MAXIMUM LIKELIHOOD ESTIMATION IN TRUNCATED SAMPLES!
By Max HaLPERIN?

USAF School of Aviation Medicine

1. Summary. In this paper we consider the problem of estimation of parame-
ters from a sample in which only the first » (of n) ordered observations are known.
If r = [gn], 0 < ¢ < 1, it is shown under mild regularity conditions, for the
case of one parameter, that estimation of 8 by maximum likelihood is best in
the sense that §, the maximum likelihood estimate of 6, is

(a) consistent,

(b) asymptotically normally distributed,

(¢) of minimum variance for large samples.
A general expression for the variance of the asymptotic distribution of 8 is ob-
tained and small sample estimation is considered for some special choices of
frequency function. Results for two or more parameters and their proofs are
indicated and a possible extension of these results to more general truncation is
suggested.

2. Introduction. We suppose we are sampling from a univariate population
governed by a probability law, f(z, 8), —»© < z < «, where 6 is a single pa-
rameter. Our sampling process is assumed to be such that for any sample size, n,
we have as sample observations only z;, 22, -+, z,, the r smallest observa-
tions in the sample where r is defined for every n by r = [¢gn]. The notation [a]
has the usual meaning of the largest integer contained in a. It is assumed that
g is known and 0 < ¢ < 1. Such a sampling process as defined above could
easily arise in an experiment of the life-testing variety.

As a case in point, consider the testing of airplane propeller assemblies in a
wind tunnel. The assemblies are quite expensive, costing several thousand dol-
lars each. Furthermore, the test, which consists of increasing the wind velocity
in the tunnel and observing the velocity at which each assembly is ruptured is
of the destructive type. That is, if an assembly fails, it is not repairable, while
if it does not fail, its function is not impaired. Thus, on the basis of budget
limitations for testing purposes, it may be desirable to limit the number of as-
semblies that fail. An obvious solution to this problem is to terminate the test-
ing procedure after a fixed percentage of the propellers in the sample fail. The
percentage would be fixed in advance s6 as to keep the total monetary loss
within budgetary restrictions. Supposing that the velocity required to rupture
a propeller is a random variable following a continuous probability law, we have
a simple example of the type of truncated sampling process described above.

1 Part of a doctoral thesis presented to the Department of Mathematical Statistics, Uni-
versity of North Carolina. Work on this problem was begun while the author was with
the Rand Corporation.
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ESTIMATION IN TRUNCATED SAMPLES 227

The sampling process we have described may be generalized to the case of
several parameters and further to the case of several points of truncation, each
of the latter being defined as a particular sample percentage point. We do not
consider these generalizations in detail in this discussion.

To obtain our results we shall need the following assumptions on f(z, 6). Not
all the assumptions are needed in some of our further discussions, but are listed
here for brevity and easy reference.

AssuMpTiON A. For almost all x, the derivatives

dlogf(z,0) d'logf(x,0) d°logf(z,0)
® EYER ET

(2.1)

exist for every 0 belonging to a nondegenerate interval R.
AssumptioN B. For every 6 in R we have,

laf((;,o) ! < Fy (),

8’f(x,8)
a6

< Fy(a),

8’f(x,0) 3’logf(x,0)
T I < F3(z), JT ] < H(z),

where Fi(x), Fo(x), Fi(x) are integrable over (— o, ), while [ H(z)f(z, 0) dx <

M, where M 1is independent of 6.
AssumpTioN C. For every 0 in R

A 2 A 2

s alogf(x,0)> o1 ( f 3 f(,0) )

K= [ (20 s+ ([ 25

is greater than zero. Here, if 6, is the true value of 8, A is defined by
]\

qg = [ f(z, 8) dx. That is, X is the population 100g percentage point.

AssumpTioN D. f(z, 8) s continuous in the neighborhood of x = X\ and has a
continuous derivative in z, f'(x, 0), while

dlogf(z,0) dlogf(z,0)  0'logf(,0)
a 9>’ e’

are continuous in the neighborhood of x = \.
Finally, we define regular estimation from a joint frequency function, say

h(z,, -+, &, 0), in a manner completely analogous to that of Cramér, ([1],
p. 479). That is, we suppose we can transform z; , - - - , z, to new variables 6*,
A1, -° 5 A_1, (where 6* estimates 6), in a one-to-one manner so that

