SYMBOLIC MATRIX DERIVATIVES

By Paur S. Dwyer AND M. S. MacpPHAIL

University of Michigan and Queen’s University

Summary. Let X be the matrix [z.,], ¢t a scalar, and let 0X/d¢, dt/0X de-
note the matrices [3x,./8{], [8{/0xm:] respectively. Let Y = [y, be any
matrix product involving X, X’ and independent matrices, for example ¥ =
AXBX'C. Consider the matrix derivatives Y /02 m» , 0Yp,/8X. Our purpose
is to devise a systematic method for calculating these derivatives. Thus if
Y = AX, we find that aY /82, = AJmn, 0Yp/0X = A'K,,, where J ., is a
matrix of the same dimensions as X, with all elements zero except for a unit in
the m-th row and n-th column, and K ,, is similarly defined with respect to Y.
We consider also the derivatives of sums, differences, powers, the inverse matrix
and the funetion of a function, thus setting up a matrix analogue of elementary
differential calculus. This is designed for application to statistics, and gives a
concise and suggestive method for treating such topics as multiple regression
and canonical correlation.

1. Introduction. The derivative of a matrix with respect to a scalar

o) W L = ]

is well known and commonly used. The symbolic derivative obtained by apply-
ing a matrix of differential operators to a scalar

o _ | 9 |, - | %
@ X [axmn]y [axmn]

is not in such general use though some authors give special cases. For example,
if A is a symmetric matrix and X a column matrix, so that y = X’AX is a quad-
ratic form, Fraser, Duncan and Collar [1, p. 48] write

3/9x,

(3) 0/«?1:2 y = 24X

d/dx,

to indicate concisely the result of differentiating y with respect to the elements
z; of X.

It is to be noted that the matrix in (1) has the same dimensions (numbers
of rows and columns) as the matrix Y, while the matrix in (2) has the dimensions
of the matrix X.
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We present an illustration of each of these types of symbolic matrix derivatives
in order to clarify the concepts. Thus if

z 2z° 3z~*
Y =
€ sin log, z |,

oY 1 62" —1227°
ox ¢ cos T R 8

while if Y = Tulp — Tulye and

we have

i1 T2
X = T21 T2

T3 X2 ,

we have
32 — %31 N
9y
=1 o0 0
oX
— 12 Z11

Suppose Y is any matrix product involving X, X’ and independent matrices,
for example, ¥ = AXBX’C. We may fix an element x,., of X and form the

matrix

Y
T’

4)
or we may fix an element y,, of ¥ and form the matrix

Ypq
)R 3
The purpose of this paper is to devise a systematic method for calculating these
matrices, and to give various applications in the general field of statistics.
By way of introduction we take the matrix product ¥ = AX where

i T2
aun Gz Q3
A = [ :, and X = Xa1 a2 y
Aoy Q22 Q23
T3 T3

so that

y [au Zu F Qe Xy F Gz Ty G T2 T+ G T2 + Qi 3332]
o1 T + GeeTor + Qo3 T Aoy Tiz + Go2 To2 + Gas Ta2 | .
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We have then

oy _ [au 0] ay [0 au
dan e 0f, %= |0 aul,
oy _ [an O] oy [0 o
ory a0, oTw 0 axl,
oy _ [as 0] oy _ [0 au
ey 0], 0w |0 am

These six equations can be combined in the single one

aY
OLmn

(6) = AJmn

where Jax is & matrix having dimensions of X, with all elements zero except for
a unit element in the m-th row and n-th column. Similarly we find

B an O 7] [0 a1 7]
) Y12
ox = | O s = |0 e
| 13 0 n | 0 ap _
[ 21 0 T B 0 axn ]
3:1!21 31/22
—_— = 2] 0 = = 0
ax a ’ oX dz
| Q23 0 4 | 0 ax a

These four equations can be combined in the single one

@) ‘;y)? = A'K,,,
where K, is the matrix having the dimensions of ¥ with all elements zero except
for a unit element in the p-th row and ¢-th column.

