.

The skeptic may wish to grant the first part of our assumptions without grant-
ing the hypothetical structure of £’s underlying the z’s. Hotelling’s work [27]
shows that such an underlying structure of ¢’s may always be provided, given
the distribution of z’s for fixed w. In other words, a distribution of «’s for fixed
w leads essentially uniquely to an underlying & model.

The discriminant function, given om» , @» and b, , for m,n, = 1,2, .-+, p,
is
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b b
X = E a"'"bm_:cn = E In Zn

m, Nl Nenl

where

th = i e""bm, and o™
M=l
is the reciprocal matrix to oms . That is ¢™" are the solutions of the linear sys-
tems [17]

v
> o =0 if m=n; mmn, =12 ---,p
a=1

Gm'o'sm=l; m=1,..-’p.
8=1

That X, as deﬁnéd, above, is properly called the discriminant function will be-

come evident immediately. Putting b, = LB, 2, = }z-: Luikr , We have
k=1
X=8 Zk ™" bt Luk &k -

Recalling that the ¢™" are reciprocal t0 oms = ; lular , it can be seen that
> 6™l = 1if k = 1, and vanishes for k = 1. It follows that

X = ﬁ s.:l )
in other words, X calculated as D, ¢™"bn, from known population quantities

is proportional to the hypothetical £ , the only one of the underlying measure-
ments which is related to w, thus justifying the term discriminant function for
X. Ttis clear that any other linear function of the #’s is also a linear function of
the £’s, and can discriminate, at best, only as well as X itself, since all the &’s
are independent of w, with the exception of & . X itself discriminates w to the
same extent that & , were it available, would discriminate.

The degree of discrimination of w’s depends, as indicated in the previous sec-
tion, on the ratio of the mean square of £ , among w’s (mean square for regres-
sion), to the mean square of £ for fixed w (mean square for error). Since X
is proportional to & , the same is true when X is substituted for & . It turns
out, of course, that X is that linear combination of 2’s for which the ratio of the
mean square for regression to the mean square for error is a maximum, or, what
is the same thing, X is that linear combination of X’s which has the maximum
correlation with w. From any point of view X appears to be the logical function
of 2’s to compute. It is clear that A\ X is precisely as good as X, if A is any con-
stant.
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In the two population case, where w takes on only two values, X is evidently
proportional t0 Zo™"(um — Em2)Tn , Where pm and pm are the mean values of
Zm-in the two populations. X is here the particular linear combination of z’s
for which the ratio of the mean square between populations to the mean square
within populations is a maximum. The value of this ratio, which measures the
degree of discrimination possible, depends on the spread of the means of X
between the populations, or in general, on the spread of the means of X over some
given distribution of w’s. Given oms and b the larger the spread of w values
the better overall discrimination will be obtainable. On the other hand, the
coefficients for X depend only on oms and b .

Since X is proportional to & , it follows that the discriminant function is in-
variant under non-singular linear transformation of the z’s, that is, if some set of
¥’s, linearly dependent on the z’s, had been observed, together with their means,
variances and covariances, the discriminant values would not have changed.
This invariance is obviously a desirable property, and as such was one of the
goals of Fisher, Hotelling, and Mahalanobis. One more property of the dis-
criminant function is of interest; X is essentially equivalent to the maximum
likelihood estimate of w.

In our statistical model w plays the role of a fixed variate or population param-
eter, and the z’s have a joint distribution about linear functions of w as means.
Suppose now that (sms) and {bn} are estimated from an analysis of variance
and covariance on data for which w as well as z values are known. The problem
of estimating w for a single individual whose « measurements are given resolves
into a two-stage estimation process, the first stage being the estimation of
(omn) and {b,} from the initial data, the second stage being the estimation of w
by the discriminant function whose coefficients are computed from the es-
timated (oms) and {bm}. It has already been pointed out that X is the linear
combination of z’s which has greatest correlation with w. It turns out, then,
that the coefficients of X are proportional to those which would have been ob-
tained from a formal regression analysis of w on #; , 2z, - - + , %, , considering the
z's as independent variables and w as dependent variable, a direct interchange of
roles as compared with the statistical model we have assumed. Of course two
linear functions differing only by a factor of proportionality are equivalent in
discrimination. If the formal analysis of variance is carried out for testing the
significance of the regression of w on 1, #2, +*+ , 2, , the relevant F ratio re-
mains a valid test for the non-vanishing of the b, in spite of the inversion of
dependent and independent variables. The analysis of variance is given in
Table 3. ,

