EFFECT OF LINEAR TRUNCATION ON A MULTINORMAL POPULATION!?
By Z. W. BirnBaUM’
University of Washington

1. Introduction. In admission to educational institutions, personnel selection,
testing of materials, and other practical situations, the following mathematical
model is frequently encountered: A (¢ + !)-dimensional random variable (X,
Xo, -, X, V1,7, -+, YY) = (X, Y) is considered, with a joint probability-
distribution assumed to be non-singular multi-normal. The Y;, Y, , ---, Y; are
scores in admission tests, the X;, X, , -- - , X scores in achievement tests. The
admission tests are administered to all individuals in the (X, Y) population
to decide on admission or rejection, and (usually at some later time) the achieve-
ment tests are administered to those admitted. A set of weights a; > 0,7 =
1,2, ---, 1 is used to define a composite admission test score U =+, a,¥;
and a “cutting score” 7 is chosen so that an individual is admitted if U > 7,
and rejected if U < 7. We will refer to this procedure as linear truncation of
(X, Y)in Ytotheset U > 7.

A linear truncation in Y clearly will change the absolute distribution of X,
except in the case of independence. In this paper a study is made of the absolute
distribution of X after linear truncation in Y in the case ¥ = 1; in particular,
the possibility is investigated of choosing the a; and 7 in such a way that the
distribution of X after truncation has certain desirable properties. The case
k > 1 leads to a considerable diversity of problems which are being studied and,
it is hoped, will be the subject of a separate paper.

Throughout this paper it will be assumed that all the parameters of (X, Y),
that is the expectations, variances and covariances before truncation, are
known. In practical situations it often happens that only the parameters of
¥1,Y., -+, Y,before truncation are known, while the first and second moments
avolving X;, Xz, -+, X are only known for the joint distribution .after
truncation. It can be shown [1] that in such situations the expectations, variances
and covariances of (X, Y) before truncation can always be reconstructed if
(X, Y) has a multinormal distribution.

In the simplest case & = I = 1 the probability-density of the original bi-
normal random variable (X, Y) may be, without loss of generality, assumed

equal to
1
- —— o~ (X2-2pX ¥+ ¥3)/2(1—p?)
(1-1) f(X, Y, P) 21‘,_\/1 — Pz (2 .
By truncating this distribution in Y to the set ¥ > r one obtains the probability-
density
(1.2) 9X, Y50, 7) =4 ()X, Y;p), for¥ >,
0, for Y < 7,
1 Presented to the Institute of Mathematical Statistics on June 18, 1949.
2 Research done under the sponsorship of the Office of Naval Research.
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where
1 0
(1.3) Y(r) = '—_\/—2—;[ e-‘zl2 dt.
For further use we introduce the abbreviations
— _1__ —72/2

(1.4) o(r) = o e ’
15 A = 20

(1.5) (m) ok

We also note the inequalities

(1.6) r < A7)

and

1.7 A7) < Vitr -1

2

derived in [2] and [3], respectively.?
Before proceeding to the more-dimensional case, we will study some properties
of the marginal probability-distribution of X after truncation to ¥ > r

(1.8) eXip,7) = [ g(X,¥;0 1) av.

2. The moments of ¢(X; p, 7). In this section all mathematical expectations
are computed for the absolute distribution of X after truncation of (X, Y) to
Y >

We have
-1 X
X, = o002,
and hence
o0
BX) = [ Xe(Xip, ) dX
to Y Xn-1 @ .
_ —1 X ~52/2
v [ e ey &S OX

= ¢ () { —e(X)X"'y (\T_/—l—j—Xp) +

+o0 ‘rn— —_ X
+ [, e [d«}x (\/1 5?)

3 Implicitly, the inequality (1.6) was known already to Laplace, ¢f. Mécanique Céles ¢,
transl. by Bowditch, Boston 1839, Vol. 4, p. 493.
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el p T — pX
+ XA —p“”(\/l—pﬂ)]dx}

-2 () + s [ 3 ewe (G25) o

From the identity

(2.0) o(X)e (%) = o(r)e (\%)

we obtain

[ o (5725) - [ 50 (35
VT o) [:” SVIZF + or)™0(8) dS,

and hence S
dx™? t=
@1) EX) = E( )+ A@ [ SVT= 5+ o)™ el dS,

dX
forn > 1.
For n = 1 this yields for the expectation of X after truncation

2.2) E(X) = p\(7).
For n = 2 we have from (2.1)
E(X" =1+ p'n\(r) = 1 + prE(X),

and hence for the variance of X after truncation the expression

(2.3) @(X) = 1+ E(X)[pr — E(X)),
or )
(2.31) 7(X) =1 = pA(@)() — 7]

