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ALOWER BOUND FOR A PROBABILITY MOMENT OF ANY ABSOLUTELY
CONTINUOUS DISTRIBUTION WITH FINITE VARIANCE

By Sigerrt Moricurt

University of North Carolina

Summary. The greatest lower bound of the nth probability moment (1.1)
of a population with variance ¢? is given by (3.4).

1. Introduction. The nth probability moment of a population with the prob-
ability density function f(z) is defined as

(L.1) o = [ 1@ ds.

These functionals have drawn the attention of some authors (see for instance
[1] and the references given there) in connection with fitting frequency curves
by means of frequency moments. Also it is to be noted® that the cumulative dis-
tribution function of the range w of a sample of size n from such a population
can be approximated, for small w, by nQuw" ™

In general, it is not necessary that n in (1.1) be an integer. It may be any real
number. However we put the restriction n > 1 in the following. To be specific,
we take the population mean equal to zero. Moreover, we consider only popula-
tions whose variance

(1.2) @ = '/_m ' f(x) dr

is finite.
As the probability density function, f(x) must satisfy the conditions

(1.3) f_:f(x) dr =1,

1.4) f@) = 0.

Under these conditions, we try to find a lower bound for @, .
Incidentally, Q, has no finite upper bound, because it increases indefinitely as,
for instance, the probability concentrates more and more to a certain point.

2. Derivation of the extremal distribution. The calculus of variations suggests
equating to zero the first variation

e o[ [verae- [ - u [ s a),

! The author in fact took up this problem at first in connection with his work on the dis-
tribution of sample ranges. It was Professor Harold Hotelling who called the author’s at-
tention to probability moments in this relation.
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where A and u are the Lagrange multipliers. Thus we get as the characteristic
equation

2.2) a[f@)]* — A — u = 0,
whence

2 1/(n-1)
(23) o) = | 22 ]

We should take \ negative, and consequently u positive. Then the solution (2.3)
is applicable in the interval (—+/—pu/A, v/ —u/A). Outside of the interval,
f(x) should be taken to be identically equal to zero.
TABLE 1
Reduced probability moment, @, 0"

Onder | Lowerbowd  Ngrmeldie  Rectmgar  Agmploti
2 .26833 .28209 . 28868 .2547
3 .07599 .09189 .08333 .0735
4 .02174 .03175 .02406 .0212
5 .0%6245 .01133 .0%6944 .0%613
6 .021797 .0%4125 .0%22005 02177
7 .0%5174 .0%1524 .035787 .03511
8 .0%1491 .035686 .0%1671 .0%147
9 .0%4299 .0%2139 .0%4823 .0%426
10 .0%1240 .0'8094 .011392 .0%123

As a change of scale in measuring z does not affect the result essentially, we
take the nonvanishing interval to be (—1, 1), and write the solution in the form

f(x) — C(]. _ x2)l/(n—l)’ -1 é z é 1
(24) ’
=0, Jz|>1,
where ¢ is determined by the normalizing condition (1.3) as
1
(2.5) c = B ( n l).
n—1'2
The variance of the distribution (2.4) is calculated as
2 n—1
(2.6) o = 3T

The nth probability moment of the distribution (2.4) is
2n n—1
.

(27) =
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Therefore the reauced nth probability moment Q,¢" ", which is invariant under
any linear transformation of x, is given for the distribution of the same type as
(2.4) by

a1 _ 21 /‘/n -1 n 1)]"_1
(2.8) Qno —3n——1l: 3n — 1 B(?zy—1’§ )

That this value gives the lower bound for any population with finite variance is
to be proved in the next section.

3. Proof that the solution gives the lower bound. Let us denote the particular
probability density function (2.4) by f(x), and compare the probability moment
Q, for it with Q, for any distribution with probability density function f(z) and
the same variance ¢”. From the normalizing condition and the assumed equality
of the variance, we get

6y [ U@ - j@la=0 |

0

2[f(2) — @)l dv = 0.
By virtue of these equations and taking account of (2.4), we can express the
difference 2, — &, in the following way:

0
/— 00

2, — & = [ (@) = F@))" = 0™ (1 = #)if(e) = J)] da

1
—1

(32) = f (F@)" = (J@)} = 7)) ) — f@))] de

+ fl - " + ne" (2 = Df(x)] de.

But Taylor’s expansion up to the second-order term provides the formula, for
any f and f,
nin — 1

(3.3) =+ =5+ —2~—-> 7 =

where fi is a value between f and f. As both f(z) and f(x) are positive, the formula
(38.3) assures us that the integrand of the first integral in the last member of
(3.2) is nonnegative. Also the integrand of the second integral is obviously non-
negative. Hence we get the conclusion @, = @, , equality being satisfied only if
fz) = f(@). ’

In general, it is easily derived from the above and (2.8) that

2n n — 1 n 1 -t 1
> 5)| o=
(3.4) %2 g [1/3n —L B(n - 1,.2)] e

Thus the lower bound of a probability moment of any absolutely continuous
distribution with finite variance ¢* is given by the right-hand member of (3.4).
It is actually achieved by a distribution of the same type as (2.4).
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4. Numerical results. Numerical values of the coefficient in (3.4) are tabulated
in Table 1, together with the corresponding values n~#(2r) ™ for normal and
(24/3)™" for rectangular population. All these values approach 1 when n — 1,
as might be expected from the fact that for any distribution @, = 1. It is to be
noted that the curve for the lower bound would be fairly parallel in logarithmic
scale to the curve for rectangular population. In fact it is easily shown that when
n becomes large the former is given by

avirse[ 54 (g) —vo (1 +0(3)
5/3
- (2\/1?2)"‘1 e‘6_<1 + 0(1%)) - (2058;)3“‘(1 + 0(%))

where Y(z) denotes the digamma function I'(z + 1)/T'(z + 1). The first term
happens to be close to the true value even for small n as we see in Table 1.

(41)
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UNIFORMITY FIELD TRIALS WHEN DIFFERENCES IN FERTILITY
LEVELS OF SUBPLOTS ARE NOT INCLUDED IN
EXPERIMENTAL ERROR

By G. A. BAKER
University of California, Davis

1. Introduction. The present note is confined to the consideration of two
randomized blocks with two subplots each. The usual mathematical model for
the analysis of variance of such an experiment assumes that

(11) v,,=g+b,+t,+e,,, ’l=1,2,]=1,2,

where v;; is the yield of the jth variety in the 7th block, and the block effect b;
is the average for the subplots of the 7th block. Any difference between b; and
the yield of subplots due to differences in fertility is one component of the random
parts, €; . The random parts, €;’s, are then assumed to be normally and in-
dependently distributed with zero means and uniform variance. That these as-
sumptions may break down in many cases because of the magnitude and non-
randomness of the differences between subplots has been indicated in a recent
paper [1]. It should be understood that it is practically impossible with our present
knowledge to determine the relative or absolute fertility levels of any set of plots,



