LOCALLY BEST UNBIASED ESTIMATES!

By E. W. BARANKIN
University of California, Berkeley

Summary. The problem of unbiased estimation, restricted only by the postu-
late of section 2, is considered here. For a chosen number s> 1, an unbiased esti-
mate of a function ¢ on the parameter space, is said to be best at the parameter
point 6, if its sth absolute central moment at 6, is finite and not greater than that
for any other unbiased estimate. A necessary and sufficient condition is obtained
for the existence of an unbiased estimate of g. When one exists, the best one is
unique. A necessary and sufficient condition is given for the existence of only
one unbiased estimate with finite sth absolute central moment. The sth absolute
central moment at 6 of the best unbiased estimate (if it exists) is given explicitly
in terms of only the function ¢ and the probability densities. It is, to be more
precise, specified as the Lu.b. of certain set @ of numbers. The best estimate is
then constructed (as a limit of a sequence of functions) with the use of only the
data (relating to ¢ and the densities) associated with any particular sequence
in @ which converges to the lL.u.b. of Q.

The case s = « is considered apart. The case s = 2'is studied in greater
detail. Previous results of several authors are discussed in the light of the present
theory. Generalizations of some of these results are deduced. Some examples
are given to illustrate the applications of the theory.

1. Introduction. Let Q@ be a space of points x, and u be a totally additive
measure defined on a o-field F of subsets of 2. Let P = {ps, 0 ¢ O} be a family of
probability densities in @ with respect to the measure u. ® is any index set; we
lay down no conditions on its structure. We are concerned here with the existence
and characterization of unbiased estimates of a real-valued function g on G,
which are in some suitdble sense “‘best” for a prescribed parameter point 6, .
That is, a real-valued, measurable (u) function f, on Q such that

1 _/‘;fo pedp = g(6), 00,

and which satisfies a specified criterion of bestness for 6 = 6, . This criterion is
usually taken to be

(2) ./;(fo - 9(00))2 Doy dl-‘ é j;(f - 9(00))2 Doy dl" fém,

where It denotes the class of all unbiased estimates of g; i.e., the class of all f
satisfying (1). The obvious advantage in the definition (2) is the algebraic

1 This article was prepared while the author was under contract with the Office of Naval
Research.
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pliability. The obvious disadvantage is that I may contain no estimate with
finite variance (cf. section 9).

For the investigation of the fundamental questions, posed above, relating to
unbiased estimates, we shall not restrict ourselves to (2). We consider chosen
and fixed, a number s > 1, and lay down the

DEFINITION. f, ¢ It s best at 6, if

C o> [ =g P mgdn s [ 17— 6@ [ pads,  feD

With this, and under the condition of a rather natural postulate on P (cf. section
2), we exhibit a necessary and sufficient condition for the existence of an unbiased
estimate of .g having a finite sth absolute central moment at 6, .2

Except for the discussion, in section 3, of the case in which ¢ is constang on ©,
we do not consider directly the estimation of g, but rather that of b = g — g(6,).
Lemma 1, of section 2, gives the solution of the problem for g when that for A is
known. After section 3, it is assumed exclusively that & is not =0, except where
the contrary is explicitly stated.

In case s is finite, the existence theorem section 4, Theorem 2, asserts also the
uniqueness of the best unbiased estimate of h. It is interesting to observe the
similarity between the proof of this uniqueness and Fisher’s proof of the (what
might be called) asymptotic uniqueness of an efficient estimator [2 pp. 704, 705].
The case s = «° is discussed in section 5; in this case we find that, in general,
the best estimate is not unique. However, for s both finite and infinite, and as
well when g is constant (.. A = 0), we give a necessary and sufficient condition
that there be a unique unbiased estimate with finite s.a.c.m.* (cf. section 4,
Corollary 2-1, and section 5, Theorem 3 (iii)).

Theorem 2 determines the s.a.c.m. of the best estimate as the lL.u.b. of a set of
numbers given explicitly; and thereby, in particular, throws open the class of
all lower bounds of the minimum s.a.c.m. Investigations after such lower bounds,
in the classical case s = 2, have led to the well-known results of Cramér-Rao
[3 p. 480, (32.3.3)], and Bhattacharyya [4, p. 3, (1.10)]. In section 6, which is
devoted to obtaining various special lower bounds, we show how those particular
bounds fall out. It should be remarked, however, that our conditions on P are
in general different from those of the above authors.

?For the cases = 2 an alternative existence condition, antedating these results, but not
yet published, has been obtained by C. Stein.

3 If we use, in the above definition, the sth root of the sth absolute central moment,
instead of the latter itself, then the bestness criterion for s = « is the limiting criterion
for s = «; viz.,

© > ess.sup. [ fo— g(6s) | S ess.sup |f — g(B) |, Fe,
zeQ zeQ

where ess. sup. refers to the measure »(4) = f Doy Q.
4

4 The abbreviation s.a.c.m. will henceforth be used to indicate sth absolute central
moment at 6, .
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In section 7 we give, in Theorem 7 and its corollary, a construction of the
best estimate, depending only on the knowledge of the minimum s.a.c.m. The
latter, as indicated in the preceding paragraph, is always known independently
of any knowledge of the best estimate. We use these results to obtain explicitly
(Theorems 8 and 9) the best estimates, for arbitrary s, in two cases where
we assume the minimum s.a.c.m. known. These cases, when s = 2, give the
minimum variance as determined by the equality sign in the Cramér-Rao and
Bhattacharyya inequalities, respectively.

Section 8 is given to a brief discussion of the special case s = 2. Finally, in
section 9, we present a detailed study of an example.

At the suggestion of the referee we have added an appendix in which is given a
brief running description of the fundamental ideas of Banach spaces that come
into use here. The italicized phrases are those mentioned explicitly in the course
of the paper.

