TESTING COMPOUND SYMMETRY IN A NORMAL
MULTIVARIATE DISTRIBUTION

By Davip F. Voraw, Jr.
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Summary. In this paper test criteria are developed for testing hypotheses
of “compound symmetry” in a normal multivariate population of ¢ variates
(t > 3) on basis of samples. A feature common to the twelve hypotheses con-
sidered is that the set of ¢ variates is partitioned into mutually exclusive subsets
of variates. In regard to the partitioning, the twelve hypotheses can be divided
into two contrasting but very similar types, and the six in one type can be paired
off in a natural way with the six in the other type. Three of the hypotheses
within a given type are associated with the case of a single sample and moreover
are simple modifications of one another; the remaining three are direct extensions
of the first three, respectively, to the case of k samples (k > 2). The gist of any
of the hypotheses is indicated in the following statement of one, denoted by
Hy(myc): within each subset of variates the means are equal, the variances are equal
and the covariances are equal and between any two distinct subsets the covariances
are equal.

The twelve sample criteria for testing the hypotheses are developed by the
Neyman-Pearson likelihood-ratio method. The following results are obtained
for each criterion (assuming that the respective null hypotheses are true) for
any admissible partition of the ¢ variates into subsets and for any sample size,
N, for which the criterion’s distribution exists: (i) the exact moments; (i) an
identification of the exact distribution as the distribution of a product of inde-
pendent beta variates; (iii) the approximate distribution for large N. Exact
distributions of the single-sample criteria are given explicitly for special values
of t and special partitionings. ’

Certain psychometric and medical research problems in which hypotheses of
compound symmetry are relevant are discussed in section 1. Sections 2-6 give
statements of the hypotheses and an illustration, for H;(muc), of the technique
of obtaining the moments and identifying the distributions. Results for the
other criteria are given in sections 7-8. Illustrative examples showing appli-
cations of the results are given in section 9.

1. Introduction. In studying psychological examinations, or other measuring
devices, one may wish to test whether several forms of an examination may be
used interchangeably. Consider the case of three forms, and assume that
scores of individuals on the three forms have a normal 3-variate distribution.
The hypothesis of interchangeability is equivalent to the hypothesis that in the
normal distribution the means are equal, the variances are equal, and the covari-
ances are equal. When this hypothesis is true, the normal distribution is in-
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variant over all permutations of the variates and is said to have complete sym-
metry. It isfrequently more important, however, not only to test that the forms
have completely symmetric relations with each other but also that they are inter-
changeable with regard to their relation to some outside criterion measure (e.g.,
the criterion might be skill in a given task). Assuming that the scores of in-
dividuals on the three forms and the criterion have a normal 4-variate distribu-
tion, the hypothesis of interchangeability is equivalent to the hypothesis of
equality of means, equality of variances, and equality of covariances among the
three forms and equality of covariances between forms and criterion. When
this hypothesis is true, the 4-variate normal distribution is invariant over all
permutations of the three variates (associated with forms) among themselves,
and so the variance-covariance matrix has the following form:

4ic ¢ ¢
CiBDD|
CciD B D
CciD DB

where the quantity A represents the variance of the ecriterion measure. A
normal distribution for which this hypothesis is true is said to have compound
symmetry (of type I). A more general case of compound symmetry (of type I)
arises when there are several examinations (no two of which need have the same
number of forms) and several outside criteria.

The hypothesis of complete symmetry may arise in certain medical-research
problems. For example, suppose a measurement (e.g., %,CO; in blood) is made
at each of three times (say 71, T2, Ts) on an experimental animal and assume
that the three quantities have a normal 3-variate distribution; one may then be
interested in testing the hypothesis of complete symmetry on basis of measure-
ments (considered as a random sample) made on several experimental animals.
More generally, let there be two characteristics, say U and W (e.g., %CO; in
blood and %0, in blood), which are both measured at each of two times, T,
T.. Let it be assumed that the four quantities—which we represent as UT,,
UT,, WT,, WTs—have a normal 4-variate distribution. One may then be
interested in testing the hypothesis that the means of the first two variates are
equal, the means of the second two are equal, and the variance-covariance matrix
has the form:

|E F{K L|
“F E{L K|
------------ mmmmmmeeee ]
| K LiG J
IL KiJ ¢

When this hypothesis is true, the 4-variate distribution is said to have compound
symmetry (of type IT). A more general case of compound symmetry (of type II)
arises when there are h characteristics and n times (b, n = 2,3, --+).
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Either of the two types of compound symmetry is a direct extension of complete
symmetry. Wilks [5] has thoroughly treated the sampling theory of certain
criteria for testing various hypotheses of complete symmetry regarding a normal
multivariate distribution.

The problems dealt with in this paper are: (i) to give sample criteria for
testing hypotheses of compound symmetry regarding a normal multivariate
distribution, and (ii) to give the moments and identify the distribution of each
sample criterion when the corresponding hypothesis is true.

The hypotheses are stated in section 2. Certain properties of compound sym-
metric normal distributions are given in section 3. Sections 4, 5, and 6 together
give the method of deriving each sample criterion and the methods of obtaining
the criterion’s moments and identifying its distribution; the methods are illus-
trated for one of the hypotheses. Sections 7-8 give the other criteria and their
moments together with approximate distributions of the criteria for large sample
sizes. Exact distributions of some of the criteria are given in section 7g for
certain special compound symmetries. Section 9 contains two illustrative
examples.

2. Statements of hypotheses. Let II be a normal {-variate population and
X;(z=1,---,1) (t > 3) be the 7-th variate in II. Let the set of variates X1 ,
Xz, -+, X, be partitioned into ¢ mutually exclusive subsets of which, say,
b subsets contain exactly one variate each and the remaining ¢ — b = & subsets
(where h > 1) contailz i, N2, **+, Ny, variates, respectively, where n, > 2
(@=1,---,h;b+ D na = t). No generality is lost in assuming that the ¢

a=1

variates are ordered so that the first b belong to the b subsets containing one
variate each, the next n, variates belong to the (b + 1)-th subset, - - - , the last
variates to the g-th subset, wheren, < na < -+ < . Let (1%, 1, na, -+, m)
represent such a partition of the variates X;, ---, X, into subsets; when b = 0
the term 1° will be omitted. The notation can be simplified when 7y , s, -+ - ,
ny, are not all unequal; e.g., (1%, 2, 2) can be written as (1°, 2°).

In the statement of each of the following six hypotheses it is assumed that there
is a preassigned partition (1°, ny, ma, -+ - , ma) of the ¢ variates into ¢ subsets
(@ =0b+ h).

(1) Hy(mwc): The hypothesis that within each subset of variates the means
are equal, the variances are equal, and the covariances are equal and that be-
tween any two distinct subsets of variates the covariances are equal.

(2) Hi(vc): The hypothesis that within each subset of variates the variances
are equal and the covariances are equal and that between any two distinet sub-
sets of variates the covariances are equal.