7 r—1
(22) hzy, -+ ,2,50) gdx; = g(6*; )m(\1, - -+ , A1 ; 6%, 6) IIld)\.- do*,

where g(6*; 6) is the density of the estimate 6*, while m(A;, -+, A\—1; 6%, 0) is
the conditional density of A, -+, A,—1, given 6*. Then, if oh/a6, dg/d0, dm /96
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exist for every 6 in R and if

oh 9 om

w < Ho(xl, e ,Z,-), a—g < Go(o*), -55 ] < Mo(xly Y >‘r-l—l;0*)y
where H, , G, , 0*G, , and M, are integrable over the whole space of (z;, - - , z,),
6*, 6% and A\, - -+, A1, respectively, we shall say we are in a regular estima-

tion case of the continuous type and 6* will be called a regular estimate of 6.

3. Derivation of results. Since our problem is of prominence in the field of
life-testing, it is convenient to use a terminology which stems from this con-
nection. It may be remarked that though it is then implied that our random
variable is nonnegative the latter point is in no way critical to our proofs.

Thus, let f(z, 8), 0 < x < o, be a probability density satisfying Assumptions
A-D. We suppose that n individuals, each subject to f(x, 6) as a death law,
have been observed from age zero until r( = [gn]) of the group have died at

timesx;, 23, -+ ,2,,0 S S22 < -+ S, < . If we denote the sampling
density of x;, - -+, z by h(x;, - -+, x,), we clearly have

n! A n—r
(3.1) My, - ,a,) = n = Hf(xi,e)[p(xr,ﬁ)] ’

where p(z,, 0) = 1 — q(z,, 0) = f f(z, 6) dx. If we further denote the con-

ditional joint density of z;, -, x,.1, given x,, by h(z,, ---, 2,1 ; 2,) and
denote the density of z, in a sample of n by S.(x.), we have

Mz, -+ ,x.) = hlxy, -+, 2o 2,)Se(z,)

= o= 0T [2 0 1) e, )iptar, 01 later, 01

We have now, denoting by the symbol E the operation of taking an expected
value, the following lemma
Lemma 1. If Assumptions A and B hold,

(33) B [a log h(zy, - - - ,x,)]2 _ _E [62 log h(z, - - x)]

(3.2)

a0 362

Proor. The proof consists of verifying that under Assumptions A-D

ah(xly"";xr) . o r azh(xl,"',xr) g .
@an [ ot o - f B fTa g

and then proceeding exactly as in Cramér ([1], p. 502). Here E, is the domain of
X s "0y Xy .

In order for (3.3.1) to hold we must have | 9h/08 | < Ho(zy, -+, ),
| 8°h/08° | < Hi(zy, -+ - , ,), where H, and H, are integrable over E,. We have
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oh _ af(x,,ﬂ) n—r
il o _r),;g‘f(“l?) [p(z,, 0)]

n—r—1 | 9p(z,, 6)
+ ﬁ, 117z, 0lp(a, 0) [T]
and
oh
6_0’ RECE=] (n—1) r)' 12-:1113 /(). 0) Filw:) + (‘—T)',Hf(x,,()) f Fi(z) dx

from Assumption B. We also know that df(x, 6)/96 exists for all 6 in some in-
terval. Thus we may choose a 6, in that interval and assert for all in the interval

flz, 6) < f(=z, 6) + Fi(x) d = Fo(x),

where d is the length of the continuity interval on . We then have

oh
% (n = n! r)u ; LI, Fo(z;)Fi(x:)
+ oo AR [ R i = i, ).
It is clear that Ho(x,, - - -, x,) as just defined is integrable over E,. A similar

discussion holds for 9°2/86" and the lemma follows.
Next we prove the following lemma.

Lemma 2. Let 6* = 6*(21, - -+, x,) be an unbiased estimate of 6, 6* being con-
tinuous and possessing partial derivatives 96*/ox;(j = 1,2, - -, r) in almost all
points (xy, - -+, x,). If estimation from h(z,, - - - , x,) is regular, we have asymp-
totically

1
(3.4) nE(g* — 6 = T
where

2 *olog f(z, 0] 1[ *of(z,0) 2
K _fo [—60—} f(x,o)dx+;)[o = dx].