We shall merely mention here certain points which will be elaborated further
in future communications. (1) The general theory developed here pertains as
well to sequential as to nonsequential estimation; one has only to make the
proper identification of @, ¥, u, and PB. Moreover, as applied to sequential
estimation, the theory will determine the optimum stopping regions. (2) The
discussion of section 5 below can be carried through with ‘“‘ess. sup.” referring
to the measure u, and &, being the space of functions on  which are integrable
(v); and for this, no restrictions whatsoever on the densities ps are required
(cf. the postulate of section 2), since the py are elements of this & solely by
virtue of their properties as probability densities. This development would, for
example, be sufficient to yield the estimate of Girshick, Mosteller, and Savage [5]
in the case of sequential binomial estimation. Also, this unrestricted analysis is
fundamental for the problem of similar regions (a case of the bounded unbiased
estimation of a constant function). (3) For any s > 1 it may be observed in the
result of Theorem 7 below, that the best (at 6) estimate depends only on a
sufficient statistic; this is clear from Neyman’s theorem on sufficient statistics
[6], since the best estimate depends only on ratios of the density functions p .
But more than this, Blackwell’s method [7] of deriving a uniformly (over the
parameter set) better unbiased estimate from a given unbiased estimate can be
proved to remain valid also when the measure of dispersion is the sth absolute
central moment, s > 1. And for this, the postulate of section 2 is not required.
(4) Finally, we point out that, with the proper specializations of ®, Cramér’s
theorem on the ellipsoid of concentration [8], Bhattacharyya’s multidimensional
inequality [9], and the extensions of the Rao, Cramér, and Bhattacharyya
bounds to sequential estimation—as, for example, by Blackwell and Girshick
[1], Wolfowitz [10], and Seth [20]—can be drawn from Theorem 4 below.

The inspiration for the mode of analysis in the following pages, and the
major part of its substance, come from F. Riesz: his book [11 Ch. III] and the
article [12] (in particular sections 8-11 thereof). In strictly mathematical ter-
minology, Theorems 2 and 3 are given in [11] for the sequence-spaces ¢, ; and
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Theorem 2 in [12] for the spaces £, of functions on the real interval [0, 1] with
Lebesgue integrable rth powers. The proofs are given there for the case of a
denumerable set @; in [12] an indication is given of the extension to a non-
denumerable . Our proof of Theorems 2 and 3, however, follows that given by
Banach [13, p. 74] for the case of denumerable ©. It is based on two results, a
theorem of Hahn-Banach [13, p. 55, Theorem 4], and the representation theorem
(suitable for the general type of &, that we consider) for bounded linear func-
tionals on £, [14, p. 338, Theorem 46]. The first of these, and the representation
theorem for any r > 1, spring in fact from the same article [12, p. 475] of Riesz.
In the case r = 1, the representation theorem is due originally to Steinhaus [15];
in the case r = 2, it was developed simultaneously in 1907 by Riesz [16] and
Fréchet [17].

Riesz’ proofs of the sufficiency of the condition in Theorem 2 proceed by
constructing an explicit sequence of functions on 2 which converge strongly in
£, to the (in the present statistical terminology) best estimate. Precisely, if in
Theorem 7 below, we take, for eachn = 1,2, -- - , the numbers a7 , a2 , - - - , o,

so that the expression
kn

R |

1=]

o S
2 ai me

ju=] r

is maximum, then the assertion of this theorem is that of Riesz. However,
Theorem 7 is established here without this strict requirement on the «; . The
dropping of this restriction was essential for the proofs of Theorems 8 and 9.
The latter two theorems are, in fact, proved with the use of Corollary 7-1,
which is an even stronger result than Theorem 7. This corollary falls out of the
proof of Theorem 7 immediately, in consequence of our use of Lemma 2 for that
proof. The lemma, moreover, eases the proof of Theorem 7 markedly, in doing
away with the need for any differentiation.

2. Preliminary considerations. We begin then by introducing the absolutely
continuous (with respect to u) measure, defined on ¥,

v(4) = _/;I’oo du, Ae.

A function ¢ is summable (») over  if and only if ¢ - ps, is summable (u) over
Q; and we have

[od = [ o

(cf. [18, pp. 36-38]). Assuming that each of the ratios

2e(2) 0e®

m(z) = Poo(x)’
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is defined almost everywhere (u) throughout Q, it follows that f is an unbiased
estimate of ¢ if and only if

@3) j frodv = g(0), 6e0.

We define
h(6) = g(6) — g(6o).

Since
f mdv = 1, 0eO,
2

it is clear from (3) that f is an unbiased estimate of ¢ if and only if f — g(6,) is
an unbiased estimate of h. Moreover, f is best, for g, at 6 if and only if f — g(6o)
is best, for h, at 6, .

Define

and let &, and &, be the spaces, normed in the usual way, of real-valued functions
on Q, with summable (v) absolute rth and sth powers, respectively. We denote
the respective norms by || || and || || ; that is, if £ e®, and 7 €%, ,

e =(f1era),
o= ([ 1t @)

We note that these spaces, for s < o, are weakly compact (cf. [21]). This
property will be used in the proof of Theorem 7. Also, we shall make explicit use
of the representation theorem for linear functionals on £, [14, p. 338, Theorem 46].
The assumptions on P, or on Pp = {m, 0 €O}, will now be the following.
PosTULATE: The functions my are defined almost everywhere (1) in Q, and are
elements of L. .
The foregoing considerations combine to give the following equivalence.
LemMMA 1. ¢o + g(6) 2s an unbiased estimate of g, which is best at 6, , if and
only if (¢) ¢o satisfies the equations

and

4 Lq&-m dv = h(6), 0eO,

and (i) when ¢ 1s any other function satisfying (4), we have
e lle = 1l o lles
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that is, if and only if ¢o is an unbiased estimate of h with minimum (finite) norm in

L, . The s.a.c.m. of ¢o + g(6o) ts precisely || ¢o ||s -
Starting with section 4, we shall deal directly with the estimation of .