It should be noted that the matrices on the left of (6) and (7) are matrices com-
Ypg
Zmn

Other types of symbolic matrix derivatives could be defined and studied. We
have selected these two main types because of their application to regression and
correlation theory. The second type is more specifically indicated in the ap-
plications but the relations between the types are such that a simultaneous treat-
ment seems appropriate.

posed of the basic elements

2. Notation. Capital letters are used for matrices and small letters for
scalars. It is understood that Y, U, V, .- are matrices whose elements are
functions of the elements ., of X and that A4, B, - - - (unless otherwise stated)
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are matrices whose elements are not functions of £m. . In the development of
the formulas it is understood that the differentiation is carried out with respect
to Zmn or X. The matrix function differentiated is called Y.

We have already defined /., as the matrix having the dimensions of X with
all elements zero except for a unit element in the m-th row and the n-th column,
and we define K, similarly with respect to Y. We now define J . as the matrix
having the dimensions of X’ with all elements zero except for a unit element in
the n-th row and the m-th column, and we define K, similarly with respect

aY
to Y’. All the formulas we obtain for involve J s or Janm while all those

amn

.

aypq

5 involve K, or Kgp .

for

3. Differentiation of a constant. If ¥ = A = [a,,] we have at once

e _ .
axmn
It follows that
oY
®) EY ax,,.,. o, Wed = 0;
%pe _ [ 9 ] _
© = [2 ] =0,

where the zero matrix of (8) has the dimensions of A, while that of (9) has the
dimensions of X.

4. Differentiation of a matrix with respect to itself. If ¥ = X = [r,,] we note

that
aypq _ aqu _ 1 (p =m,q = n)
axmn axmn O (otherwise)

It follows that

oY _ [Yod =
Yo 3$mn Ypa Jomn

] a
5%? = [ax :lypq = Ky

5. Differentiation of the transpose of a matrix with respect to the matrix.
Let Y = X/, so that

(10)

Ypa = Zgp .
Then

Ypq — axqp _ 1 (q =m,p = n);
Onn O 0  (otherwise),
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and we have
Y

(12) “axm” = a [ypq] Jam,
a a ’
(13) _a%‘é'l = [axmn] Yoe = Kop,

where Jnn , K., are defined as in section 2.

6. Differentiation of sums and differences of matrices. If
=U+V-W= [upq+”pq—wpq]r

we have
9Ypa _ Upg | OVpq _ Oy
6:1:,,,,, axmn axmn axmn !
then
Yy a a
o T (Yo = EY [tpe + vpe — Wy
(14) = 9 o = 2wyl
ax "m Pq axmn pPq
- 9U EK_EK
0Zmn  OTmn  OTmn
and similarly
0Ypg _ OUpg avm _ Owp,
(15) aX £):¢ + aX ’

7. General formulas for the differentiation of a two factor matrix product.
Suppose U is a matrix with ¢ rows and d columns and V is a matrix with d rows
and e columns, then

d
(16) Y = UV = lpdl = 2t 00
We have at once
a17) Wpg Eau,,, + E av“,
axmn x-la Tmn "q ’” )

Now considering any fixed X, it is clear that the first term on the right of (17)

is the same as the right hand term of (16) w1th ” in place of u,,. The second

mn

term on the right of (17) is likewise the same as the right hand term of (16) with
04

a mn
(18)

in place of v,, . We may then write

3y _ U

v+u W

axmn O%mn axrrm
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Also considering a fixed y,, we have

(19) aym Eaum Vg + Z u,,.a”;(".

8=1

It is to be noted that this formula yields matrices of the proper dimensions (those

OUpe and 00sq

X X
multiplied by the scalar values v, and u,, and summed, yield matrices of the

desired dimensions.

of X) since have the dimensions of X. These matrices, when

8. Some properties of matrix products involving J’s and K’s. Before deriving
formulas for the differentiation of products of specific factors, it seems wise to
derive some formulas exhibiting certain relations involving the J’s and K’s.
Consider the matrix 4 having ¢ rows and d columns and the matrix X having d
rows and ¢ columns. Then Y = AX is a matrix with ¢ rows and e columns, J .
one with d rows and e columns, J ., one with e rows and d columns, K,, one with
¢ rows and e columns and K, one with e rows and ¢ columns.