Proor. Consider

fg(o* 9) do* = f fm(x1,~-- Aot 0%, e)IIdx =1,

T=1

where g(6*%; 6) and m(\,, -+, A\ ; 6% 0) are as defined in Section 2, in the
definition of a regular estimation case. Under our regularity assumptions on
m(r, -+, M1 ; 0% 60) and g(6%; 0), these integrals may be differentiated with
respect to § under the integral signs. Thus we have

a6
Glogm . T
= mh, e Ao 0%,8) [T dne = o

=1

(3.4.1)
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Now, referring back to (2.2), we take logarithms of both sides of that relation-
ship, neglecting differentials, differentiate and have

dlog My, --- ,x,) _ dlogg(6*;68) , d1ogm
(342) a0 N a0 T

Squaring both sides of (3.4.2) and taking expected values of each side, we get

2 T © 2
f (a log h) hzy, -, z,) [[de: = f (a log g) g(6*; 0) do*
Ey . — 00

a0 =1 a0
0 0 0 2 r—1
(3.4.3) + f_ g(6*; 0) f_ f_ <§7’"> m ] dn; do*

[

©f(dlogg 2 % *
> . do
[m ( a6 > 9(6%; 0) '

The cross-product terms, resulting from squaring, all vanish by (3.4.1). Since,
under our assumptions, we can write (cf. [1], p. 475), for §* unbiased,

o 2 —1
(3.4.4) E(6* — 60)® = [ [ <a lgog g) g(6*; 0) do*] ,
it follows that we have exactly
2y} —1
(3'4.5) nE(G* _ 0)2 > {1 E [a log h(xl, ey a:r):l } ,
n a6
or by (3.3)
> _}Eazlogh(xly yxr) _1.
- n a6?
From (3.1) we can calculate (8° log k(z: , - - - , z,))/(86%) in detail, and integrating
out 2y, - -, &,y , we get, after some manipulation,
1,0 logh(xy, -+, 2,) _ _ f“ d*q(x,_y, 6)
7_14 E 602 - A T Sn—-l(xr—l) dxr—l
® 8%q(x,, 6) .
+ A 602 Sn—l(xr) dxr
n—1 * [ ag(z,, 19):|2

(3-4~6) + m A I: Y] Sn—2(xr) dzx,

®© Tr—1 2

[T 5,0 e | Suaterd an
0 0 a6
1 ("3 log f(x., 0)
1‘2 b W—— Sn(xr) dz,.

In (3.4.6)
Sn—c(xr—d)

n —¢)!

= (7‘ — d _ 1)' (n ¢ —r + d)l [q(xr—d; o)]rvd_][p(xr—dy 0)]n_c—r+df(xr—d1 0)~
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That is, Sn—c(2,—a) is simply the sampling likelihood of the (r — d)th smallest
order statistic in a sample of size (n — ¢). With this understanding the basis for
the right-hand side of (3.4.6) is readily apparent. If we consider the last term
on the right-hand side of (3.4.6), we see that

1 *9* log f(z,, 6) 1

n|h 96* \/71

which is O(1/4/7n), since from our assumptions the integral exists. Hence, asymp-
totically we can disregard such a term. Now we consider the integrands of the
remaining terms of (3.4.6) and on the integrand containing S._.(z.—a), We per-
form the transformation

* 18" log f (z, 6)

S.(z,) dz, =

l f(z, 6 dx,

(347) Yy = 'l/_ll_d'—_C_ (xr-—d - x)y

where a = (/qp/f(\, 6)). It follows from Cramér [1], pp. 367-9, that the func-
tions (a/N/n — ¢)Sn—c(\ + ay//n — ¢) each converge to 1/\/21r exp (—3y%)
in any finite y interval and are each uniformly bounded in any such inter-
val. Denoting the function associated with S._.(\ + (a/v/n — ¢)y) by
guc(N + (a/A/n — ¢)y), it is apparent that we can expand g._. in series about
y = 0 to zero-order terms plus a remainder, and consequently that

(3.4.8) lim g . <>\ + K/ﬁ y) = g(\), say,

n—>00

for any fixed y. Furthermore, it is clear that each g.—. is uniformly bounded in
every y interval, finite or infinite. Thus the general relation desired is that

(3.4.9) lim f S.(1)g.(y) dy = \;’2—* f_ : exp (—3y) dy,

n—00

where we know that g.(y) and S.(y) converge to g(\) and 1/4/2x exp (—1y")
respectively, for any fixed y, and that g.(y) is absolutely bounded by a constant,
G, while S.(y) is uniformly bounded in any finite y interval. To establish (3.4.9)
we choose a 7, > 0 such that, for any preassigned ¢ > 0

1 12 €
hammer—= 'Y —_— = 1 —_— T ..
\/zrfmg.,e”" ) dy 6(G+ g1

We can also write

’f_: 9. S () dy — \71’5 [: g exp (~'%y2) dy,’