(8) Hi(m): The hypothesis that within each subset of variates the means are
equal, given that Hi(vc) is true.

(4) Hy(MVC | moc): the hypothesis that k& normal {-variate distributions are
the same given that they all satisfy Hy(mwvc) for a particular division of the vari-
ates into subsets (k¢ > 2).
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(5) Hy(VC | moc): The hypothesis that k& normal {-variate distributions have
the same variance-covariance matrix, given that they all satisfy Hi(mwc) for a
particular division of the variates into subsets (k > 2).

(6) Hiy(M | mVC): The hypothesis that £ normal ¢-variate distributions are
the same, given that they all satisfy Hi(movc) for a particular division of the
variates into subsets and that they all have the same variance-covariance matrix
k > 2).

Any of the hypotheses stated above can be expressed in terms of an invariance
condition on the normal ¢-variate distribution (or distributions); e.g., Hi(mvc)
is equivalent to the hypothesis that the distribution is invariant over all permuta-
tions of the variates within subsets. The pattern of symmetry present in the
variance-covariance matrix of the distribution when any of the above six hypoth-
eses is true is given in section 3 (see (3.2)).

Six additional hypotheses, Hy(mvc), Hi(vc), -+, Hi(M | mVC), which are
modifications of Hi(muvc), Hi(ve), - -+ , Hy(M | mVC), respectively, will also be
considered. In regard to any of these six H hypotheses, it is assumed that there
is a partition (n*)(n = 2, 3, - - -) of the ¢ variates ({ = nk) and that in each subset
the variates are in a given order; thus each subset has n variates and between
any two distinct subsets of variates there are n? covariances, which form ann X n
“block’ in the variance-covariance matrix of the distribution (see (3.4)). The
hypotheses may now be stated as follows:

H,(mwc): The hypothesis that within each subset of variates the means are
equal, the variances are equal, and the covariances are equal and that between
any two distinct subsets of variates the diagonal covariances are equal and the
off-diagonal covariances are equal.

Hi(vc): The hypothesis that within each subset of variates the variances are
equal and the covariances are equal and that between any two distinct subsets
of variates the diagonal covariances are equal and the off-diagonal covariances are
equal.

The statement of any of the hypotheses Hy(m), Hy(MVC | moc), H(VC | muc),
and H,(M | mVC) is obtained from the statement of the corresponding H
hypothesis by simply substituting H for H. The pattern of symmetry present
in the variance-covariance matrix of the distribution when any of the six H
hypotheses is true is given in section 3 (see (3.4)), from which the appropriate
invariance condition on the normal distribution can be obtained.

A test of any of the hypotheses Hy(muc), Hi(moc), Hi(ve), Hi(ve), Hy(m), Hi(m)
is based on a random sample from a normal multivariate distribution; a test of
any of the remaining hypotheses is based on & random samples from k normal
multivariate distributions, respectively, (k > 2).

A normal distribution for which an H or H hypothesis is true will be called
compound symmetric. In the special case where the compound symmetry holds
for a partition (f) of the ¢ variates, any H hypothesis and the H hypothesis
corresponding to it are identical; in this case the normal distribution will be
called completely symmetric. Problems (i) and (ii) (see section 1) have been
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solved completely by Wilks [5] for Hy(mwc), Hy(vc), and Hi(m) for the case of
complete symmetry. ‘

3. Block symmetric matrices and vectors. Let m; be the mean value of X;
and || pi,0,0; || be the variance-covariance matrix of Xy, «-+ , X, (5,5 =1, -+, )
(p:; is the coefficient of correlation between X; and X;). The joint probability
density function' of Xy, X, - -+ , X, is

B.1) f(Xi, Xe, -+, X)) = |Gy ["r " exp [— 22 Gis(Xi — ma)(X; — my)],

where || G;; || is positive definite and its inverse || G7 || = || 2 pijoios ||

When any of the H hypotheses is true (see section 2), we represent || G ||
by || A*]| (also || Gs, || by || Ai; || ) which can be written as (3.2) (see page 452),
where A*" = A*° (s,s’ = 1,---,b)and D*' = D**(a,a’ =1, --- , h;a = d').
The A's and B’'s with single superscripts and the C’s and D’s have been intro-
duced to indicate the block pattern clearly. In general C** = C* only if
a =388 =1,---,b;a =1,---,h). ||Ay]| and || A”|| bhave the same
block pattern of symmetry.

The blocks in (3.2) are formed by making a partition (1%, n; , ns, - - - , n) of the
¢ rows and ¢ columns of || A*||. A matrix having the block pattern of sym-
metry of (3.2) will be called block symmetric of type I. Clearly a block symmetric
matrix of type I is invariant over all permutations of its rows and columns within
the subsets determined by (1°,n, - - - , m), if the row interchanges and column
interchanges are the same. Also, a t-component vector will be called block
symmetric if the order of values'of the components is invariant over all permuta-

tions of the components within groups determined by (1%, 7y, - - - , na).
The determinant of the block symmetric matrix || 4,; || is
h
(33) | 4| = KIT (4 = B)™,
where
tCh Cr -+ Cu
Ass’
O Che Chn
R A
Cr Caxn Cw i Dy A, Doy,
Civ Cu -+ CuiDy Dpp - 4

1 In general a chance quantity and the variable of its distribution function will be de-
noted by the same symbol.
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where Cie = C, \/n,,, Al = A, + (ne — 1)B,, and Dis = Deoar \/n,,na/
(s=1,---,b;a,0’" =1, -+, h;a#a’); As, Csa, Aa, Ba, and D, are the cofac-
tors of A™', C*%, A°, B® and D**, respectively in (3.2). The ellipsoid, defined by
Ai(Xs — m)(X; — my) = ro (ro fixed and > 0), has (n, — 1) axes of equal
length (@ = 1, - - -, h); and each of the remaining ¢ axes is inclined to the co-
ordinate axes so that its direction cosines have the same block symmetry as the
set of diagonal elements in (3.2). . -

When any of the A hypotheses is true, we represent || G || by || A || (also
[| Gi; |l by || Ai; |]) which can be written as

(3:4) || A || =

; i B ... B ¢ p® ... pv ¢ p* ... D

‘B 4 ... B D o ... pv p* ¢ ... p*

N TN B B
& P ... A B ... B ) C—,zh D?h.Dzh
Do ... DB A2 ... B ‘ p* oot .. D

|

bzl 521 .. 0;,21 E éz .. A‘—z | D™ D* ... o ; ’
o pM ... pM | L l—;:zhf ------- ;Ah Bih B )
Dhl Cyhl .. Dhl D‘zh C—,zh, . D‘zh E : Bh Ah B’h
o opr ... oM ‘ p* p* ... O 5 5 B B e A i

where the blocks are formed by a partition (n") of the ¢ rows and ¢ columns; thus
each block is an n X n array. || A”||and || 4i; || have the same block pattern
of symmetry.