It is easily seen by actual multiplication that

(20) AJ mats ac X e matriz with all its elements zero except those of its n-th column
which are those of the m-th column of A. We omit further discussion of the dimen-
sions of the matrices and assume that whenever a matrix product is written,
the factors are comformable. Then we can show similarly that

(21) JmaB is a matriz with all its elements zero except those of its m-th row, which
are those of the n-th row of B. Similar statements hold if J n, is replaced by Jn
or Ky,or K,,. The rules are

(a) When J , (or Jm or Ky, or Kop) is the postmultiplier, the first subscript
indicates the column of the other matrix which is placed in the column
indicated by the second subscript.

(b) When J n (0r J pm 0r Kpq or Kop) is the premultiplier, the second subscript
indicates the row of the other matrix which is placed in the row indicated
by the first subscript.

Notice also that

(22) A'K,, is a matrix with all elements zero except those of its g-th column, which
are those of the p-th column of A’, or the p-th row of A. A similar result holds if
K ,, is replaced by K.,,, or J m, Or J,,,,. .

9. Differentiation of specific two factor products. Let us start with Y =
AX where the various matrices involved have the dimensions indicated in the
last section. Application of (18), (8), (10) gives

aY_aAX_|_A6X

0Zomn 0Zmn 0Tmn

(23) =04 AJmn = AJmn,
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while application of (19), (11) yields
(24) ay,,q = Z aapj Tsq -+ Z Aps a.'L‘sq

s=1
d
Z ap K sq
8=1

= apiKiq + ap2K2q + e 4 adedq
= a ¢ X e matrix with all elements zero except those of its ¢-th column
which are those of the p-th row of A

= A'K,, by (22).
Similar treatment of ¥ = XB yields
Y aX

(25) il X5 a 2o~ U B
(26) ay“ -z 02 bag = 2 Kpubag = Ky B.
If we treat Y = AX "in a sxmllar fashion, we get
27) Y _ At

0Zumn

aym ’
(28) X = K, A,
while ¥ = X'B yields

Yy '
(29) o Jnm B,

Ynq ’
(30) —a—X" = Bqu.

It is to be noted that J always has the subscripts mn, and similarly we find always
Jom Kpg, K ;,, . We may therefore omit the subseripts on these letters. When
we do so we shall also write

Y for OX oY)
H(X) mn” X 0X "’
placing brackets ( ) around the matrix from which a fixed element is to be
chosen. Thusif ¥ = AX, we write instead of (23) and (24)

for %5a

Y
«Y) ,
(24a) i = A'K.

The other results are summarized in lines 1-5 of Table 1.
Examination of (18) and (19) shows that the derivatives of products with
two variable factors are obtained by adding the results obtained by holding
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each factor constant while differentiating the other. With this in mind, (23)-(30)
can be used to obtain the derivatives of double products involving X and X’.
Thus if ¥ = XX, we get

31) oy oY)

————— I ——— { = 4 4
5(X) JX + XJ, aX KX+ X'K
Other double product formulas involving X and X’ are given in Table I.
TABLE I
For- Y oY _@
mula a(X) X
1 AB 0 0
2 AX AJ A'K
3 XB JB KB’
4 AX' AJ’ K'A
5 X'B J'B BK’
6 XX JX + XJ KX’ 4+ X'K
7 X'X JX + X'J XK' 4+ XK
8 ). 0. ¢ JX' + XJ' KX + K'X
9 X'X’ J'X + X'J X'K' + K'X’
The formulas for oY are written down very easily, but those for ‘1@1) are
o(X) ’ 0X
Y oY) .
not so easy to write. However the values of — p ( X) and < X in formulas 2-5 of

Table I are such that the results for — < > may be obtained from those for 3 <§>
with the use of a few simple rules. They are

(a) Each J becomes K and each J' becomes K’.