_ -9 a2
S| ewswa - e[ e i)l

S d —1.% dy.
+G iowe () y+\/21rfm>we>cp( 1) dy
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Since for |y | = 9o, gx(y)S.(y) converges everywhere to g//2x exp (—21y%) and
since ¢a(y)Sa(y) is uniformly bounded in this interval, it follows that we can
choose an n(') such that for n > nﬁ s

— ——g: 1,2 1
fluléngn(y)Sn(y) dy Ve exp (—3y) dy | < e

v| Zvo

We also have by construction

lgl 1,2 Ig'f €
— “W)dy = o < -
V2r Disne P I W = @) <6

Finally, we have

@ Saly) dy =G[1 “fw

l¥] Zv0

S.(y) dy] >0,

|Svo
and for |y | = yo, we can choose an ng such that for n > nj

1 €
S.(y) dy > —F== exp (—1y) d - =,
fmgo (y) dy e 3Y) dy 6
so that
€

S dy<Gl1—14-—_¢ L} €
G [, .50 d < [ tee T Teel <3

Thus, choosing 7o = max (ng , ng ), we can assert that for any preassigned ¢ > 0,
we can find an 7, such that for n > n,,

[Lows.wa - f= [ ow (1) ay| < e

Thus (3.4.9) holds. Then taking the limit of (3.4.6) and simplifying, (3.4) follows.
We are now ready to prove the following theorem.
THEOREM 1. The likelihood equation

dlog h(zy, --+, ;) _ <~ 0 log flz., 6) .y ologp(z., 0
(3.5) a6 =L —+t@m-n a6 =0

corresponding to (3.1) has a root 8 which

(1) converges in probability (i.p.) to the true value of 0;

(2) s asymptotically normally distributed;

(3) is asymptotically efficient. )

Proor. First we show" § converges i.p. to the true value of 6, 6, , say. We can
write

19 log h(m, -+, @) _ 1(‘9 log h) CE)) <32 log h)
351 n a0 n\ 80 /e, n 6% /s,

+ 340 — 6T (21, -+, %) = Bo + (6 — 6By + 2A(0 — 6,)°B..
Here | A| < 1, the subscript 8, denotes evaluation at 6,, and B,, B,, B, are



ESTIMATION IN TRUNCATED SAMPLES 233

functions of the random variables z; , - - - , z, . We note that for the method of
proof used here we must have
3’ log h
(352) ﬁ 96° < T(.’L'l, tety x,),
where
3.5.3) ET@, - ,z) < M,

where M is a positive constant independent of 6. If we assume, in addition to
Assumptions A-D, that 1/p(z., 6) is bounded independent of 8, say by I(z.),
where E[I(z;)] < I, where I is independent of 6, (3.5.2) and (3.5.3) are easily
seen to hold. The calculations are simple and are omitted.

Now we consider the characteristic function, ¢o(f) of By . We have

() = f exp [n {Z dlog f(xi, 0) _ (n — 1) (7 3f(x, 6) dx}}

’ =1 a0 p(z,, 6) a0
(3.5.4) ) e
* h(xly Y xr) det';
=1

or integrating on 1, *++ , %, ,

] r—1 n—r

[T o) ] st
0 n n n

where

o it 9 log f(z, 6)
oy L
’ q(z, , ) ’

V(La) = op{l 2108t 0},
n n a0
¢ _ it aq(z,, 6) 1
W<7z’”'> - e"p{ n o8 p(xr,e)}‘
Now on the integrand of (3.5.4), we perform the transformation (3.4.7) and
have
r—1 ¢ ﬂ)
Ale G B o+

(G ) 50+ 25)

We want the limit for fixed y and ¢ of (3.5.5). From (1], pp. 367-69, we have

i 320+ 22) - e

(3.5.5)
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for every fixed y. Also

dlogf ()\ + >
i \/n
,l,’f.,lologv<‘ )‘+\/>_}.fin a6 =0
for every fixed y and ¢, from the continuity of 9 log f(x, 6)/86 about x = \. If
we now consider the function U(f, A + ay), we see that for every fixed y it is a

characteristic function. Further (dU/dt)— exists for every fixed y. Thus we can
expand U(t, A + ay) in a series in ¢ and have for values of ¢ near zero

Atay ¥
(3.5.6) Mev af(x, 6) .. .9 log f(x, 6) My of (x, 6)
N [fo 30 exp{zAlt — 2 }dx _-l; T dx]
g\ + ay, 0) ’

where | A; | < 1 and the term in square brackets goes to zero with ¢. We can
also write, for example

