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ONE-SIDED CONFIDENCE CONTOURS FOR PROBABILITY
DISTRIBUTION FUNCTIONS!

By Z. W. BirnBauMm aND Frep H. TiNcGey?
University of Washington
Summary. Let F(x) be the continuous distribution function of a random
variable X, and F,(x) the empirical distribution function determined by a
sample X;, Xz, -+, X.. It is well known that the probability P.(e) of F(x)
being everywhere majorized by F.(z) + e is independent of F(z). The present
paper contains the derivation of an explicit expression for Pa(e), and a tabula-
tion of the 109, 5%, 1%, and 0.19, points of P.(e¢) for n = 5, 8, 10, 20, 40,
50. For n = 50 these values agree closely with those obtained from an asymptotic

expression due to N. Smirnov.
1. Introduction. Let X be a random variable with the continuous probability
distribution function F(z) = Prob. {X < z}. An ordered sample X; < X,

< ... < X, of X determines the empirical distribution function
0 forz < X,
F.(x) = %foer$x<Xk+l, E=12 ---,n—1,
1 for X, < =

The function
Ft (z) = min [F.(z) + ¢ 1],

also determined by the sample, will be called an upper confidence contour. It
is well known [2] that the probability

P.(¢) = Prob. {F(z) < F? (z) for all z}

of F(z) being everywhere majorized by F?, .(z) is independent of the distribution
F(z). An expression for P,(¢) in determinant form was given by A. Wald and

* 1 Presented to the American Mathematical Society on April 28, 1951,
2 Research under the sponsorship of the Office of Naval Research.
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J. Wolfowitz [2]. N. Smirnov [1] obtained the asymptotic expression

2 —2,2
1.1 im P,(—=)=1—¢".
The present paper contains the.derivation of an explicit expression for P,(e),
and a tabulation of values ¢, . such that
(1'2) Pn(en,a) =1—a
for « = .10, .05, .01, .001, and n = 5, 8, 10, 20, 40, 50. For n = 50 these values
agree very closely with those obtained from Smirnov’s asymptotic expression

(L.1).
2. Two integral formulae. For any integer k, 1 < k < n, we have

1) X)) = [ / l / X, e dX dX, = L= Xe)"
] Jima (Xn) = Xkp-1 Xk Xn_1 ne - b m—Fk+ 1)! )

This formula is well known and may be obtained by an easy induction.
For any integer £ > 0 we have

€ (1/n)+e (k/n)+e k
_ € kE+1
22) fofX] ka X ngXm—(k_i_l)!(e-l- t )
To prove (2.2) one shows by induction that the left-hand expression is equal to
¢ m42 <m + 2)( m4+ 2 — j>m+l i

which is equal to the right-hand term in view of the identity
m-+2 ) m+1
> (m j' 2)<e + "ﬁ'nz_J) (=1 = 0.

7=0

3. An expression for P,(e).
THEOREM. For 0 < € < 1 we have

_ [n(1—e€)] n ] n—jg j>j—1
(3.0) P,(e) =1—¢ ;} <j><1—e—7—7'—) <€+7_7, ,

where [n(1 — €)] = greatest integer contained in n(1 — e).
Proor. Since P,(e) does not depend on F(x), we will assume that X has the
probability distribution function

0 forz <0,
F(x) =<z for0 <z < 1,

1 forl < z.
For this random variable, P,(e) is the probability that the ordered sample
(3.1) 0<Xi<X,<--<X,<1
falls into the region
j— 1 .
2 <Xx <! =1, .-
(3.9) X1 2 X; < - + ¢ for j 1, K+ 1,

X1 <X, <51 forj=K+2,---,m,
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where Xo = 0 and K = [n(1 — ¢)]. Since the probability density of an ordered

sample (X1, X, - -+, X,) is equal to n! in the region (3.1) and to zero elsewhere,
the probability of (3.2) is equal to

(3.3) P.(e) = nlJ (e, n, K),

where

1

.
e p(l/in)te p(2/n)te (K/n)te pl
somo = [ [ L [ L
0 Jx, X2 XK Xg41 VXK 42
1

(3.4)
. f X, -+ dXxss AXxs2 dXxp -+ X5 dXs dXi.
Xn—

By (2.1) we see that

€ (1/n)te (2/n)+e (kin)+e (1 - X )n—k-—l
(3.5) Temb =4 L, L . =k — DT Xk

k
-o- dX3dXe dX, .