3. The case of constant g. Throughout the remainder (section 4 et seq.) of
this article, the function 4 is assumed, unless the contrary is explicitly stated,
to be non-constant; that is, since 4(6) = 0, not = 0. We can, and shall in this
section, obtain the results of the desired kind for the case of a constant function g,
by a brief, direct attack.

Let g(6) = go, a constant. Then of course 2(6) = 0. One unbiased estimate of g
is immediately obvious, viz., fi(x) = go . The s.a.c.m. of f; is 0.

There will exist other® unbiased estimates of g with finite s.a.c.m. ¥ and
only if there exist non-null unbiased estimates, in &, , of 0 = h. That is, by virtue
of the isomorphism between &, and the space of linear functionals on £, , there
will exist an unbiased estimate of g with finite s.a.c.m., distinet from f; , if and
only if there exists a non-null functional on £, which vanishes on the elements of
PBo = {ms, 0 eO}. And a necessary and sufficient condition that such a functional
exist is that Py be not a fundamental set in £, [13, p. 58, Theorem 7].

Observe finally that, in any case, f; is the unique unbiased estimate of g with
vanishing s.a.c.m.

We collect these results in the following statement.

TrEOREM 1. If g(6) = g0 , @ constant, then there is a unique best unbiased estimate
of g; viz., fi(x) = go . And the s.a.c.m. of f1 is 0.

A necessary and sufficient condition that there exist no other unbiased estimates
of g having finite s.a.c.m. is that the set Po be fundamental in L, .

As an illustration of the ideas of this section, consider the following example:
@ is the real interval [0, 1]; u is Lebesgue measure; O is the set of non-negative
integers; and

po) = (8 + 1)a’.

And take 6 = 0. Then, v is again Lebesgue measure, and ms = py for each 6.
For definiteness, take r = 2 (the results in this case are the same for any r = 1).
It is well-known that the non-negative integer powers of x form a fundamental
set in & on a finite real interval. That is, if £ is a function on [0, 1], such that

1
f £ dx < «, and if ¢ > 0, then there exist an integer n and coefficients b, ,
0

® That is, distinct from f; in the sense of & ; or, equivalently, differing from f; on a set
of positive (v) measure. Whenever, in the sequel, an equation & = % appears, for two
functions & and & in &, or & , equality almost everywhere (») in € will be understood.
It is a consequence of our postulate that if two functions on  are equal almost everywhere
(v), they are equal almost everywhere (»’), where »' is anyone of the measures »'(4) =

f por du, 6" € 6.
4
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b, -+, bs such that
1 n \2
f (E - Zbi:v') dr < e
0 i=0
Hence, in this case an unbiased estimate with finite variance at § = 0 is unique

(as well for a non-constant function g as for one which is constant over ; cf.
section 4, Corollary 2-1).

4. The main theorem for non-constant h. We shall denote by I, the class
(or the set in £,) of all unbiased estimates of & that belong to &, .

THEOREM 2. (i) A necessary and sufficient condition that I, be non-empty is
that there exist a constant C such that for every set of n functions g, , mwe, , = -+ , T, ,
in Po , and every set of n real numbers ay , @z, - -+ , an , we have, for every n = 1, 2,

(5) c 1}:: Q; Ty
(ii) For every ¢ ¢ M, we have || ¢ || = Co, where C, is the ¢.Lb. of the set of
admissible constants C in (5).

(iii) If M, is non-empty there is a unique do € My with || ¢o||s = Co. Thus,
o 18 the unique unbiased estimate of h which is best at 6o .
The non-constancy of h clearly implies Cy > 0.

The necessity of condition (5) is immediate. Suppose ¢ € I, , so that ¢ satisfies
equations (4); then, forany 6, ,6:, - - , 6, , and any real numbersa, ,az, - -+ , @n,

; a; h(8:;) = /;4’21 a; o - dv.
By the Hélder inequality it follows that
> a;h(8)
=1

Hence (5) is satisfied with C' = || ¢ ||, .

Part (ii) of the theorem is hereby proved as well.

Suppose M, non-empty, and ¢o , ¢1 in M, , such that || do|ls = |[¢1]|s = Co.
Then 1/2 (¢0 + ¢1) € M, and therefore

1/2 || o+ 1 |ls = Co.
But, by the Minkowski inequality,
1/72||do+ e lls = 1/2 (| o lls + || B2 lls) = Co,

IOIE

1=l

\r

= lle Il

n
Z Q; T
=1

T

Hence
[[ g0+ d1lls = [l o lls + || 61 ls

This equality implies ¢; = a ¢o for some positive a. But since the norms of ¢
and ¢; are equal (and %0) o must be unity. Thus the uniqueness of ¢, isproved.
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It remains now to prove, assuming (5) satisfied, the existence of ¢ . Consider
the functional ¥ on P, defined by

F(mg) = h(6).

The Hahn-Banach theorem alluded to in section 1 (viz., [13, p. 55, Theorem 4])
has precisely (5) as a necessary and sufficient condition for the existence of a
linear functional @ on &, satisfying '

(a) G(mws) = h(6), 0 €O;

b @] =C;

where || G || is the norm of G, i.e.,

In particular, taking C = C,, there is a linear functional G, on & with

(a") Go(ms) = h(6), 6 €O
®) |G| = Co.