From (2.2) we see that E(X) always has the sign of p, as one would expect.
From (2.3) one finds a lower bound for 7

EX) -1

PEX)

From (2.31) and (1.6) one concludes that ¢°(X) < 1 for p # 0, hence the
variance of X after truncation is always less than the variance before truncation,

except if p = 0.
Similarly one computes from (2.1) the third moment about zero

EX") = EX)B — o1 — )]
and obtains for the third moment about the expectation
(2.5) EX — EX)I = EX)p*{{M(r) — 7l2A(r) — 7] — 1}.

(24) T>
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Numerical computation indicates that the quantity in braces is always >0,
which would mean that the skewness of X after truncation has the same sign as
E(X) and p. No analytic proof of this statement has been obtained.

3. Determination of 7 for given expectation or quantile of X after truncation;
dependence of this 7 on p. Let it be required to determine 7 so that the expectation
of X after truncation assumes a given value m. It follows immediately from
(2.2) that this 7 is obtained by solving the equation

3.1) A =T
p

for 7, which can be done with the aid of a table' of A(r).

Another problem which occurs in applications consists in determining r so
that, for given 0 < @ < 1 and X, , the a-quantile for X after truncation assumes
the value X, , that is so that

(3.2) f_ (X p, 1) dX = ¥7N) f_ z f KX, ¥ p) dY dX = a

Let
1 o0 -]
(321) P(s, t;p) = 2—7'_-\—/—1—-——;2f f XX YYD 20 gy oy
- I t

denote the volume of the probability solid Z = f(X, Y; p) above the quadrant
X > s, Y > t. Then (3.2) may be written in the form

1 — PXa,7i0) _ @
¥(r) ’
or
(3.3) 1 — a)y(r) = P(Xa, 7;5p),

and this equation can be solved for 7 by trial with the aid of tables of ¢(7) and
Pearson’s tables [4] of P(s, t; p),
LemuMa 1. For fized expectation of X after truncation E(X) = m, the solution 7(p)
of (3.1) is a strictly decreasing function of the absolute value of p for 0 < | p| < 1.
Proor: Differentiating m = pA(r) with regard to p one obtains

0= Mn) + V() &
dp
and, in view of the identity

ADRGE) — ),

N(r) =
the expression
dr 1
(34) o = T @ — "

4 A table of 1/A(7) is, for example, given in Karl Pearson, Tables for Statisticians and
Biometricians, Part 11,1931, pp. 11-15.
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From (3.4) and (1.6) we see that
sign dr = —gign
which proves our lemma.
LemMaA 2. For fized a, X . , the solution 7 = 7(p) of (3.3) ¢s a strictly decreasing

Sunction of | p | for 0 < |p| < 1.
Proor: Differentiating (3.3) with regard to p one obtains

dr oP dr , oP
—(l—a)¢(7');l-") =-E_-a; %’
and hence
_oP
(3.6) dr _ dp

P - et

From (3.21) one easily verifies that
OP(X., 7;p) wnt [ —i2/2
— 0 7 = ()1 — te dt,
ap e 2 (Xa—pr)//T=p2

and therefore

3.7 P(Xe, 730) o

dp

One also computes

aP(XayT;p) _ Xa_'pT
or = —90(7')!/' <m)»

so that the denominator of the right hand expression in (3.6) becomes

ofi-ems (525)]

In view of (3.3) this is equal to

o [2557 - (5]

=) [P(Xa, 7 p) — Y0¥ (uﬂ

1 — p?
® o [Ea—pr)/V1=pt
=) & f PR f YT U qU dy
2r J: (Xa—p¥)/ VI

=\ ’2% f " ) ay.
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If p > 0, then pY > p7 in the interval of integration r < ¥ < «, hence
X, — pY X, —

Vis g < V= 2, therefore the integrand h(Y) is positive, and so is the
denominator of (8. 6) Similarly one sees that if p < 0 the integrand h(Y) is
negative for 7 < ¥ < « and the denominator of (3.6) is negative. In view of
(3.7) we conclude

signj—; = —gign p forp # 0.