My of (x, 6) * of (x, 6)
fo a0 o
g\ + ay) q

A+aldqy 9 o
+|: ay af( + adsy, 6) _af()\-i-aAgy,o)‘{ f(axé )dx:|
g\ + adqy, 0) a6 g\ + alzy, 0) ’

where | A; | < 1. Then putting ¢/n and y/+/n for t and y respectively, we get

" of(z, )
a .
(3.5.7) U (f +—y-> — 14 % #, mnby)
n ' vVn q n n
where py(n, ¢, ) approaches zero for any fixed y and ¢, as n — . Similar con-
siderations lead us to

" of(z, 0)
t ay N _ b 38 it | pn, t,y)
(3.5.8) w <ﬁ’ A+ \/7-) =1-, > e

where ps(n, t, y) approaches zero for any fixed y and ¢ as n — . It follows that
(3.5.5) becomes, asymptotically,

A
(3.5.9) exp [it{ A (‘ﬂg(;—m dx — 6f(x 0) }] NGE exp (—%y9).

0

Since (3.5.5) meets the conditions indicated for validity of (3.4.9), we can apply
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a convergence argument as indicated in Lemma 2 and conclude

(35.10)  lim ¢o(t) = exp [it{ [ af(vc 0 4 af(:c 0, }]

n—>0

so that B, converges i.p. to zero.
Similar arguments lead us to

(8.5.11) lim E exp (itBy) = exp (—K%t),
and
(8.5.12) lim E exp (itB:) = exp (M'it),

n—>0

so that B; converges i.p. to —K”* while B, converges i.p. to M’ < M, a positive
constant independent of 6. The precise argument given in [1], pp. 502-3, may
then be employed to show that (3.5) has a solution, §, which converges in prob-
ability to 6, . We omit these arguments.

Now from (3.5.1), we have

1 (a log h)
(3.5.13) KA/n0 — ) = —& K+v/n o,
~2L 2 Bl — )
K? 2K2 2

The denominator of the right-hand side of (3.5.13) converges i.p. to 1, so that
we may infer by well known theorems that the asymptotic distribution of the
ratio is simply the asymptotic distribution of the numerator. Thus we need
only show that (1/K~+/n)(d log h/86)s, is asymptotically normal with zero mean
and unit variance in order to complete the proof of our theorem. Denoting the
characteristic function of (1/K+/n)(d log h/d8)s, by ¢(t), we have, by virtue of
(3.5.4)

(3.5.14) o(t) = ¢o (‘/"‘>

Applying the transformation (3.4.7) to (3.5.14) we can exactly as before show
that V(¢/KN/n, A + ay/A/n) converges to 1 for every fixed y and ¢, while
(@/A/n)8a(A + ay/~/n) converges to (1/A/2x) exp — 3y’ for every fixed y. If
now we turn our attention to U(f, X + ay), we see that U can be expanded near

= 0 in powers of ¢ to terms of order #* plus a remainder of order o(f*), since
the second moment of the distribution corresponding to U exists for every fixed
y. Similar remarks apply to W(¢, A 4+ ay). Thus, by manipulation of the type
employed in obtaining an asymptotic representation of (3.5.5), we find that
the similar result for the integrand of (3.5. 14) is

e[ - 2 ([ 254

Lo (157 )]

(3.5.15)
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Since (3.5.14) meets the conditions indicated for validity of (3.4.9), we can for

any fixed ¢, carry out a convergence argument as indicated in Lemma 2, to
obtain

lim ¢(t) = \/2 exp( )

-expl: {y—!—K\/E af(xo) }]dy—exp(—-~t)

Theorem 1 follows.

(8.5.16)

4. Generalizations. One can generalize the discussion of Section 3 to the case
of several parameters and show that maximum likelihood estimation of § =
6, -, 6p) from h(z;, ---, x,) is a best estimation procedure in the sense
that

(a) the maximum likelihood equations have a set of solutions (8, -+, 8,)
which are consistent;

(b) v/n(6 — 6) has a multivariate normal limit law;

(¢) the covariance matrix of the limiting distribution of 4/n(# — 6) is the best
matrix in the sense of Cramér [1].