But, for an element ), a;m; in the linear manifold [$o] spanned by the s,
=]

Go (;amro,) = .Zaih(oi),

so that
Go() |
G| = lub. LO@O1 _ ¢
1G]l 2 tetol | €]l ’
Hence (b’) is replaced by the precise statement
®") |Gl = Co..

Now the representation theorem for linear functionals on &, asserts the exist-
ence of ¢ € &, , such that

G® = [ ot

and
[[golle =11Goll = Co.
This taken with (a’) establishes the existence of ¢y € &, satisfying

Lﬁon dv = h(9), 0e©

1o lle = Co.
and this completes the proof of the theorem.
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It is readily seen that 9%, will consist of more than just ¢ if and only if there
exists a non-null functional on ®, which vanishes on PBo. Our discussion in
section 3 therefore enables us to assert the following.

COROLLARY 2-1. M, , when it is non-empty, consists of ¢o alone if and only if
Bo s fundamental in L. .

A word is in order concerning the following two consequences of the bounded-
ness of the measure »: (i) if Po C &, , then also Po < &, for every ' < r; (ii) if
& €2, then also ¢ € 2, for every s’ < s. Otherwise stated: (i') if Po satisfies the
postulate of section 2 for the number r, it likewise satisfies this postulate for
every (admissible) r < r; (ii’) if 9, is non-empty, then M,  is non-empty for
every 8 < s. Regarding (i’) we shall make only the obvious remark that although
P, satisfies the postulate for every ' < r, there may be values of » < r such
that no C for (5) exists; this will be exemplified in section 9. Where (ii’) is con-
cerned, it is clear that the non-emptiness of M, will not necessarily imply that
Po C Lujer—y for every s' < s, even though for every such s’ I, is non-empty.
If for every ¢ ¢© other than 8, we have ms ¢ &/s—1 , for some particular ' < s,
then we may have the situation in which there are elements in I, with norms
arbitrarily close to 0. However, this cannot be the case if (a) for some 6 other
than 6o, ms € Rr/e'—1 , and (b) k does not vanish identically on @', the set of those
9 for which ms € R/s'—1 . For, when these two conditions are satisfied, Theorem
2 applies to h as defined on ©'; consequently there is a positive lower bound
for the s’—norms of the unbiased estimates of h over ©'. And since every ele-
ment of M.’ is, in particular, an unbiased estimate of k over @', it follows that
the norms of those elements are bounded below by a positive number.

5. The case s = o (r = 1). Let M. denote the class of essentially bounded
(v) unbiased estimates of h; and let bestness at 6y be defined with respect to the
essential absolute suprema of the elements of this class. That is, the unbiased
estimate ¢y , of h, is best at 6 if

ess. sup. | do(z) | < 0,

and if, when ¢ is another unbiased estimate of h, we have

ess. sup. | ¢o(z) | < ess. sup. | ¢(z) |
XeQ XeQd

The fundamental postulate for the functions , is, in this case, that Po C &, .
Now, %, the space of essentially bounded, measurable (») functions on ,
normed by ess. sup., is the space of linear functionalson & [14, p. 338]. Examina-
tion of the proof of Theorem 2 will show that that proof goes through also in the
present case in all but one detail: we cannot here in general prove the uniqueness
of the best estimate. The proof of uniqueness breaks down since the equality

ess. sup. | ¢o(x) + #1(z) | = ess. sup. | ¢o(x) | + ess. sup. | ¢i(z) |
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does not imply that ¢, is a constant multiple of ¢, . Of course, if P, is fundamental
in & , we have a fortiori the uniqueness of the best estimate.

The results for the case s = « are then the following.

TareorEM 3. (i) A necessary and sufficient condition that Mw be non-empty is
that there exist a constant C such that for every set of n functions ms, , 7o, , ++ , ms, ,
in Po, and every set of n real numbers a1, az, -+ - , a, , we have, for every n = 1,
2, -,

(ii) For every ¢ ¢ Mw we have || ¢ ||o = Co, where Cy is the g.lb. of the set of
admissible constants C above.

(iii) When I is non-empty, it contains elements with norm equal to Cy . These
are the best (at 6,) unbiased estimates of h. When Py s not fundamental in &,
there need not exist a unique best estimate.

We close this section with the remark that Theorem 1 remains valid, as it
stands, in the case s = «.

6. Particular lower bounds for the minimum s.a.c.m. In order to stress their
significance in the statistical context, we shall give the statements of this section
with the help of the symbol o,(¢) for the sth root of the s.a.c.m. of the unbiased
estimate ¢, of h. We have of course, the relation

o(@) = |l ¢ |ls-

Now, one of the most important aspects of Theorem 2 is that it presents us
immediately with an explicit evaluation of the minimum o,(¢) for all ¢ ¢ M, .
We state the formula in the form of a theorem.

THEOREM 4. Let R denote the set of all real numbers. Then,

n
glb o:(¢) = lub. > a:h(6))
¢ M, 01,02, +,0,€0 L-_l_.____.
ay, az .a”em ]
Z aime,; ||,
i=1

For brevity, let us set
glb. o,(¢) = o7,

¢ e,

Since this theorem expresses o3 " as the Lu.b. of an explicit set of numbers,
it is clear that the class of all lower bounds of o3 is thereby thrown open to us.
It follows that, when s = r = 2 and our hypotheses on P are fulfilled, the classical
lower bounds of Cramér-Rao [3, p. 480] and Bhattacharyya [4, p. 3] are par-
ticularized consequences of Theorem 4. In the results that follow here we shall
indicate the deduction of those classical bounds. We need not, however, restrict s.