(b) The pre (or post) multiplier of J becomes its transpose.

(¢) The pre (or post) multiplier of J’ becomes a post (or pre) multiplier of K’.
These rules are immediately applicable to the double products. Thus when
Y = X’X we have

Y

—_ 2 4
8(X) =J'X+XJ
and so
10 @ Jp—"
Y = XK' + XK.

10. Differentiation of three (or more) factor products. Products with three
factors can be differentiated by the formulas of the last section if two adjacent
factors are constant. Thusif ¥ = ABX, we have

Y (¥ _

T = / I
o) = 4B, Gx = BAK
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It is not yet demonstrated that these rules are applicable to the products AXB
and AX’B. However it can be shown by the general methods indicated earlier
that if Y = AXB, we obtain

Yy a(Y) R
(33) a(x) = AJB, = A'KB/,
while if Y = AX’B we have

) S Y) ' 4
(34) Xy = AJ' B, d = BK'A

It is now apparent that the rules of the last section apply to situations in which
there are both pre and post multipliers.

The general theory for two-factor products is immediately extendable. Thus
if Y = UVW with yp, = Z E UpsVsWrq then the basic element is

@35) Wi > ey ot Xt O e + X v gt 9

ax,,.,, 8 7 0Zmn r 0Zmn o, mn

and the formulas result from treating each factor in turn as the only variable.
For example if ¥ = XX'X, we have

aY ! 7 4
(36) a—<-X§—JXX+XJX+XXJ,
and
a(Y)
= K(X’X) + XK'X + (XX'YK
37 X ( )

= KX'X+ XK'X + XX'K

The symbolic derivatives of certain triple product matrices are presented in

Table II.
The rules are sufficiently general to take care of matrices with more than

three factors. Thus if ¥ = A’X’XB, we have

(38) 6—‘2§> — A'J’XB+ A'X'JB
and

(39) a<§> XBK' A’ + XAKB,

and in the special case B = 4, we get

(40) 5‘}% = A X + X'D)A4,

(41) oY) _ = XAK' + K)A'.

8X
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Similarly if ¥ = X’A’4 X, we get
O _ JATAX + XA’ A,

(42) o

and

(43) f?;? = A'AXK' + A’AXK.

TABLE II
For- Y Y aY)
mula (X) X

1 ABC 0 0
2 ABX ABJ B'A'K
3 AXC AJC A’KC'
4 XBC JBC KC'B’
5 ABX'’ ABJ' K'AB
6 AX'C AJ'C CK'A
7 X'BC J'BC BCK'
8 AXX AJX + AXJ A'KX' + X'A'K
9 XBX JBX 4+ XBJ KX'B' + B'X'K
10 Xxc JXC + XJC KC'X' + X'KC'
11 AX'X' AJ'X' + AX'J’' X'K'A 4+ K'AX'
12 X'BX' J'BX' + X'BJ’ BX'K' + K'X'B
13 X'X'c J'X'C + X'J'C X'CK' 4+ CK'X’
14 AX'X AJ'X + AX'J XK'A + XA'K
15 X'BX J'BX + X'BJ BXK' 4+ B'’XK
16 X'xXc J'XC + X'JC XCK' 4+ XKC’
17 AXX' AJX' + AXJ’ A'KX + K'AX
18 XBX' JBX' + XBJ’ KXB' 4+ K'XB
19 xXxX'c JX'C + XJ'C KC'X + CK'X
20 XXX JXX + XJX + XXJ KX'X' + X’KX' + X'X'K
21 XXX’ JXX' 4+ XJX' + XXJ' KXX 4+ X'KX + K'XX
22 XX'X JX'X + XJ'X + XX'J KX'X + XK'X + XX'K
23 X'XX JXX 4+ X'JX + X'XJ XXK'" + XKX' + X'XK
24 XxX'x’ JX'X + XJ'X' + XX'J’ KXX 4+ X'K'X + K'XX'
25 X'Xx’' J'XX' + XX+ X'XJ’' XX'K' + XKX + K'X'X
26 X'X'X JX'X +XJX +X'X'JT X'XK' + XK'X' + XXK
27 xX'xX'x' JX'X +XJX 4+ X' XJ X'X'K'+ X'K'X' + K'X'X’'