A matrix having the block pattern of symmetry of (3.4) will be called blocl:
symmetric of type II. The determinant of || A, || is

(3.5) |4y = K"7Q,
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where

; A, - B_l 0_12 - _Dm -+« Cuw — Du

i 621 - D2] A2 - B2 cee 0271 - D?h

| Cu— D Cw— Dy -+ Ay — By |,
| 41 Ci -+ Cu
| Cn 43 -+ Cn

g- * . .
| O Cre -+ Ay |,

where A, = A, + (n — 1)B, and é;.,l_ = Car + (0 — 1)Dear (0, @' =
1,2, -+, h;a # a'); Ay, B., Coar , and Da.: are the cofactors of 4°, B, ™',
D™, respectively, in (3.4).

4. Method of obtaining the sample criteria. The probability distribution,
P, of a simple, random sample, say Oy (X1e , Xoa, -+ , Xta)(a = 1,2, --- , N),
from 1I is
(4.1) P=a""G; " exp [- 22 Gij(Xia — m)(Xja — mj)].

Lha
For Oy fixed, P is the likelihood function of the parameters m; , mg, ---, m,,
and G;; (1,7 = 1,2, .-+ ,t). To obtain sample criteria for testing the H and A
hypotheses we shall employ the Neyman-Pearson likelihood-ratio method. The
details of applying this method will be given for only one of the hypotheses, since
the technique of application is the same for all the hypotheses under
consideration.

In applying the likelihood-ratio method we maximize P under two different
sets of conditions and form the ratio of the two maxima. To derive a criterion
for, say, Hi(muvc), we first maximize P over the set, @, of admissible values of the
parameters in (4.1); secondly, we maximize P over the set, w, of admissible values
of the parameters in (4.1) that satisfy Hi(mvc). Let Pgand P, be these maxima,
respectively. The likelihood-ratio criterion for Hi(mve) is M(mwc) = P,/Pq;
thus 0 < M(mouc) < 1. The sample criterion, L;(mvc), for Hy(mwc) will be chosen
as a single-valued function of \;(muvc).

4a. Derwalion of the criterion Li(mvc). The parameter spaces, @, and, w, can
be specified as follows:

J (1) || Gy positive definite;

\(2) _°°<m1<+°°(7'=17271t);
[(1) |l 4| positive definite and block symmetric (of type I);

1 .
[(2) —= <m; < 4o, (m,ms, -, m) block symmetric.
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The block symmetries in w(1) and w(2) are for the same partition (1%, ny , - - - , M)
of the ¢ variates (see sections 2 and 3).

Maximizing P is equivalent to maximizing
L=InP=—(Nt/2)lnx + (N/2)In | G |

(4.2) — 2 Gii(Xia — m)(Xju — my).

Solving the simultaneous equations oL/dm; = 0@ = 1, --- , ¢) and 0L/8G:; =
0G,j =1, --,t1 <) for m; and G'j, we have

; = (1/N) }Nj X = Xi,
(4.3) .
(N/2)G" = Zl (Xia = X)X« — X3) = g5

substituting these values of the parameters into (4.1) we find that
(4.4) Pq = o "Q/N)" | vi; | ™" exp [— Nt/2).

In (4.3) and (4.5) each expression at the extreme right is defined by the corre-
sponding expressions at the left.

In w(2) there are b + h groups of means, the means within a group being all
equal; let m; be the s-th mean and m:a be the common value of the means in the
(b + a)th group. Solving the simultaneous equations aL/am, = 0,
0L/dm;, = 0, aL/dA.: = 0, 3L/3Cw = 0, 3L/3A, = 0, 9L/dBs = O,
0L/8Dsr = 0(s, 8’ = 1,---,b;a,a" =1, ---, h; a # a’), we find that

e = X,,
m:a = (1/Nn,) ZXM = X"r“

a.tg

(4.5)

(VDA = 2 (Xua = X (Xeo = o) = vur
(N/2)C* = (1/n0) 22 (X — X)(Xs, — X0) = til,

a.ig

(N/2)[1"' = (l/na) Z (Xi.,a - Xr¢)2 = 1);,

aig

(N/2)B° = [1/na(na — 1] 2 (Xipw — X0)(Xjue — XL) = w0,

Qg lg
(N/2)D™ = (1/nana) 20 (Kia — X0 )(Xipra — Xb) = thar,
‘Vhere'ia,ja =b + 7, + 17 e 7b + ﬁa-i-l;ia ;éja;ﬁa =n 4+ - + Na—1 5
n=0;aa =1 --- h;a #d.

When Hi(mue) is true, the maximum likelihood estimates of m; , i, and
pij(1, § = 1, - -+, t) would be obtained by means of (4.5) and the definition of
[| A7 || given just after (3.1).

Substituting the expressions in (4.5) into (4.1) we find that
(4.6) P, = 7% [yi; |7V (2/N)M" exp [—Nt/2],
where
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From (4.4) and (4.6) it follows that the likelihood-ratio criterion for Hy(mvc) is:

(48) )\1(’"11)6) = [ l Vij l / l v:j I ](N/2>) (%.7 = 1! tot ’t)
Finally, as the sample criterion for Hy(mvc) we choose
(4.9) Ly(mve) = m(moc)]™™ = [|vi; [ /| vis | 1.

4b. Preliminary calculations for evaluation of moments of Li(mwvc). The deter-
minant | v;; | in (4.9) is block symmetric. From (3.2), (3.3), and (4.9) it follows
that:

h
(4.10) Li(mve) = | v | [111 (v — wf,)_("“"l)] [ v 171,
i
where
r’
Vgsr = Usq’ s

" ’ —

Vere = Uaa VM3

12 ’ ’
Vrgra = Va + (na - l)wa;
”"” —
Urgre’! = \/na Ng’ Zaa’

(5,8 =1,---,b;r," =1,--- b+ h;ra=b-+aja=1,---,h).
N
Let Yia = Xiao — miand ¥i = (1/N) 2 YVia, G = 1, ---,8). Clearly
a=1

N
vij = 20 (Yia — Y)(Yju — ¥;). When Hi(muc) is true, us , v , w, , and ze,
a=1
in L;(mvc), can be expressed exactly as they are expressed in (4.5) with ¥ sub-
stituted for X, and (v — w.) and vy in (4.10) can be expressed as follows:

Ve — wo = (1/n4) {Z Vigis — [1/(na — 1)] Z Viaia}

fa¥ia
+ (N/na) Z Yﬁa - [N/na(na - 1)] ; Yia Yia;
ig ta#la

S = g
(4.11) Vorg = (1/V/1a) 22 vaiys
Vrgra = (1/Ma) 22 Vigia;

tarla

Vs’ = (1/A/Naar) .Z’ Vigia «

ta:la

From (4.10) and (4.11) it follows that when H;(mwc) is true, each element of the
determinants on which L,(mvc) depends consists of: (a) a quadratic form in ¥;
and a linear function of the v;; ; or (b) merely a linear function of the