For a moment, let us denote by w(x) the function on ® which assigns the
value 7,(x) to the point p €®, and let ® be an interval on the real axis. Then we
shall, below, write =, for the function (when it exists) on @ which assigns the
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value (dr(x)/dp),=s to = € Q. Similarly, =y for the function assigning the value
(d*r(x)/dp?) s to z; and so on.
TrEOREM 5. Suppose the following conditions fulfilled:
(i) ©® = 9, an interval on the real axis;
(ii) h 1s differentiable on ® & J;
(iii) for each 0 €®’, mq is defined almost everywhere (v), and is an element of & ;
(iv) for each 6 ¢®’,

Tp — T ’
— Ty
p—

Then,foranym+n(m,n=1,2,---)poz'nt301,02,---,0min5,and01',04,
. -,0',,1In®’,andanym+nrealnumbersal,az,~~ Gm, b1, b, -+, b, suchthat

Z a;Ty; + Z bﬂl'o,

7=1 T=]

=0.

r

lim
0

?5 )

we have

Z a:h(6:) + Z b b’ (0;
Z Qa; my; + Z bﬂrd,

ta=1

(6) a2

r

The prime on the 4 in (6) denotes the derivative of h.

To prove this theorem, observe first that by virtue of Theorem 4, we may write

Z ah(®) + 3 b M

1=1 01

% i + 2 ""t - e

fms] 1=]

min
gy =

r

for every set of points p; , p2, -+ + , pa in 9 such that the denominator of the right-
hand side is defined and 0. Therefore, also

> wh(@) + 3 b "—(’1‘3——"@

. - = — 0:
(7) a_t:in g lim 7 lm i=1 K
pi—0i Tp; — T
im1,2,000m Z: a;my; + Z b; "—'_0_0'
i=1 1 T

Now, by condition (iv), the element

m
Za‘Wo‘—i-Zb:’_r_pL:__g_o'_
1=1 ¢ — Us

of &, converges, in the strong sense in &, , to

m n
> aim, + Zx b; e’
1=1 =
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as p; — 0; ,t =1,2 .-, n. Consequently we have convergence of the norm;
that is, the denominator of the right-hand side of (7) converges to the denomi-
nator of (6). (The latter is 0, so that for all p; sufficiently close to-6;, i =
1, 2, .-+, n, the ratios in (7) are defined.) There is no difficulty about the
convergence of the numerator of (7) to that of (6). The theorem is thus proved.
COROLLARY 5-1. Under the hypothesis of Theorem 5, we have, in particular,
when 0y ¢®' and || ms, ||» # O,
| 2'(60) |

e

If we denote by p the function on @ X © which assigns the value py(z) to the
point (z, 6), and write (8) in the form

8 a2

RACHT
dlogp|
a0

the generalization of the Cramér-Rao inequality afforded by (8) becomes
evident.

Using the result and method of Theorem 5, we can establish the next in a
hierarchy of theorems.

THEOREM 6. Suppose the hypothesis of Theorem 5 satisfied, and the following
condition fulfilled: for each 6 in a non-empty subset ®"' of @', (i) h''(6) (the second
derivative) exists and (ii) m is defined almost everywhere (v), is an element of %, ,
and satisfies

®) Sy

o Ds, df‘

’ ’
Tp — Mo ”
p—

Then, for any m + n 4+ qg(m, n, ¢ = 1, 2, ---) points 6;, 6, +++ ,0m tn 9,

61,0:, -+ ,0nn®,and 6,065 ,---, 03 in®", and any m + n + q real numbers
a, Qz, "',am,bl’b2, "’,bn,61,02, "',0q3uchthat

m n g

’ n
> aimy; + Z‘; bime; + Zl CiT o)
=1 = -

lim
p—0

= 0.

r

# 0,
we have
m n q
3 wh0) + 3 bHG) + 3 ah" () ,

m n q
> aimy + O bimgl + }:l el

gl g1

min
Oy =

r

Just as in the case of the previous theorem, we have here an immediate corollary.
CoROLLARY 6-1. Under the hypothesis of Theorem 6, we have in particular, when
6 ¢® -0,
win o [DR(80) + ch”(8) |
© 2 lbrt, + orall ?
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for any two real numbers, b and c, such that the denominator of the right-hand side
does not vanish.
Consider. (9) in the particular case s = r = 2. In this case, (9) may be written,
explicitly,

min bh'(80) + ch''(6) |2
(10) (d 2i )2 = :: (33, az(pO)zl

—_— b — —_—
a Doy ( a0 te 602)0-00 au

In particular, (10) holds for values of b and ¢ which maximize the right-hand
side. And that maximum value is found, in the usual way, to be

JUR (80)T + 2J7K (G)R" (86) + JE[R" (60)],
where the matrix
Jll JIZ
( Jl2 J22>
is the inverse of the matrix
1 fdp 1 ap 3 9 p
fnpo (ao) LR 0 96 267 O

f16p62 /'1(6p>d
T 2 ¢ apo\og2)
Thus, we have

(11) (02" z TR (0] + 27K (B)R" (80) + TR (6)]".
This is seen to be Bhattacharyya’s result for the case of derivatives up to second
order.

It is obvious how we extend Theorem 6 to obtain a similar result involving the
functions g, m, ms , +++ , ms", for any assigned n. And it is thereafter clear
how, in the case s = r = 2, Bhattacharyya’s general inequality may be deduced.

It is clear that we can proceed from Theorem 4, under suitable conditions,
to lower bounds for ¢5™® which involve integrals of the functions =(z) (and the
corresponding mtegra.ls of h) as well as the derivatives of these functions.

In closing this section we note that all the above considerations apply equally
to the case s = o,

7. Determination of the best estimate. We shall now prove the following
theorem, which provides an explicit construction of the best (at 6,) estimate of h.
‘We repeat that s is now taken to be finite.