4. Linear truncation of (X, ¥3,Y:, - - -, ¥)) to the set >b, a,¥; >  for
given expectation or quantile of X, minimizing the rejected part of the population.
Let (X,Y:,Y,, -+, Y:) bean (I + 1)-dimensional non-singular normal random
variable with all expectations, variances and covariances known. We wish to
choose a;, @z, - -+ , a; and 7 so that by setting

1
(4.1) U= 2; a;Y;
=
and performing the linear truncation to the set U > r we obtain for the expecta-
tion of X after truncation a pre-assigned value m, and that this is achieved with
the least waste of the original population, that is so that for the non-truncated
probability-distribution the probability P(3_j-; ¢;¥; < r) is minimum.
Without loss of generality we may assume that, before truncation, we have

(4.21) EX)=EY,) = --- = EY)) =0,
(4.22) F(X) =1,

and thus

(4.3) EU) =o0.

Furthermore, the a; and 7 can always be multiplied by a constant, without
changing the set of truncation, so that we have

(4.4) @ (U) =

TuEoREM 1. To truncate (X, Y1, Yz, -+, Y3) linearly in Yy, Ys, -+, Y1 30
that the expectation of X after truncation has the given value m and that the probability
of the rejected part of the original population is minimum, it is necessary and
sufficient (1) to determine ay , az , - - - , a1 so that the absolute value of the correlation-
coefficient p(X, U) becomes maximum under the condition (4.4), and (2) for U
determined by these a; , az, - - - , a1 and for p = p(X, U) to solve equation (3.1) for .

The proof of this theorem follows immediately from the first paragraph of
section 3 and Lemma 1.

Using the second paragraph of section 3 and Lemma 2, one equally easily
arrives at the following theorem:

TueOREM 2. To truncate (X, Y1, Y,, «--, Y)) lbnearly in Yy, Ys, ---, Y}
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80 that the a-quantile of X after truncation has the given value X. and that the
probability of the rejected part of the original population is minimum, it is necessary
and sufficient to satisfy (1) in Theorem 1 and then to solve equation (3.3).

The problem of satisfying requirement (1) of Theorems 1 and 2 can be solved
effectively by a method due to Hotelling [5]. It may be worth noting that this

method yields two sets of constants, a;,a;, ---,a,and —ay, —a2, -+, —
both maximizing | p(X, U) | but leading to values of p(X, U) with opposite
signs. Nevertheless the choice between a;, a2, -+ ,a;and —a;, —az, -+ , —

and the determination of 7 are unique for any given m, since (3.1) has a solution
for 7 only if sign p = sign m.

6. Linear truncationof (X, Y, Yz, - - -, ¥,) to theset >+, a;Y; > 7 for given
expectation of X after truncation, minimizing the variance of X after truncation.
It may be of practical interest to choose a;, as; ---, a; and 7 so that, with
the notations and under the assumptions of section 4, the expectation of X
after truncation becomes equal to a given number m, and the variance after
truncation is minimum.

Traeorem 3. To truncate (X, Yy, Yz, ---, Y)) linearly in Yy, Ys, ---, Yi 50
that the expectation after truncation has the given value m and that, under this
condition, the variance of X after truncation becomes as small as possible, it is
necessary and sufficient to satisfy the conditions (1) and (2) of Theorem 1.

The proof of this theorem follows from section 3 and the following lemma:

LemMa 3. For fized E(X) = m, the variance o*(X) after truncation s a strictly
decreasing function of the absolute value of p for 0 < | p | < 1.

Proor: According to (2.3) we have

(X) = 1 + m(pr — m).
Differentiating with regard to p and using (3.4) we have

do*(X) dr\ ) — =1
dp “’"(’*”%)"” o) — 7

For 7 < 0 this clearly is <0. For 7 > 0 inequality (1.7) yields
@) — 71— 1< 36EVEF 2 — 37 —2)
<2+ 7)—-8"—21=71—-1) — 1,
and this is < 0 for 7 > 0. Together with (1.6), this proves that
() — 7] —1

A7) — 7 <0
for all 7, and hence according to (3.1)
. ddi(X) . .
sign = —signm = —sign p.

dp
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It may be conjectured that thesign of do’(X)/dp isopposite tothat of p alsoin the
case when o°(X) is the variance after truncation minimized under condition
(3.3). This would lead to a theorem stating that the same choice of a; , @, - -+ , @
and 7 which according to Theorem 2 makes the a-quantile after truncation
equal to the given number X, and minimizes the rejected part of the original
population, will also minimize the variance of X after truncation.
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