Vij (i)j=17"'yt)'
The joint probability density function of the v;; and ¥;is
(4'12) f(vl'i)g(ivl y "t 71)7
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where
I G,‘,‘ I(N—l)/2 l vii l(N—-t—Z)/2 exp [_Z Gii vii]
]

flvi) = oy (N - 1) - (N ; 2) T (Aj—z_——t)’

(Il Gi; || positive definite; N > t), which is the Wishart distribution [9, p. 120], and
g(Vy, -+ ,72) = |Gy [P N7 exp [—N‘Z GiiY:Y}] = g(¥), say,
+7

which is a normal {-variate distribution. The d-th moment (d = 0, 1, --- )
of Li(mvc), when H,(muc) is true, is

BiLa(mo)t = [ fwadg(P) os ] 00 [
h t
AT 64— e (TTan) L avs,
a=1 1 i>7
where the domain, R, of integration is — o < ¥; < 4 || v;; || positive semi-
definite (¢, = 1, ---, ¢). The integral in (4.13) is evaluated in section 6 (by

means of Wilks’ moment-génerating operators) for the case where H;(muvc)
is true.

(4.13)

6. Remarks on Wilks’ Moment-Generating Operators. Wilks’ operators
are applicable to a far wider class of problems than those treated in this paper.
The following discussion is confined to a special use of the operators.

From (4.12) it follows that

Loi [“772"% exp [— 2 Giyvii] T dvs;
X

6o won T S L
R’ t(t—1 2
™ ‘Lll Ii(N —9)/2]

where R’ is the region in the space of v;; for which || v;; || is positive definite, and
|| Gs; || is positive semi-definite. (Of course, the probability that || ;|| is not
positive definite is 0.) Let Qi = Gij + Bi(3, 7 = 1, -+, t); if all the B;; are
sufficiently small, || G; || is positive definite, and we have

[oi [ 72 exp [— 2 Gijvig] I1 dvss
| Gij I(N—l)/z f . ] L
%]
R’ 7l_t(t—l)/‘i II P[(N _ 7,)/2]

— I Gij l(N—-l)/Z l Ggi l—-(N—l)/Z’

(5.2)

which is E(g), where g = exp [—2 Bijvi,).
¥

Let I3; be an operator (whose operand is a function of all the 8;;) which repre-
sents the following set of operations: (a) replacement of each 8;; in the operand
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by Bi; + &i¢;; (b) integration (of the result of (a)) with respect to £(Z =1, «-- , ¢)
from — o to + o ; (¢) multiplication of the result of (a) and (b) by = ‘/2. From
(3.1) it follows that

(53) ILifg) = Ii; (exp [— E Biivil) = g |vi; [TV (| vi7 || pos. def.);

and if all the 8;; are set equal to 0 after performmg the I -operatlons, theng =1
and (5.3) yields | v;; | 7. Let I’; be X jrepetitions (\ = 1, 2, --- ) of I;
Clearly,

(5.4) E(Li()] lssj=0 = Elg |05 [ lg;jm0 = El| i [

Under all conditions of their use in this paper the I operations are interchangeable
with the E operation [8; p. 316]; thus,

E|I}g] = T[E()).
From (5.2), (5.4), and [8, pp. 318-320] we have
E” Vij l—)‘/z] = l Gii I(N—l)/z{l)i\i I G:; l_(N—D/z} Iﬁs’j=°

12
= lGﬁ IUZ I;Il ¢[N - 7:7 —)\L

where N > ¢ + A + 1 and y(R, 8) = [r(R;“S)]/[r@)].

The operator I;; may be used, as indicated above, to find negative half-integer
moments of |v;;|. To obtam positive half-mteger moments of |vi;| we may
use an inverse operator 17, [8, pp. 321-323] (A = - ) which has been
defined in such a way that

, Gii I(N—I)/2 l {I:;‘ l G:] I*‘(N—~l)/2} lﬂ.’,‘=0 - E[I vi; I)\IZ]
(5.6) t
= | Gy |~x/2 (IJI YIN — 1, >\]> .

The equality between the second and third expressions in (5.6) can be obtained
from (5.1) by replacing N by N + X (see [7]).

In (5.5) and (5.6) the B's are not necessary; however, in (4.13) and in similar
expressions for the moments of the other criteria there are several determinants;
each determinant requires a distinct /-operator, and it is of great convenience to
introduce a distinct set of ’s for each I operator. The 8's associated with a
given operator may initially appear in more than one of the determinants in the
operand. The order in which several I-operators are used is illustrated in the
following case for two:

(5-7) I}J ]G’J I_k'(l IGi; I_k”) lﬂu—o lﬁu—o
where A, p >0 and the values of k¥’ and k'’ are such that the value of the expres-

sion is well defined. The notation in (5.7) means that I57 is applied to | G¥; | ™",
the 8's associated with 157 are set equal to zero, then I%;is applied to the product

(5.5)
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of | Gi; | ™" and the results of the previous operations, and then the s associated
with I%; are set equal to zero. The interchangeability of the order of I opera-
tions is discussed in [8, p. 324].

6. The moments and distribution of L, (mvc) when H, (mwvc) is true. To
evaluate (4.13) we let
(6.1) g = exp [~ }; Bijvii — 2 Balve — wa) — E Bres vier].
From (4.11) and (4.12) we have
(62) Blg) = | Ao " | ALy 770" A% [,
where

A:s' = Asa' + Bas' "|" .Bla,c’,

Ay, = Cu + Bui, + Bere/V7a,

Aiiy = Aa + Bisie + Ba/Na + Brara/Nas

Al = Ba + Bisie — Ba/(na — Dia + Brura/na,  (ia # ),
Al = Daar + Bigiar + Brarer/ NV Manar, (@ # a'),

Al = A,

Al = Ca,

ATy = Aa + Ba/Na,

Al;, = Ba — Bu/na(na — 1),  (ia # ja),

Al = Daw, (@ # a').

When H;(mwc) is true, we have

Ba=0

[Ll(mvC) = l Az] I e {H I2d(na—1) ,Alzly I Irr/ 1—2d [A“ ]_-(N—IIZ))G.,-O]B" -0}

(6.3) - { 13¢<N — %)}{Ii[l;b(N F2d—r — 2d)}

X {I=Il¢[(N + 2d)(n, — 1), — 2d(n. — 1)]}{1;11 (e — l)d(na—l)},
@d@=0,1,2—--;N >4,

where ¢ = b + h and Y(R, S) is defined in (5.5). In (6.3) the assumption that
Hi(mue) is true implies that after we apply I5;° and set the 8;; equal to 0 all
remaining determinants are block symmetric; we may then use (3.3) before
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applying I77. and I;*™ ™, (@ = 1, ---, k). The expression in (6.3) may be
written as follows:

E[Ly(mve))*

g Gl () }

=44l W EI‘(]X_(_’%Z_—Q + d(n, — 1)>

2
(6.4) <aIiIl (ne — l)dm—l))
<N——q—sa—-ﬁa+a—1>d

_ h ng—1 2
a=1 sg=1 N (Sa - 1)
(-E + (e — 1)>d ’

where 7, is defined in (4.5) and (T)q = T'(T + d)/T(T).