Finallyif ¥ = XAX'AX, we get

(44) 5?% — JAX'AX + XAJAX + XAX'AJ,
(45) b?))(,) — KX'A'XA’ + AXK' XA + A’ XA’ X'K.

11, Vector results. It should be emphasized that each of the above results
is a general result. More specific results may be obtained in case one (or more)
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of the matrices is a vector. For example if X, is a column matrix and
Y = X.BX., then Y is a scalar, so K and K’ are both unity and we have from

Table II (15)

(46) AY) = BX, + B'X. = (B+ B)X..
If in addition B is symmetric, B = B and we have
oY)
oY = 2BX,,

which is the result indicated in (3).

12, Differentiation of the inverse of X. It is possible to use implicit differen-
1

1
tiation to derive formulas for g§> and - X . Wewrite ] = XX " and get

X
oI 1 ax!
a(x) = =0=JX + Xa(X)’
so that
ax* _ Pp—
(47) 3 (X} -XJX,
whence
1
(48) XX _(xy R
X
The formula (47) is a generalization of a known matrix differential formula
[3:3.4].
In a similar way we derive
a(X/)—l NS AN S
(49) Xy 0. ORIAG O
a((XI)_1> - N1 grr( yry—1
(50) 5 = (XN KX

13. Differentiation of a function of a function. The theory developed in the
earlier sections is sufficiently general to be useful in differentiating a function of
a function if the functions involve addition, subtraction, premultiplication, post-
multiplication, and inverse. For example if

(51) Y=2'Z with Z=AX

we have

Y oz Y
wx) = am Y
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and since
5%% = J'A’ and 52’-)% ~ AJ,
(62) ‘%? = J'A'Z + Z'AJ,
and thence
(53) 5’%—} = A'ZK' + A'ZK.

These results are equivalent to those of (42) and (43).

14, Differentiation of a power of a square matrix. The values of the sym-
bolic derivatives of X*, X* with respect to X are given in Tables I and II. It can
be shown similarly that if n is a positive integer

8Xn —1 = 8 —3—1 —1
(54) e =JX"TN 4 X IXTT 4 XY,
8<X > 8=1
and this can be written as
aXn — - '8 —s—1
if we adopt the convention that X°is I. It follows at once that
n—1
(56) 6 S xe k(xy,
aX 8=0

It is thence possible to derive formulas for the symbolic derivatives of X ".
Since X "X" = I, we have

aX—-n . n—1 . e _
(57) 5<X>~X"+X— [Z;,XJX" ]_0,
SO

aX_" _ 8 —s—1 —n
(58) RE=—X‘"[§XJX" ]X ,
and

8<X_n> — —n S 1\8 r\n—se—1 —n

(59) x5 =X [GZ:;’(X)K(X) ]X .

15. Applications. We consider the classical theory of least squares, a matrix
presentation of which is available in [2]. Suppose that y and x; are measured
from their means and that y is to be estimated from the n variables ;. Form
the values of ¥ into a column matrix ¥ and the values of z; into an N by n matrix
X. Introduce the column matrix B of n parameters b; and define

(60) E =Y — XB.
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Note that the matrix E'E is in this case the single element matrix which is the
sum of the squares of the residuals. Following the least squares method we
minimize this by differentiating with respect to the elements of B. We first
note that

(61) E'E = (Y — B'X')(Y — XB)
= Y'Y — Y'XB — B'X'Y + B'X'XB

Then we write down first

’
(62) ‘%’? = —Y'XJ—-J' XY+ JXXB+ BXXJ,
from which we get
’
E'E) _ —X'YK — X'YK' + X’ XBK’' + X' XBK
(63) oB

= —X'"(Y — XB)(K + K') = —X'E(K + K').