THEOREM 7. Let MM, be non-empty, and ¢, be the best (at 6y) unbiased estimate of h.
Let {67, =1,2,--- ,ka},n = 1,2, - -+ , be a sequence of (fintle) sets of points of
0,and {af , ¢ = 1,2, -+, ka},n = 1,2, - -+, a sequence of sets of real numbers,
such that

phon|

t—l

E ai W’t

tml

lim = llgolle = a2™

n~>c0




490 E. W. BARANKIN

Then the functions ¢» :

kn
Z ai h(07) | ks rls kn
) = T B @) s (Bt @)

2 ol m

=1

3

(are elements of R, and) converge strongly in £ to o .
The strong convergence here means precisely that
lim lg‘”—¢o|’dv=0.
n—o0 JQ
Clearly, we may, with no loss in generality, assume the numbers «; to be
such that
kn
2 ol T}
T=1

We shall suppose this to be the case throughout the proof. Then the essential prop-
erty of the 67 and the & is that

=1n=12---.

r

(12)

n
> alh(87)| = Cs.

1=l

(13) lim

n—>0

And in this normalized situation, the functions {» will be given by
;Z:; i T (x) " sgn (2 al 7r,;.'(:v)> .
That these functions are elements of £, is easily seen; in fact,

5% a7 hD)

The proof of this theorem will consist mainly in the application of the following

two lemmas.
Lamva 2. Let 0 5 7 ¢%, and {£.,n = 1,2, - - -} be a sequence of functions mn

&, such that

(14) tale) = Z_; ol h(02) -

1 $n lls =

@A ll&ll-=1 =n=12---
G) lim [ gonds = llnll.
Then &, converges strongly in &, to the function
. E — ._1___ I Is/r n
"
Let us observe first that

(15) [tandv = Ilnll
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and

&l = 1.

Furthermore, £ is the unique element with norm =<1 in £, having the property
(15). For, if also, ‘

[end =1k, lelk s,

we then have

fn%(so+zé)~ndv = Il

and from this,

Hleo+allllallezllall.
That is,

lo+all-222 &l + &l -
From this, and (Minkowski)

&+ &ll- =1l &+ 1l &,

we have
e+ &ll-=1&ll+1&l.

Therefore, for some a > 0, £ = af. But we must have ¢ = 1 if & and £ are"
both to satisfy (15), as assumed. Hence £ =k.

Now consider the sequence {£,}. Choose a sub-sequence {£,;} that converges
weakly to, say, . Then || # ||, < 1. We have

[endr =1m [ gomas = ]l
Q 1—0 JQ

Hence, £ = & . Andsince 1 = || &, || — 1 = || & |- , it follows that £,; converges
strongly to & (cf. [13, p. 139, section 3]).
Suppose there is a subsequence {£n;} of {£.} such that

| s — &1l >8>0, i=1,2 .

We have, nonetheless, for this subsequence, the hypotheses of our lemma
satisfied. We can therefore apply the argument of the previous paragraph to
extract a subsequence of {£ »:}, which converges strongly to & . This is in obvious
contradiction to the above §-assumption, and the lemma is hereby proved.
LeMMA 3. Lemma 2 remains true with the roles of & and &, interchanged.
This is obvious.
Returning now to the proof of Theorem 7, let us first, for the sake of brevity,
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introduce the notation:

kn
Cpn = Z a;‘ h@f),
=1
En
Ya = SgN (Z ai h(o:-’)),
ge=]
kn
'l’n = E a? ‘ﬂ'a?'

gl

From

j;,qSorodv = h(6), 0e0,

we easily obtain

fnqso-[z,.dv=c,,, n=12:--

which we may write

‘/;¢0.ﬂyn¢ndy= Icﬂl) n='1’2"...

Since | ¢a | = || @0 |[s (cf. (13)) and || yatn ||r = 1, 1
have, by Lemma 2, that y.¥. converges strongly to

.
(16) | Yo = g | do "7 sgn 0.
[)

The functions (cf. (14))

{n = Cn | ' |r/‘ sgn ¥,
obviously satisfy '

f ot Yn¥ndv = I Cn I )

g

And from this we conclude that

lim g'n\bodll = Co,
Q

n-—>0

or

n—>0

. En 4
lim fnm""d” =1= %]l

1:2: ‘

., (cf. (12)),we

We may apply Lemma 3 to this result, since || &/ ¢a ||l = 1,2 = 1,2, --- .
And we thereby conclude that {./| ¢, | converges strongly to

| %o | sgn ¥o,
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which, on substituting from the definition (16) of ¥y , we find to be just

oo
c.’
Since | ¢, | = Co, it follows immediately that {» converges strongly to ¢, and
the theorem is proved.
The following corollary is actually of greater use in applications than Theorem
7 itself, for the reason that it leaves no doubt about the form of lim ¢, (i.e., ¢)

when we know explicitly the form of lim v,y .
COROLLARY 7-1. Assume the hypothesis of Theorem 7. Then the functions

kn
agn (Z o h(e:-‘)) 5
k:;-l < 2 af o}
2 i

Tem=]
twa]

converge strongly, in &, , to a function Yo , and
¢o = Co| o |™ sgn yo.
This is clear from the proof of the theorem.
By way of illustrating the application of these results, we shall prove the

following theorem.
TaEOREM 8. Assume the hypothesis of Theorem 5. And, further, let the equality

sign hold in (8). Then,

u

K (6, ’ s '
$ola) = ”7% | (@)™ sgn 7oy @),

Since (8) is an equality, we may under the hypothesis of Theorem 5, consider
that we have

1 1
h(ps) — ——— h(8
g, Men) — —— h(B0)

1 1
pn — bo Ten pn — o b
where {p,} is a sequence in J converging to 6, . The numerator of the right-hand
side of (17), sans the vertical bars, converges to h'(6) (which is 0, since
Co # 0); hence, for all sufficiently large n, that expression has the signum of
h’(6y). The functions whose norms appear in the denominator of (17) we know
to converge strongly in €, to ms, (by the hypothesis of Theorem 5). Hence, for
this case, the function ¥4 of Corollary 7-1 is
sgn h'(80)

[

an ¢y = lim

r

0 =

Therefore, by the same corollary,

K@)
#@ = el

rls

sgn h'(6,) .
[
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-sgn h/(6o) - sgn g, (x)

= % I W;o (22) I'/‘ sgn ﬂ';o(x).