We now consider the problem of identifying from (6.4) the distribution of
Lyi(mvc) (when Hi(muc) is true). Let 6 be a beta variate, i.e., a variate whose
c.d.f., F(6), is

which is the Incomplete Beta Function ratio. I,(P, Q) is tabulated in [1]
and [3]. The d-th moment of 9is:

LP+d) TP+Q  _ pypy o),

d _
(6.6) BO = Ty re+Q+d

d=0,1,---). Let

(6.7) T =IIIQJ (C=1,2,"‘),
pae

where the 6;(j = 1, ---, ¢) are mutually independent and each 6, is a beta

variate, having parameters p;, ¢;, say. The d-th moment of 7 is

68) B(ry = I=I 0o/ @5 + 1)y @A =0,1, ).

Given a variate, say 4 (0 < u < 1), whose d-th moment (d = 0, 1, --- ) is given
by (6.8) we can infer by means of the solution of the Hausdorff problem of mo-
ments that u and 7 have the same exact probability distribution function (see
Corollary 1.1 [2, p. 11]). It should be noted that (6.4) can be written as

h rq—1

(69) E[Ll(mvc)]d = H H [(pasa)d/(pasa + Qasa)d] )

a=1 s;=1
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where Par, =[N —q— 8 —7la+a—1)/2) > 0,
_ (sa_l) q+sa+ﬁ¢""a+1:| .
Qas, = [(na _ 1) + 2 > 07

thus (6.4) is a special case of (6.8).
The exact probability (density) function, say g(7), of 7 has been obtained by
Wilks [7, p. 475] and is:

1 1
g(r) = K> (1 — 'r)r"_""_ljol .o '/; P Bl Lyl
X (1& vl)rc_l—nc_l—l a- vz)!'c—-z“ﬂc—z—l e (1= vc_‘l)h—-nl—-l
(6.10) X[ = 0(1 — )PP ] — {o, 4+ 0p(1 — )} (1 — 7)PPEP % ...
XM —={oi4ve@—v)+ - Fv.9(01 — o)1 —v2) -+ (1 — v,2)}

(1 . T)Pc-—-l"‘l’c_qc]

c—1
X H dv}',
=1
| Tlp; + q]')] $
h K = LRI S ;= o—i’ c—i')y
where ,I;II[I‘ 03T |, ¢ )go (Po—ir + Qe—i")

i—1

m; = 2 Poj. An approximation of the distribution of a product of inde-
=0

pendent beta variates by the distribution of a single beta variate is given in [4].

The results of this section may be summarized as follows: If H;(muvc) ©s true,
the d-th moment (d = 0, 1, --- ) of the exact distribution of Li(mwc) is given by
(6.4). Also, if Hy(mwc) is true, the exact distribution of L,(mwvc) is given by
(6.10), where the p; , ¢; , and ¢ can be specified by means of (6.4). The cumula-
tive distribution of L;(muc) is given for certain special cases in section 7g.

7. Single Sample Criteria. The solutions of problems (i) and (ii) (see section
1) for Hy(mwvc) are contained in (4.9) and the summary at the end of section 6.
In the present section solutions of problems (i) and (ii).are given for each of the
remaining two H; hypotheses and the three H; hypotheses (all of which are stated
in section 2). For any of the hypotheses the sample criterion is chosen as a
single-valued function of the likelihood-ratio criterion for the hypothesis. The
methods of determining the moments and identifying the distribution of each
sample criterion (when the corresponding null hypothesis is true) are entirely
similar to those used in sections 4, 5, and 6 in regard to Hi(mvc). Section 7g
gives the exact distributions of the single-sample criteria for certain special
compound symmetries.

Each criterion discussed in this section is based on a sample

On(X1a, Xoa, -+, Xta)l@=1,--- ,N; N > t)
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of size N from a normal {-variate distribution (¢t = 3,4, --- ). As in the case of
Hi(mwvc), it is presupposed for testing H,(vc) or Hi(m) that there is a certain
partition (1°, ny, ma, -+, n4) of the t-variates; for testing H(muvc), Hi(vc),
or H,(m) it is presupposed that there is a certain partition (n") of the ¢ variates
(see sections 2 and 3).

7a. The test Li(vc) for the hypothesis Hy(vc). For the sample criterion for
Hi(vc) we choose

(7.1) Li(ve) = (o)™ = | vi; | / 53], (Gj=1--,1
where \i(vc) is the likelihood-ratio criterion for H,(vc), v;; is defined in (4.3), and

Vys? = Uss?,
boiy = (1/14) E Usja s
la
1.)i¢1.a = (l/nﬂ) Z Vigia s
la
6:‘.,]'“ = [l/na(na - 1)] Z Vitia s

$5#0

Viiar = (I/nana') i[zj” Vigiar »
(878, =1,-- 7b;a7al =1,---,hjas* a,;ia,i;,jtnj; =b+ 7, + I
b+ flar1; e = M+ -+ + na1 ;7 = 0). Since || 7;; || is a block symmetric
matrix, there is an expression for | 7;; | that is entirely similar in form to the
expression in (3.3) for | 4;; | (see also (4.9) and (4.10)).
If H;(ve) is true,

BIL oY = {L ¥ - 5, 20|

h
{.,I.Il YN — 1+ 2d)(na — 1), —2d(n, — 1)]}

(7.2) . .
X {I_Il YIN —r + 24, —2d]} {I_Il (na — 1)"‘"““’}
(N-—q—sa—na—l—a— 1)
h ng—1 2 4

=1IT II

AT ED T

where ¢ = b + h and ¢(R, S), 7. and (T'), are defined in (5.5), (4.5), and (6.4),
respectively. From (7.2) and the argument given after (6.8) it follows that
if Hy(ve) is true, the exact distribution of Ly(vc) is given by (6.10), where the
D;, ¢, , and ¢ can be specified by means of (7.2).

(d=0717"')1
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7b. The test Ly(m) for the hypothesis Hi(m). For the sample criterion for
Hy(m) we choose

(73) Li(m) = Da(m)P'™ = [Pt (=1, 0,

[vi; |’

where A (m) is the likelihood-ratio criterion for Hy(m) and v; ; and 7;; are defined
in (4.7) and (7.1), respectively. In passing we note that

(7.4) [Ly(m)][L1(ve)] = Ly(moc).