The J’s and K’s are associated with B and E’E respectively. Here E'E is scalar
so that K = K’ = 1 and we have

(B'E) _

oB
The equation X'E = 0, obtained by equating the right hand side of (64) to zero,
is a statement of the normal equations in matrix form.

Equation (64) may also be obtained with the use of the methods of section
13. In this case

(64) —2X'E.

0E OB _ .o
B XJ, B J'X,
and we have
a(E'E) oE’ oE
N = K E’____=_/ 'E — E' .
(65) KB~ oB) + B g JX E'XJ;
80
!
(66) a(me — _X'EK' — X'EK = —X'E(K' + K).

The equation (64) is also applicable to the more general problem in which
y1 and v, are estimated from the same set of variables z;. The only change
needed is to regard Y, B, E as two-column matrices so that E'E is a matrix with
two rows and columns which we denote by

I:éu 612]
€1 €22
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We require ?,%1 = 0 and %;—2 = 0. From equation (63), inserting subscripts,
we get

il

a*%l = “X'E(Ku + K{I)

= —2X ’EKu;
0
5%2 = —2X'EK».
. . aéu _ 6622 _ . . ’ .

It is easily seen that 3B — 3B — 0 is equivalent to X’E = 0, the same equation

as we obtained in the last paragraph. We also arrive at the incidental result that
in minimizing Ze; , and Ze; separately we find at the same time a stationary
value of Zee; .

In this way we can treat two or more simultaneous regression problems with
this general notation as easily as we can treat one.

As a second application of the theory we outline the initial steps in the direc-
tion of the formulas for canonical correlation [4], [5]. In this case A and B are
unknown column vectors with X and Y known rectangular matrices. Then
XA is a column matrix:

L
Iy
XA=L=]|" |,
Liv
whose elements /; may be regarded as observed values of a linear form . Simi-
larly YB = A, a column matrix whose elements may be replaced as observed
values of a linear form A. It is desired to find A and B such that ! and A may have
the largest correlation coefficient, and to find the size of this coefficient. Then
A'X'XA,B'Y'YB,and B'Y'XA = A’X'YB are scalars, and

. B'Y' XA
(67) P = VA X XA) (B Y YB)

If the scales of X and Y are chosen so that A’X’XA = 1and B'Y'YB = 1, we
have
(68) p = BY'XA = A'X'YB.

Using Lagrange multipliers we set
(69) ¢ =BY'XA+ (11— A'XXA)+ g (1 — B'Y'YB),

and differentiate with respect to the elements of A and B. We first differentiate
¢ with respect to A after replacing B'Y'XA by A’X'YB:
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I __a.‘#w = J'X/ _¢ IBd IR 4} .
(70) sty = X'YB ~ (/' X' XA + A'X'XJ);
(71) a;? X'YBK' — g(X’XAK’ + X' XAK).

(The J’s and K’s are associated with A and ¢ respectively). We set —@)

with K = K’ = 1 to get

(72) X'YB = ¢cX'XA,

whence by (57)

(73) p=AX'"YB = cA'X'XA = ¢,
and

(74) X'YB = pX'XA.

Similar differentiation with respect to B gives p = d and
(75) Y'XA = pY'YB.

531

0

The further steps in the development of canonical correlation theory are based

on (74) and (75).

A third application is to orthogonal regression. The situation is very similar
to that of the first illustration, but the errors are measured orthogonal to the
plane of best fit. As before we take the variates as measured from their means

and so have the basic equation
b].’l?] + bzxz + e + bkxk

(70 D=t ut o+ n

This can be written as

(77) D = Loy + bas + +++ 4 Law = XL with 'L = 1.
It follows that the quantity to be minimized is

(78) D'D = I'X'XL.