And this is the result asserted in the theorem.

The reader will have no difficulty in establishing, in the exact pattern of the
preceding proof, the following.

THEOREM 9. Assume the hypothesis of Theorem 6. And, further, let the equality
sign hold in (9) for b = by, c = ¢y - ® Then,

o) = D)+ k(8
T | Bomay + coma, |Ir

= | By ma, ()4 co oy (x) |7+ sgn (o m, () + comaq ().

It is evident that results of the type in these theorems may be built up as
well with integrals over the parameter space.

A question of considerable practical importance is that of the rapidity of
convergence of the {, to ¢o . An answer to this question, on the level of generality
we are maintaining in this study, consists in relating this convergence to that
of the | ¢, | to Cy . In the case s = r = 2, the answer is immediate and exact:

len = dulli = [ o= 907 v

= L{idv*Z/ﬂ%ﬁdV—l- ‘/;tﬁgdz/

=l —2|cul 4+ Co

=Cs— e n

Thus, if one unbiased estimate is known, it provides, since its norm is =Cy,
an upper bound for || {» — ¢ ||z . The same is true in the general case (any s)
once we have established an upper bound, depending on Cy and |e¢. |, for
|| 2 — ¢o||s - But in the general case, a good upper bound does not seem to be
so close at hand. There are indications of the direction in which one must proceed,
and we hope to draw some significant results out of these before long.

8. The case s = r = 2. The particular aspects of this case (where bestness
of an estimate has reference to its variance), which arise out of the coincidence of

¢, and &, , merit some discussion. We shall denote the inner product, j;z Endy, of

two functions £ and 7 in &, as usual by (£, 4). Let {5} denote the closed linear
manifold in & spanned by the o .

TaeoreM 10. Let I, be non-empty. Then ¢o is the unique element of Me which
lies in {Po}.

¢ In the case s = 2, by and co are the values which render (11) an equality.
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To begin with it is clear that the functions ¢, of Theorem 7, in the present case
s = r = 2, are all elements of [P,], the linear manifold spanned by the ;.
Hence, since ¢y is the strong limit of these elements, ¢ € {Po}.

Now suppose also ¢1 € Mz, ¢1 € {Po}. Then, from

(¢0 ) 7!'0) = h(0), 0 e @,
(¢1 ) Wﬂ) = h(B)) 0 E@,
we have (1 — ¢o, m) = 0, 00,

and, by continuity of the inner product,
(o — ¢0,£) =0, £ e {Po};

that is, ¢1 — oo € {Bo}™. But, from ¢o e {Po} and ¢; € {Po} it follows that
¢1 — ¢o e {Po}. Hence ¢ — ¢ = 0, and this proves the exclusiveness of the

property for ¢ .
Another characterization of ¢, is given by the following corollary.
CoroLLARY 10-1. If M, is non-empty, then ¢o is the unique element of My which

satisfies the system of equations in & : (¢, &) = || £ |2, € s .
To see that ¢ has the asserted property, let ¢ be any element of 9%, and set

¢ = £+ 71, with £ ¢ {Bo} and 7 € {Bo}”. From
(£ m) = (& + n, m) = (¢, m) = h(0),
it follows that £ e M, . Hence £ = ¢ . And so,
@ ¢0) = (@0 + n,¢0) = || o |lz -
If &; € M, has this property also, then both
@1, 00) = || o |I2
and A
@0, 00 = ll o [
and therefore
I nlle = [l o |l
This proves ¢1 = ¢, and so the corollary.
9. An example. Let 2 be Euclidean n-space, £ = (21, %2, * -+, Za); 4, Lebesgue
measure; ©, the set of real numbers; and
no) = i {3 3 @ - ).
And finally, let 6, = 0. Then
mo(z) = e"p{’,}‘zg (—26z; + 02)}.



496 E. W. BARANKIN
If 0 < b < %, and we define
(@) = (1 — 2b)™* exp {b > z?} -1,
tw=]

we have, for egch 0,

fn é1(x)pe(2) du = exp {T’n—iz“b 92} -1

Thus, ¢ is an unbiased estimate of the function h:

h(6) = exp{ nb 02} -1

1 -2

If we examine

[¢rlls = (2%)”/7“1;‘(1 — 2p)™? exp{b}”:xf} -1

tm]

exp {—é z xf} du;

tmm]

we find that this integral converges only for s < 1/2b. Shifting the emphasis,
we may state: for the function h, defined by

RO =e” —1, a>0,
there exists an unbiased estimate with finite sth moment at 6 = 0, for each

n + 2«
%

s <
Next, observe that

el = gy [, o {~5 35 (et — 20 + )}

= exp { nr(r — 1)6%},

so that the my are elements of &, for each » > 1. The ratio

HOT o ¢ 1) oxp (—tlr — 1)

is seen to diverge as 8 — o, if
tn(r—1)<a

Hence, by Theorem 2, there exists no unbiased estimate of A belonging to U
for a value of s such that the number

=S
s—1

satisfies the inequality just above; that is, for a value of s greater than

n + 2a
2a
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Otherwise stated: there exists no unbiased estimate of h with finite sth moment at
6 = 0, for
n + 2a
20
It is most likely true that this last statement holds, in general, with

n + 2«
2a

s>

s 2

We shall consider here only the case

n+2a=
2a

and since the analysis is the same for every pair n, a satisfying this equality,
we treat the particular case of