If Hi(m) is true,
h

ElL(m))* = [T (WIV — D)(na — 1), 2a(na — 1)]

a=1

X Yl(ne — (N + 2a), —2a(n. — 1)}

(7.5) _ _
o (N 1 4 % 1>d

& 2 Ne — 1
=HH --N_——‘;—_, (d=0’1,)
a=1 sgz=1 LY + Sag — 1)
(z
If Hi(m) is true, the exact distribution of L;(m) is given by (6.10), where the
P; , ¢; and c can be specified by means of (7.5). It follows from (7.5) that the
exact distribution of Li(m), when H,(m) is true, does not depend on b.

Ne — 1/a

7c. The test L(muc) for the hypothesis Hy(mvc). The sample criterion, Ly(mwe),
for Hy(mwvc) (see section 2) is ,
(7.6) Li(mve) = "almoe)"™ = |vis | / 525 ],  Gj =1, , 1)
where \i(muwc) is the likelihood-ratio criterion for H;(mwc), v;; is defined in (4.3),
and

Piaia = (1/n) 20 (Xie — X2,

ala
l-’:'afa = [l/n(n - 1)] E (X'iéa - X;)(X?':,a - X(:)’ (ia #ja))
ia#ia
t-)gakal = (l/n) 2[ (X;iaa - X;)(Xk,ila - Xn’z')’
alakg’

(kar = ja + nla’ — a); a # a’),
ﬁi‘aha' = [l/n(n - 1)] ‘Zh' (X;iaa - X;)(Xh,;'u - thx');
ala g’
(har 5 jo + nla — a'); a = '),
(@a=1,-  hj%,Ja,ha,ba=(a—1n+1, - an; ks = is + n(a’ — a);
hor % 4o + n(@’ — a);a = 1,---, N). || 5] is a block symmetric matrix,
of type II (see (3.4)), in which the blocks are formed by a partition (n*) (¢t = nh)

of the rows and columns; there is an expression for | 5:; | that is entirely similar
in form to the expression in (3.5) for | 4.; |.
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If Hy(mwvc) is true,

E[L(mvo)l* = (n — 1M { II v(v — 4, 2d)}

T=h-+1

X {LLVIV + 200 = 1) + 1 o, —2a(n — 11}
(7.0 (N —h—s—(n—1)(a— 1))

a=1 &=l N 1—a s—1 !
(§-+2(n—1)+n—1)a
(d =0’ 1)"')~

If Hy(moc) is true, the exact distribution of L;(muc) is given by (6.10), where
the’p; , ¢; and ¢ can be specified by means of (7.7).

_7d. The test Ly(vc) for the hypothesis Hy(vc). The sample criterion, Ly(vc) for
Hi(ve) (see section 2) is

(78) Zl(vc) [)\1(1)6) o | Vij I / l Ui I (%.7 = 17 ) t),
where \;(vc) is the likelihood-ratio criterion for H(vc), vi; is defined in (4.3), and

171‘,1" = (l/n) Z viaia’

Vigis = [1/n(n — 1)] Z vizia (ta # Ja),
167474
Biaker = (1/7) 2 ik (ker = ja+ n(a’ — a); @ # a'),
Jaks?
{)ioha [l/n(n - 1)] Z Vjghlr s (h;l # ja + n(a, - a), a # a’),
Jahb!

where the ranges of a, %, ja, k4, ka are given in (7.6). There is an expression
forj| 9;; | which is entirely similar in form to the expression in (3.5) for | 4y |
If Hy(vc) is true,
BN = (v — 1920 [ IT vy - i,20)|

$=h+1
x{f_i‘;»//[(N— 14+2d)n —1)+1—a, —2d (n — 1)]}

- (N—h-—s——(n—-l)(a'—l))d

2
= II H )
a=1 s=1 1+ l—a +S—1)
2 2 — 1)  n—1/4
If Hy(vc) is true, the exact distribution of L;(vc) is given by (6.10), where the
p;i, ¢; and ¢ can be specified by means of (7.9).

(7.9)
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7e. The test Li(m) for the hypothesis Hy(m). The sample criterion L,(m),
for H;(m) (see section 2) is
T_J_l_(mvc) _ il
Li(vc) [ 95 ]’
where X,(m) is the likelihood-ratio criterion for H,(m) and || 3;; || and || #; || are

given in (7.8) and (7.6), respectively. _
If H,(m) is true, the d-th moment (d = 0, 1, - - -) of Ly(m) is

((N —1 l1—a ,s—1

h n—1 + +

(7.11) E[Zl(m)]d=1=11el=11(1\21 12?;1)3171)‘1’

. <—2—+2(n—1)+n—1>a
(d=0911”')-

If Hi(m) is true, the exact distribution of Li(m) is given by (6.10) where the
P;, ¢; and ¢ can be specified by means of (7.11).

(7-10) Z;(m) = [Xl(m)]wN =

7f. Relations among Ly(mvc), Li(ve), and Li(m) and among Li(mvc), Li(vc),
and Ly(m). Ly(muc) is the product of Li(vc) and Ly(m) (see (7.4)); moreover,
when Hy(mwc) is true, the d-th moment (d = 0, 1, - -+ ) of Ly(muc) equals the
product of the d-th moments of L;(vc) and Li(m) (see (6.4), (7.2), and (7.5)).
From this result and the argument given after (6.8) it follows that when H;(muwc)
is true, Li(muoc) is the product of two mdependent chance quantities, namely,
Ly(vc) and Ly(m). Similarly, when Hi(muc) is true, Li(muc) is the product of
two independent chance quantities, namely, L;(vc) and L;(m).

7g. Exact distributions of single sample criteria in special cases. For a sample
of size N and a partition (1%, ny, -+ -, ns) of the ¢ variates of II (see section 2)
let the cumulative distribution function (c.d.f.) of Li(mwc), when Hi(movc) is
true, be

(7.12) Fu|1,ny, - ,n | N) = Prob {Li(mvc) < u};

also, let F(y|1°, i, --+, na | N) and F(z|1°, ma, -+, ma | N) be the c.d.f.’s
of Ll(vc) and Ll(m) when H;(vc) and Hl(m) are true, respectlvely Let
F(u[n | N), F(7 |n" | N), and F(z|n"* | N) be the c.df.’s of Li(muc), Li(vc),
and L(m) when H,(mvc), Hi(vc) and Hi(m) are true, respectively.

It can be shown that

Flu|1,2|N) = LN — b — 2)/2, b + 2)/2],
Fw|1,3|N) =1, IN—b=3b+3],
F(y|1°,2|N) = L,I(N —b — 2)/2, b + 1)/2],
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Fiy|1°,8|N) =1,IN —b—3,b+ 2,

Fz |1 n|N) = L.[(N — D(n — 1)/2, (n — 1)/2), [/ = /"),
F(@|2’|N) =1,;IN—43],

F@|2'|N) =1,IN-42],

FG|n|N) =I.[(N-1)n—-1—-1n-1], [¢=2z2""7"),

where I.(P, Q) is defined in (6.5).
Distributions of the criteria in certain cases where the normal distribution is
completely symmetric (see section 2) are given in [5].