With the use of Lagrange multipliers we have

(79) ® = I/X'XL + A1 — L'L)

so that

(80) a‘zz) J'X'XL + L' X'XJ — \J'L + L'J),
(81) a<¢> — X'XLK' 4+ X'XLK — MLK' + LK)

from which
(82) 2X'XL — 2\L = 0
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and the values can be determined from the equation
(83) (X'X —NL = 0.
The solution continues with the use of the characteristic equation.
It is to be noted from (79) and (82) that
D'D = I’X'XL = \L'L = X
so that (83) becomes
(84) (X’X — D'D)L = 0.

A fourth illustration uses symbolic derivatives in obtaining the principal com-
ponents of a total variance [5,252]. The variable portion of the exponent of the
multivariate normal can be written Y’AY where Y is the column vector
[y1, -+, ys) and A is a k by k matrix. We set this equal to a constant, say C,
and get the equation of the k& dimensional ellipsoid. It is desired to locate the
extrema of this ellipsoid. To do this we find the extrema of Y'Y. Using the
Lagrange multiplier we have

(85) ¢ =YY +NC— YAY)

so that

(86) a‘?% = J'Y + V'] — NJ'AY + Y'AJ),

(87) ?(,-f—;i,z =YK + YK — MAYK' + AYK),

so that there results

(88) Y —2Y =0.
Pre-multiplying by A~ we get

(89) A —NY =0

and pre-multiplying by Y’ gives the important relation

(90) Y'Y =2C.

A fifth illustration utilizes symbolic differentiation in developing the theory
of the linear discriminant function [6, 341] [8, 124]. As in the other illustrations,
the variates are measured about their means. The unknown multipliers are
indicated by the vector L. Then

(91) Z = XL
is the general matrix equation while
(92) Zy = X1L

Z2 = X2L
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are the corresponding equations for the two groups. Then

(93) Zy=XL,7, = X;L,and Zy — Z, = (Xy — X,)L = DL,
Zv—7,= (X, — X)L = "1L,

Zy — Zy = (X; — Xo)L = Y, L.

The within group variation, L'Y1Y,L + L'Y;Y,L, is then divided into the
between group variation, L'D’DL, to get

(94)

L'D'DL A
(95) C=LYVIL+ LY.Vl B
‘We wish to maximize G. Since A and B are scalars %—Cg = 0 reduces to
aB) 1 8(4)
(96) oL G oL
which becomes, with further differentiation
(97) (Y1Y, 4+ Y, Y,)L = D/ (%L).
Since QGL-' is a scalar, we have
(98) (Y1 Y1+ Y3 Vo)L = cD.

Any convenient value of ¢ can be used for purposes of discrimination. It is
customary to take ¢ = 1 and then to adjust (98) so that some [; is unity.

A final illustration applies symbolic matrix differentiation to a theorem of
multiple factor analysis. This presentation parallels that given by Thurstone
[7,473-477] for transforming any factorial matrix into a principal axes matrix.
The matrix

(99) F = [aj]
has p rows and r columns, r < p, such that
(100) FF' = R

where R is a p X p correlation matrix.

It is desired to apply the unitary orthogonal transformation L to F in such a
way as to produce a matrix, called F,, which has the sums of the squares in
respective columns a maximum. This can be done by maximizing simultane-

ously the diagonal terms of F ; F, where

(101) F, = FL.

Again using Lagrange multipliers, we have

(102) ¢ = L'F'FL 4+ \(I — L'L).
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This equation has the same analytical form as (79). Differentiation leads to
the result

(103) (F'F — \)L = 0.

The solution of (103) gives the value L which can be substituted in (101) to
obtain F, .

14. Conclusion. Two types of symbolic matrix derivatives have been de-
fined. Laws have been developed for the basic operations of addition, sub-
traction, multiplication, inverse, and powers. Laws for more extended func-
tions can be worked out on the basis of principles enunciated.

Applications are given to certain multivariate problems. It is our thesis that
with these differentiation formulas available, much work in multivariate analysis
can be carried on with a simple matrix notation.
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