In connection with (¢) we mean specifically that the concentration ellipsoid
corresponding to the covariance matrix of the limiting distribution of v/7n(8 — 6)
is identical with

»
(4.2) > plloehdlogh o) —6)=p+2.
st d0; a6,

The ellipsoid (4.2) is shown by Cramér [1] to lie wholly within the ellipsoid
corresponding to any set of regular unbiased estimates of 6, , - - - , 8, . The mean-
ing of “regular” here is precisely in the sense of Cramér [1] as applied to the
joint frequency function h(z:, ---, z.). The assumptions necessary to obtain
the result are the natural analogues of Assumptions A-D. Thus A, B, D are
extended by imposing similar conditions upon the various derivatives up to
third order, that is those with respect to each 8; and also the mixed derivatives.
The condition C becomes a requirement that the matrix with elements

Ay = /0 A (a loga{ofx, 0)) (0 loga{)fx, 0)> 1z, 0) dz

1/ *of(z,0) >< 0f(x0) > S
+5<o de o 06; » wi=1L2 P

be positive definite. The additional assumption on p(z, , 6) specified in Theorem
1 remains unchanged except that 6 is taken to be a vector parameter.

Under the assumptions outlined above the proof of (a), (b), (c) follows the
lines of Section 3.

A direction of further generalization is to the case of several points of trunca-
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tion, each truncation point being a sample percentage point. This work has
not been carried out in detail, but due to the asymptotic joint normality of
sample percentage points, it appears clear that results of the nature of (a), (b),
(¢) would hold under conditions analogous to these given by Assumptions A-D.

6. Small-sample -estimation. For samples of the type considered in Section 3,
one can obtain small-sample results for two important special thoices of f(z, 6).
Casg A. flz, 6) = 6¢7*, 0<z2z< «,0>0.

For this case we have from (3.1)

(65.1) hlzy, -+, 2) = I 0 exp{—o [S:: zi+(n—r+ l)x,]}.

(n —r)!

From (3.4) it appears that in any regular estimation case an estimate 8* will be
such that

* 2 02
(5.1.1) E(@6* — 6)" =2 g’

for 6* unbiased. From (5.1) we obtain the maximum likelihood estimate of 8 as

N r

(5.1.2) 6 = r—1
Zx.+(n —-r 4 l)xr

i=1

, say.

IS

It is easy to show by calculating its moment generating function that the
random variable, 28y, has a chi-square distribution with 2r degrees of freedom.
It follows that
2 2
r9 ~0, Vard= 0~ 9.
r—1 r—1 mnq

(5.1.3) Eb =

Thus 8 is a best estimate in the sense of Theorem 1. § can, of course, be cor-
rected for bias, the variance of the adjusted estimate then being 6°/(r — 2).
Case B flz, u, o) = 1 exp —l@——_—")j —o <z < ®
. y M po \/ﬂ 2 2 ’ .

o

This case is of marked interest since it is frequently assumed in life testing
that the logarithm of time to death is normally distributed. Essentially this
case has also been considered by Hald [3] and Cohen [5]. We indicate the solu-
tion for completeness. It can be shown that

(5.2) 6= 3@ — ) (—h+Vig gy, w=gz—h,
where

r—1
‘z(xi’—j;r)2
z, Vi=4l14= |

=1 7’(.’17, - jr)z



238 MAX HALPERIN

and } is the solution of

1
i 132 .
\/27rexP( i) _ - 2r h+Vh+ V2
1 o —_ — 2 ¢
\/Q_-/‘ exp (—32%) dz n—r n—r 1 %4
T Jn

It is easy to show that the right and left sides of (5.2.1) are monotone de-
creasing and increasing respectively. This implies the uniqueness of the solution
and also affords a simple method of solving (5.2.1) with the aid of a table of
ordinates and areas of the standardized normal distribution. Despite the fairly
formidable appearance of (5.2.1) the solution goes quickly.

It is also simple and interesting to calculate the asymptotic efficiency of the
estimate of u from a truncated sample when o is known (the efficiency being
considered relative to a completely known sample). For selected values of
g = r/n, approximate efficiencies are given in thet following table. Approximate
efficiency of x(,.; , the sample percentage point, in estimating u is also given to
indicate the extent to which one gains by using the other (r — 1) observations
in the estimation procedure.

(5.2.1)

Qe 1 .2 3 4 3% 6 .7 .8 .9
Eff . o, .36 .53 .66 .75 .82 .88 .91 .95 .98
Eff Zpgng e oo .33 .49 .57 .62 .64 .62 .57 .49 .33

Acknowledgment. The author is indebted to Dr. A. M. Mood who suggested
this problem.
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