R is, of course, the conventional multiple correlation coefficient. An equiva-
lent analysis can be carried out for X itself, allowing sufficient degrees of freedom
for the estimation of the constants in X, as given in Table 4. oo

This analysis is proportional to the analysis given above. ‘It might be noted
that the mean square corresponding to error sum of squares in this analysis is
0™ bwubn, which is X evaluated for 2, = b, (n = 1,2, --- ,p).
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In the Azotobacter example, Cox,and Martin arrive at a discriminant function
which has the analysis given in Table 5. ,

It is evident that the difference between populations is highly significant. The_
choice of scale for X in this case forces the sum of squares within populations to
be equal to the difference between the mean X values for the two populations.
Thus the mean X differs by .021777 for 'the two populations, and has an esti-

TABLE 3
Analysis of Variance for Regression
d.f. Sumé of Squares
Regression P R (w — )2
Error N-p-1 1 - R)Z(w — )2
Total N -1 Z(w — w)?
TABLE 4
Analysis of Variance for X on w
d.f. Sums of Squares
Regression P RZ(X — X)2
Error N—-p-—-1 1 - R)2(X — X)?
Total N-1 (X — X)?
TABLE 5
Analysts of Variance of Discriminant Function
d.f. Sums of Squares | Mean Square
Between populations 3 /030842 .01028
Within populations 282 .021777 .00007722
Total 285

mated standard error, within populations, equal to +/.00007722 = .008788.
Half the difference, divided by the standard error is the normal deviate cor-
responding to misclassification, if equal risks are taken. In this case the value
of the normal deviate is 1.24, approximately, leading to an estimated probability
of misclassification of about .11, which is not very much better than the .13
which one would have obtained if pH alone had been used.

In this problem, as in conventional regression analysis, it is tempting, for
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various reasons, to consider the possibility of using smaller sets of tlassifying
measurements. Moreover, a significance test for this situation is in general
Jmore interesting, as a practical matter, than the significance test for differences
among populations, since the initial presumption is that we are interested in
being able to discriminate, on the basis of x;, x2, -+, 2, . Suppose, for ex-
ample, we wish to test whether the discriminant function X, based on 2,
T2, *°+ , Tp is significantly better than the discriminant function X, based on
Zi, -+, 2, with » < p. The relevant test is precisely the same as the test

TABLE 6
Analysis of Variance for Rejecting ri1 , =+ , Tp
Sums of Squares d.f.
: Regression on Ty, oty Xy r
S5 Regression on Ty, o 3 Try Trpry **" 5 Tp P
5 — 82 Difference p—r
7y — S Error N—-p-—1
Sz Total N -1
TABLE 7
Analysis of Variance for X = X,
Sums of Squares d.f.
Y Regression on X, 1
S5 . Regression on 21, ++ , &p P
Sy — 81 Difference p—1
- S Error . N—-p-1
Sz Total N -1

calculated formally from the regression of w on the sets z,, ---, 2, and x,
%z, ** , Tp, with the analysis of variance given in Table 6.

Similarly, if we wish to test for the significance of a theoretical discriminant
function, X,, with preassigned coefficients, as compared with X,, we have
again the conventional test calculated from the formal analysis of the regression
of wonz, %, -+ ,%p, as given in Table 7. )

As shown by Fisher [21] the relevant F-Test for this hypothesis is computable
as

n—p-+1 R?
p—1 1—R"?

r p—1,n—ptl =
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where R”? = R’(1 — %), r is the correlation between X and X, for fixed w, and
R is the multiple correlation forwon z, , - - - , 2, , or, what is the same thing, the
correlation of w and X.