(7.13)

Th. Asymptotic distributions of the single sample criteria. When the sample
size, N, is large, we may use a theorem [6] (see also [9, pp. 151-2]) concerning
the approximate distribution of the likelihood-ratio criterion. For large N the
distributions of the quantities —N In Ly(mwvc), —N In Ly(vc), and —N In Ly(m)
(when H,(muc), Hi(vc), and Hy(m), respectively, are true) are approximately
chi-square distributions with (1/2) [t(t + 3) — b(b + 3) — h(h + 5)] — hb,
1/2)tt + 1) — b + 1) — h(h + 3)] — hb,and t — b — h degrees of free-
dom, respectively. Also, for large N the distributions of the quantities
—N In Li(mvc), —N In Ly(vc), and —N In Li(m) (when H,(mvc), Hi(vc), and
Hy(m), respectively, are true) are approximately chi-square distributions with
[ttt + 3)/2 — h(k + 2)], [t(t + 1)/2 — h(h + 1)], and t — h degrees of freedom,
respectively.

8. k-Sample Criteria. In this section solutions of problems (i) and (i) (see
section 1) are given for the three H; and the three H; hypotheses (all stated
in section 2).

A test of any of these hypotheses is based on k simple, random samples (k > 2)
from k compound-symmetric, normal {-variate distributions. The probability
density function, @, of the k samples, say, Ox,(p = 1, -+ , k; N, > b+ h) is

k
(8.1) Q=r"" [H | Giip | N’lz]
=1
X exp [— 20 Gijp(Xia, — mip)(Xia, — mi)],
l,].p.ap

k
(N' = > N,;4,j=1,---,t), where Xia, is the a,-th sample value of the
p=1

i-th variate in the p-th population (a, = 1, - - - , N}), m;,, is the mean (expected
value) of the i-th variate in the p-th population, and (1/2) || Gs;.» |7 is the
variance-covariance matrix of the variates in the p-th population (see (3.1)).
For a given set of &k samples @ is the likelihood function of the parameters
Gij.» and m;,p (7’7.7 =1,---,p=1,-- , k).
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The six hypotheses under consideration (see section 2) can be restated in terms

of Gi;p and m;,, ; e.g., H{(MVC | muc) asserts that m;1 = ms2 = --+ = Mg
and || Gijall = || Gise|l = -+ = || Gisx || given that for all p the vector
(m1,p, -+, M p) is block symmetric and the matrix || Gyj,» || is block symmetric

(of type I) for a preassigned partition (1°, ny, ---, m) of the ¢ variates (see
sections 2 and 3).

8a. Expressions for the criteria. Let M(MVC | muc), - - - , Ne(M | moc) repre-
sent the likelihood-ratio criteria for the six hypotheses Hiy(MVC | mvc), - -,
Hy(M | mVC) respectively, and let Ly(MVC | muc), - -+, Li(M | mVC) be the
sample criteria for the respective hypotheses. We choose the L as follows:

Li(MVC | mvc) = IM(MVC | moe))?,
Le(VC | moe) = DM(MC | moc)T?,
(8.2) LM | mVC) = DW(M [ mVO)P™,

_ [L(MVC | mvc)}””' .
U Le(VC | moc) ’

the expressions for L,(MVC | mvc), Lx(VC | mvc), and Ly(M | mVC) are the same
as those in (8.2) with A\ replaced by Ax .  The Ax and Xz can be obtained explicitly
by straightforward application of the likelihood-ratio method (see the paragraph
preceding section 4a).

8b. Moments of the k-sample criteria. The exact distribution of any of the
k-sample criteria, when the corresponding null hypothesis is true, is given in
(6.10), where the quantities p; , ¢; , and ¢ can be specified by means of the moment
expressions given below. The moments have been obtained by means of the

operators discussed in Section 5.
For each of the following six moment expressions the null hypothesis, cor-
responding to the sample criterion involved, is assumed to be true:

( Up — 1)
1‘11 r=1 ugl (2 -2Np NP )d

ElL.(MV d __ Jp=lr=1uy
[L(MVC | moc)] L (1 N - 1))
=iw=1 \2 2N ' N Ja

kb Np(re—D) /4 (u,p D )

(83) X g’fg__}f_'lpll <§ + Nr(ﬁ_lj d

h N’ (ng—1) 1 ( _ 1) ;

aI=Il uh=1 < T N’ana - 1))
k q N, ( p _ 1)

E[L(VC | my))* = II‘H‘I‘Z <§ _ QN;, T, '>"

y T e k4r—1) , (w—1)

11 (‘2 - ey T T >d

r=1 y=1
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k h_ Np(na—l) 1 (u; _ 1)
I H <§ + N,(n, — 15).1 .

>< p=la=1l w'y
b N (ng—T) ’ ;
1 (w' —1)
aI=Il J;ll (Q T N'(n, — 1—)>d

BL(M |mv O =TT (£ ;;;_r :>_ ). ;
;

k h
I} - go + O )
BIL(MVC [ o)) = { 2eleni A2 2N, Ny /o
11 (l S ST 1)
=1 w=1 \2 2N’ N Ja
(1 1—a (u;—1)>
=1 <§ T 2N,(n — 1) + N,(n — 1) /a
v/ 1—a (u’—1)> ’
a2 (é TN =1 T Nm =1/

E[LyvC = Gl
[Ly(VC' | muc)] ﬁﬁ(l_(k+a_1)+(u_1)>
a=1 w=1 \2 2N’ N’ d
e (1 1—a (u',,—l))
9 ITIT 1L <Q A I A YA
I"I”“"‘_" (1 4 l-a o -1 ) ’
= =1 \2 2N'm —1) ' N'(n—1)/a
N —k+1— a>
2 d

EILi(M | mV )]

I

-
e

=

|

Q

N~~~
a

whered = 0, 1, - -+ and (T), is defined in (6.4).

8c. Comments on the criteria. By an argument similar to that used in section 7f
it follows from (8.3) that when Hi(MVC |muvc) is true Ly(MVC | moc) is
the product of two independently distributed chance quantities, namely,
Ly(VC | moc) and [Li(M | mVC)]"'. The same assertion holds true if we re-
place each L by L and H by H.

Exact distributions of the k-sample criteria, when the corresponding null
hypotheses are true, can be obtained explicitly for special values of k and special
compound symmetries; but owing to lack of space we shall not consider them

in this paper.
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When the sample size N’ is large, the exact distributions of
—In Li(MVC | mve), —In Li(VC|mvc), —N'In Li(M |mVC),
—In Ly(MVC | mvc), —In Ly(VC | muc),

and —N’ In Ly(M | mVC) (if the corresponding null hypotheses, respectively,
are true) are approximately chi-square distributions with

k- 1) [bm(b +9 o HEED) 5)],

(k — DB® + 1)/2 + kb + h(h + 3)/2],

gk — 1), h(h + 2)(k — 1), h(h + 1)(k — 1), and h(k — 1) degrees of freedom,
respectively.