We will prove by induction

‘ n—k—1
Jenk+1) = Jn k) —ni‘<k-7:- 1><1 Lokt 1)

0 (4B,

n

for any integer 0 < &k < n — 1. For k = 0, (3.6) can be verified directly. As-
suming (3.6) for k < m, we obtain

J(en,m-4 1)

/ f(l/n)+ef(m/n)+ef((m+1)/n)+e (1 _ Xm+2) X iX e dXedX
Xt —“—_—‘—_(n —m = 2)! m+42 m+1 20l

f f<1/">+e f(m/nm (= X ¢ dX.dX
= S m4l ° 2 1

m —m — 1)!

m+ 1\
1 —e— T (1/n)+e (m/n)+e
_ f / f AXmys - - dX2dXa,

m—m — 1)!

and, by the assumption of induction and (2.2), this is

n—m—1 m
Homm = 5 (0 ) e YT (e )

which proves (3.6).

[1 — (1 — €)™, one obtains from (3.6)

§|,_.

. Noting that J(¢, n, 0) =



CONFIDENCE CONTOURS FOR DISTRIBUTION FUNCTIONS 595

somp = - 5O (4D

This, together with (3.3) completes the proof of (3.0).
Remark. Setting F, (x) = max[F.(x) — ¢ 0], one easily verifies that Prob.
{F(x) > F,.(x) for all z} is equal to P.(e), and hence also is given by (3.0).
4. Tabulation of ¢, . and comparison with asymptotic values. Table 1 con-
tains numerical solutions €., of equation (1.2), computed to a number of
digits sufficient to assure that | Pu(en,a) — (1 — a) | < 5-107°,

TABLE 1.3
Solutions e, of equation (1.2)

N 100 030 * 010 001
5 .4470 .5094 .6271 .'7480
8 .3583 .4096 .5065 .6130
10 .3226 .3687 4566 5550
20 .23155 .26473 .3285 .4018
40 .16547 .18913 .2350 L2877
50 .14840 .16959 .2107 .2581

Setting 2/A/n = &n,« in (1.1), one obtains for la,rge n the asymptotic values

(@1 e 4/ tog 1

These values are presented in Table 2

TABLE 2
Values of &,, = A/ L log L
e 2n o
n @ 100 .050 .010 .001
5 4799 5473 6786 8311
8 3794 4327 5365 6571
10 .3303 .3870 4799 5877
20 2399 2737 .3303 4156
40 11697 .1935 2399 .2938
50 1517 1731 2146 12628

A comparison of the two tables indicates that, for the probability levels
001 < o < .1, the asymptotic values &.., are greater than the ‘“exact” values

# 3 The authors wish to express their appreciation to the National Bureau of Standards,
Institute for Numerical Analysis, for performing the computations which are summarized
in this table.
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€n,o S0 that the error committed by using &,,. instead of €,,, would be in the
safe direction, and that this error becomes already very small for n = 50.
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ON THE ESTIMATION OF CENTRAL INTERVALS WHICH CONTAIN
ASSIGNED PROPORTIONS OF A NORMAL UNIVARIATE POPULATION

By G. E. AuBerT AND Ravpa B. JomNsoN
University of Tennessee and Clemson Agricultural College

Summary. For samples of any given size N > 2 from a normal population,
Wilks [1] has shown how to choose the parameter A, so that the expected cover-
age of the interval & 4= A s will be 1 — p. The present paper treats the choice
of the minimal sample size N necessary to effect a certain type of statistical
control on the fluctuation of that coverage about its expected value; a brief
table of such minimal sample sizes is given.

1. Introduction. Let F(y) denote the normal cumulative distribution function

1 v — 2 2
f e~ gy,
27 J-w

(1) F(y) =

g

If p is any number in the range 0 < p < 1, factors A\(p) are well known such
that the proportion

) A = F(m 4+ \o) — F(m — \o)

of the probability between 7 &= Ao will equal 1 — p.
If m and ¢ are unknown, it is natural to consider the random variable

6)] A(G, s5N) = F(@ + \s) — F(§ — »s),
where § = i; yo/N and s = {z::l (yi — 9)/(N — 1)}i.

Obviously A cannot be chosen to guarantee A(f, s; \) = 1 — p. S. S. Wilks
[1] has shown that, for a random sample of size N, the expectation of (3) is

1 - P,

if the parameter A is chosen as

(5) >\=t,,1/NZ*VI1.