The example of Smith [36] is an example in which the relationships of x’s
to w have to be estimated from analysis of variance and covariance of data in
which the w’s are not really known, being related to genotypes. The regression
of 2’s on w is estimated by a generalization of the components-of-variance
method, from variance-covariance analyses in which the usual null hypotheses
are significantly contradicted. The net effect is that the-usual significance
tests now fail to hold, although the algebraic calculations are formally equivalent
to those given above, once the population relations of x’s to w are established.
When work of this kind is based on small samples, there is some difficulty in
estimating the reliability of the results.

3. Multi-dimensional discriminant functions. Instead of trying to discrimi-
nate between two populations or estimate a single parameter w, our problem may
be to discriminate among several populations, not necessarily linearly related,
or to estimate many independent parameters wy-, wa, <+, w, . Just as a single
parameter w is sufficient to distinguish between means of measurements for two
different populations, s parameters are sufficient to distinguish between means
of s 4+ 1 different populations, and exactly s parameters will be required, if
no linear relation obtains among the s 4+ 1 populations. For example, with
three populations, any measurement mean may be given the three possible
values o, a + B, a + v, corresponding to w, = wy = 0 for population 1, w, = 1,
wy = 0 for population 2, and w;, = 0, w, = 1 for population 3. Geometrically
we have to consider a set of parameter values as a point in an s-dimensional
space.

The one-dimensional discriminant function admits two very different general-
izations in higher dimensions. The practical solution to a particular problem
for which s is moderately large may involve a mixture of both generalizations.

Let us generalize our statistical model before discussing the discrimination
problem. To avoid complication of algebraic notation, let us for the moment
assume s = 2. We will now postulate a set of hypothetical measurements

El’ &, EP: with
LH=a+put+vyw+ea
=0+ Bu—+ v + e

B=w+e

& = + &5
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where the €, are independent normal deviates with unit variance, # and v are
fixed variates or parameters corresponding to the different populations, and
1, 02, , 0p, P1, B2, 1, and v, are constants. Evidently &, -+, & can
yield no information about % and »; £ and £, together contain all the information
there is to get about w and ». As before, assume that our data will be in the form
of linear combinations Zm = Zlmst,, with unknown coefficients ln,. The
variance-covariance matrix within populations, or for fixed u, v, is still given by
0mn = Zlmilat . The mean values of the z’s for fixed u, are given by

E(@n). = Zlunon + (UmaBr + UnaB)u + (Imryr + lmave)v
= Am + baw + camv.

This model is again justifiable on the basis of Hotelling’s work.

The first question to ask is whether we can now form two linear combinations
of the z’s and get rid of &, - - , £ in both, thus providing a two dimensional
description of an individual on the basis of 21, 23, -+, ,. The answer here
is in the affirmative, as a result of a direct generalization of the method dis-
cussed earlier. If we calculate X; = Zo""bmts and Xy = Z¢""CmX,, We are
fortunate enough to get :

X1 = Bifr + Bebe
X = ré + ik

with no disturbing elements from &, -++ , £,. Assuming for now ‘that X; and
X are not merely proportional, i.e. frys — Byv17 0, what do we do with X, and

X,?
For fixed u, v, we have

E(X) = Z6™bntn + uZ6""bmbs + vZ6" " bnCn

= A; + Bu + Cp
E(X,) = Z6""Conln + uZ0""Cbn + 920" CrnCn

= As + By + Cw
and variances and covariance
T = 20" "bmbs = By
Tia = Z0™"bmen = C1 = By
T2 = Zo""tmCn = Ca.
We may for example, estimate « and v by solving the equations
Bu+cy = X1 — A4
B + Cw = X, — A,
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or we may set up regions in the X;, X, plane for which certain decisions are
made. For example, when classifying an individual into one of three popula-
tions, we might delineate regions, as in Fig. 2.