2;

n =1, a =3
Thus, we shall show: for n = 1, there exists no unbiased estimate of hs ,
ha(6) = € — 1,

with finite variance at § = 0.
‘We must show that the ratios

2": Qi wo;

gl

2

are not bounded for all choices of m (distinct) 0.{s, and all sets of;m real numbers
a; , and all m. This is clearly equivalent to showing the same for the ratios

> el — e"“'g)l

=1

L 2
E a; eV o5

te=l

Q(m, a;, 6;) =

2

Now we find, by direct computation,

m _”2 2
Za"e ‘o X

de=1

m 16 2
= Y Oty o
=1

And the solution of the familiar extremum problem:

> al — e

te=1

e—i(Oc—Oi)’
4,jm=l

sup subject to aa; =1

(as)

yields

m

302 _
sup Q(m, a;, 6) = ‘Zl vi(l — e ¥)(1 — ¢ ”3),
Gy ¥ ot
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where.the matrix

V=(1)ij), i7j=1727'”7my
is the inverse of the matrix
U= (e——}w‘—ai)z): 5,5 =12 - ,m
We now take, in particular,
0; = it, 1=12 ---,m,

where ¢ is a positive number. Clearly, there exists a number # such that for
t> 0,
Ut) = (e
is non-singular. Also,
o lim U(f) = I,

t—»00
the identity matrix. Then, for £ > &, V = U " is a continuous function of U,
so that
lim V(¢) = (lim U()™ = I.
. tow

t—>00

Hence,
lim v,-,-(t) = 5.‘,’.
0

It follows that
lim sup Q*(m, a;, it) = m,

t—» (ag)
and therefore,

sup Q*(m, a;, 6;) = m.
(as.05)

(A simple argument on the characteristic values of U shows that there is actually
equality here.) This result gives the unboundedness of the ratios @; and our
proposition is proved, by virtue of Theorem 2.

APPENDIX

The spaces £ and &, are instances of a Banach space over the reals; that is, a
complete, normed, linear vector space, closed under multiplication by real
numbers. That the space, say B, is normed is to say that there is a non-negative,
real-valued function, || ||, defined on B, with the properties:

|| €4l = 0 if and only if £ is the null vector,
Watll =lal-Ill&ll,
Ne+all =l + 11l

where £, 7 ¢ B and a is real. The number || £ || is called the norm of £.
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The function || £ — 7 || on pairs &, 7 of vectors is a distance function in the
usual sense. With it, strong convergence (or simply convergence) is defined in B: £,
converges strongly to £ when lim || £, — £]| = 0. In symbols: &, — £ or lim &, = £.

The usual set-theoretic notions are now defined in the obvious way; e.g., limit
point of a set, closed set, etc. That the space 9B is complete means that every
sequence {£,} satisfying lim || £&» — & || = O converges to a (unique) element.

£e.

A Uinear manifold M in B is a subset of B with the property that for any two
elements £, 7 e I and any two real numbers a, b, we have also af + by e IR.
A closed linear manifold is a linear manifold that is closed in the set-theoretic
sense. If S is any subset of B, then the set, [S], of all finite linear combinations of
elements of S is a linear manifold; it is the linear manifold spanned by S. The
closure of [8], denoted by {8}, is called the closed linear manifold spanned by S.
In general, [S] is a proper subset of {S}. A set S € B is called fundamental
when {S} = 8.

A linear functional, G, on B is a real-valued function with the property
that for any two elements £ 7 ¢ ¥ and any two real numbers a, b, we have
G(at + by) = aG(£) + bG(n). The linear functional G is said to be bounded when
the number

_ | G(® |
G = Lub S

is finite. || G || is called the norm of G. (Throughout the text of the paper, the
qualification ‘“bounded’” has been understood in all references to linear func-
tionals). If we define the sum of two linear functionals F and G by (F + G)
(&) = F(&) + G(%), and make the other requisite definitions in the obvious way,
we find that the bounded linear functionals on B form a linear vector space
over the reals. The function || || on the bounded linear functionals, which we
have already called a norm, is in fact a norm in the Banach space sense. This
vector space, so normed, is readily shown to be complete. Hence it is a Banach
space—usually called the conjugate space to 8. It is this space we have referred
to in the text as the space of linear functionals on B.

If a sequence {£.,} of elements of B has the property that lim G(¢,) = G(£)

for every bounded linear functional G, then £, is said to converge weakly to &.
If, of the sequence {£.}, we know only that lim G(£,) exists for every bounded

linear functional, we say simply that the sequence is weakly convergent. The
space B is called weakly complete if every weakly convergent sequence converges
weakly to a limit. The spaces €., r = 1 are weakly complete. B is said to-be
weakly compact if every bounded set S C B contains a weakly convergent
sequence. That S is “bounded” means l.él:gb. | £]] < .

A real Hilbert space O is a real Banach space on which there is defined an
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inner product; that is, a function (£, 1) on pairs of elements £, 7, with the
properties-

& n) = (2,8,

(at, 1) = a(§, n),
E+5m=(=En+ ¢,

el = & 9.

The inner product is a continuous function of both its arguments; i.e., lim &, = £
and lim 9, = 9 imply lim (£., 7.) = (£, 7). The space £ in the text is a Hilbert

space when we take (£, 9) = ./; £y dv. Two elements £, 9 which are such that

(¢, ) = 0 are said to be orthogonal. If S is any set in §, then the set of elements
of $ each of which is orthogonal to every element of S is called the orthocomple-

ment of S, and is denoted by S
For further elaboration the reader is referred to [13] and [19].
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