9. Illustrative examples. The first of the following two examples® illustrates
the use of Ly(muvc), Li(ve), and Li(m) in a psychometrics experiment; the second
example illustrates the use of Ly(mvc), Li(vc), and Ly(m) in a medical-research
experiment (see section 1).

ExampreE 1. In an experiment to establish methods of obtaining reader
reliability in regard to essay scoring, 126 examinees were given a three-part
English Composition examination. Each part required that the examinee write
an essay, and for each examinee four scores were obtained on the following four
things, respectively: (1) the part-2 and part-3 essays together, (2) the original
part-1 essay, (3) a long-hand copy of the part-1 essay, (4) a carbon copy of the
long-hand copy in (3). Scores were assigned by a group of “English Readers”
using procedures designed to counterbalance certain experimental conditions.
The score on (1) serves as a criterion. The experimenter asks whether on the
basis of the sample (of size 126) the quantities associated with (2), (3), and (4)
can be cdnsidere;d as interchangeable among themselves and interchangeable
with respect to their relation to the criterion (1).

Let X;, X;, X3, and X, be the scores on (1), (2), (3), and (4), respectively.
It is assumed that (X, X;, X3, X1) has a normal 4-variate distribution and
that the set of scores (Xia, X2a, Xsa, X4a) (@ = 1, -+, 126) obtained from
the essays is a random sample of values of (X;, X,, X3, Xs). The following
three questions will be considered (see section 2), where the grouping of the four
variates is (1, 3): (a) Is the sample consistent with the hypothesis Hy(mvc)?
(b) Is the sample consistent with the hypothesis Hi(vc)? (c) Is the sample
consistent with the hypothesis Hy(m)? In the particular experiment under
discussion (a) is the experimenter’s question.

2 Mr. L. R. Tucker (Educational Testing Service, Princeton, New Jersey) and Captain
J. Allan Rafferty, M.D. (Air University School of Aviation Medicine, Randolph Field,
Texas) kindly gave the author the data for Examples 1 and 2, respectively.
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The sample means and variance-covariance matrix are as follows:

Xy X, X X
77.8976 20.9425 23.4544 18.0384
20.9425 25.0704 12.4363 11.7257
23.4544 12.4363 28.2021  9.2281
18.0384 11.7257 9.2281 22.7390

Means 28.0556 14.9048 15.4841 14.4444

This matrix is (1/126) || vi; || 4,5 = 1, -+, 4) (see (4.3)). The sample criteria
Ly(myc), Li(ve), and Ly(m) will be used to answer questions (a), (b), and (e¢),
respectively. The values of the criteria can be computed from the values of
[vij |, |vi; |, and | 5s; | (see (4.9), (7.1), (7.3)), where »;; is given in (4.7) and
?;; is given below (7.1). The #;;(z % 1 # j) are evaluated by simple averaging
of certain elements in || v;;||. Both |v; | and | #;; | have the block pattern
of (3.2) and can be expressed in the simplified form of (3.3), where & = 1 and
ny = 3; the simplified form of | »;; | can also be obtained from (4.10) and (4.11).
From the data above it is found that

Li(muve) = |vi; |/ | vij| = 9214,
Li(we) = |vi|/|0:5] = 9568,
Li(m) = |#i]|/|vij| = .9630.

The second, fourth, and fifth formulas in (7.13) (for N = 126,b =1, n = 3)
give the distributions of Li(mwc), Li(vc), and Ly(m), respectively (when the
hypothesis with which the criterion is associated is true). By direct computa-
tion with expressions for the Incomplete Beta Function ratios the per cent points
corresponding to the observed values of Li(mwc), Li(vc), and Ly(m) are found
to be .26, .49, and .09, respectively. Thus at the 59, significance level the
answer to any given one of the three questions (a), (b), (c) is yes. Critical
values of Li(mvc), Li(vc), and Ly(m) for various significance levels can be ob-
tained from [3] by interpolation.

ExampLE 2. In an experiment to study certain properties of the blood of
asphyxiated dogs, the 9%,CO, and hematocrit of 10 asphyxiated dogs were meas-
ured four minutes and seven minutes after asphyxiation. Let X; and X; be
9%CO0; and hematocrit four minutes after asphyxiation, respectively, and X
and X, be 9,CO: and hematocrit seven minutes after asphyxiation, respectively.
It is assumed that (X:, X:, X3, Xi) has a normal 4-variate distribution and
that the set of measurements (Xia , Xoa , Xsa, Xta) (@ = 1, - -+, 10) obtained
from the 10 dogs is a random sample of values of (X;, X;, X3, X4). The fol-
lowing questions will be considered, where the grouping is (2%): (a) Is the sample
consistent with the hypothesis H;(mvc)? (b) Is the sample consistent with the
hypothesis Hi(vc)? (c) Is the sample consistent with the hypothesis Hi(m)?
In the particular experiment under discussion (a) is the experimenter’s question.
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The sample means and sums of squares and cross-products are as follows:

X1 X2 X3 X4
294.916 313.908 —89.364 —69.282
313.908 363.689 —130.422 —69.261

—89.364 —130.422 210.356  241.688
—69.282 —69.261 241.688  515.789

Means 50.780 53.590 41.180 43.890.

This matrix is || vi; || (5,5 = 1, - -+ , 4) (see (4.3)). The sample criteria L,(mvc),
Li(vc), and L;(m) will be used to answer questions (a), (b), and (c), respectively.
The values of these criteria can be computed from the data above (see (7.6),
(7.8), and (7.10)) and are found to be:

Li(mwe) = |vi;|/ | 9:;] = 09107,
Li(we) = |vi,|/|0:;] = 3259,
Lim) = |oy]/|0i| = 2794.

The sixth, seventh, and eighth formulas in (7.13) (for N = 10, n = 2) give the
distributions of Lj(movc), Ly(vc), and Ly(m), respectively (when the hypothesis
with which the criterion is associated is true). From [1] it is found that the
observed values of Ly(muvc), Li(vc), and Ly(m) correspond to the 1.2, 12.4, and
.6 per cent points, respectively, of the distributions referred to above. Thus
at. the 5%, significance level the answer to questions (a) and (c) is no and to (b)
is yes. The critical values of L(mwc), Li(vc), and L,(m) for various significance
levels can be found from [3].

More than one of the sample criteria may be of interest in regard to a given
sample (see [5] pp. 267-268). For example, in an experiment such as that
described in Example 1 suppose the answer to question (a) is no. The experi-
menter might then consider question (b); if the answer is no, the inconsistency
of the sample with H;(mvc) might be regarded as due to the variances or co-
variances. If the answer to (b) is yes, the experimenter might then consider (c);
if the answer here is no, the inconsistency of the sample with H;(mvc) might be
regarded as due to the means. If, however, the answer here is yes, further study
might be required to “explain” the inconsistency.
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