Then the particular individual would be classified as coming from population I,
II, or III, according to which region X;, X, falls in. The individual points
shown in the figure represent the expected values of X, X, for each of the three
populations. No exhaustive investigation has been méadefor this situation, but
some fairly obvious methods are available for constructing such regions.

With respect to significance tests when the oumn , @m , bm , € are estimated from
samples, the whole gamut of multivariate analysis has to be run. Tests ana-
logous to (but more complicated than) F tests exist for testing the significance

Clossification Regions’in X, X, Plane

LX)

o

Fic. 2

of the discrimination, the significance of a subset-of the z’s, and the significance
of a theoretical pair X1,0, X0 (Wilks [41], [42], [43]).

For some purposes a two-dimensional discrimant function X;, X, may be
unsatisfactory. For example, we might suspect that Bry, = Bgr1 (or that the
relationship is nearly satisfied). Under these circumstances X; is (nearly)
proportional to X,, and we would like to compute the best one-dimensional
discriminant function, even though we have started with two linear parameters
uwand v. Evenif fry; # Byy1 we might still ask for the best one-dimensional dis-
criminant function, in order to rank our populations on the ‘“best’ linear scale.
If we define Y as that linear combination of 2 , z, , -« + , z, which has the largest
multiple correlation with 4 and », we have generalized the simple one-dimen-
sional discriminant function in a second direction.

Before proceeding, it is useful to recognize that Y, as defined above, must be a



526 GEORGE W. BROWN

function of X;, X; , since X; and X, together contain all the information about
u and v that can be obtained from the z’s.
Now suppose we consider an arbitrary linear combination ¥ = MX1 + MX .

Y correlates best with
Mt 4+ 710) + N(ru + 70) = M + Ner2)u + (Nomiz + om0,

We now have to choose A\; and A; to maximize this correlation. This correla-
tion will be maximized if we maximize the ratio of the variance of

M + Ner)u + (are + NaT22)V

(over the distribution of % and » values) to the variance of Y for fixed « and ».
Call the first quantity S, , the second S;. Then S; = Mra + 20Aamiz + Aol
and 8 is of the form A’uy + Z\Mapse + Ao'uee Where

2 2
M11 = Ti11 Ouu + 27uT100u + Ti2 0w
2
2 = TuTiuw + (T2 + TuT) 0w + T12T2200,
2 2
M2z = Ti12 Ouu + 27197220u + To2 Ouo .

Maximizing Si/S; leads to the equations:

M7a + Aemie = gl (g1 + Az pe)
2

M7z + Nere = g—: (N1 g + Ao o)

ie.
Mt — Oprz) + N7z — Op) = 0

Mz — Op) + Mt — Oum) = O, with 0 = 8/8,.
It is thus seen that § must satisfy the quadratic equation
(a0 — Opu) (22 — Opa) — (712 — Oura)® = 0,

in order for solutions A;, A; to exist. In general there will be two solutions, of
which the greater corresponds to that linear combination MX; + A Xz which has
greatest multiple cerrelation with « and v, whereas the smaller corresponds to
that linear combination which has least multiple correlation with » and wv.
9 itself corresponds to R?/(1 — R?) for the regression of MX1 + AX; on u, v.

In the general case with s degrees of freedom corresponding to wy , wy, -« - , %,
there is an s-dimensional discriminant function- (X, Xz, - -+, X,), and a set of
s linear combinations for which R?/(1 — R?) is stationary with respect to

AI’OOQ’N.

The s roots (corresponding to an equation of degree s) arranged in decreasing
order, permit construction of the best one-dimensional, two-dimensjonal, - - -,

(s — 1)-dimensional discriminant functions.
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Discussion of the relevant significance tests for these reduced discriminant
functions is beyond the scope of this paper. Reference may be made to the
work of Hotelling and Fisher.
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