ON A TEST FOR HOMOGENEITY AND EXTREME VALUES

By D. A, DaAruING
University of Michigan
Summary. Let 2, , 22, - - - , 2, be positive, identically distributed, independent
random variables. It is of some statistical interest to study the distribution of
2y = (& + 22 + -+ + z,)/max (21, 22, - , Z,). In this paper we give its
characteristic function and in a few cases its distribution. A limiting distribution
of fairly wide applicability is given in the last section.

1. Introduction. Suppose z;, %2, *-* , Z, are positive, independent observa-
tions coming from populations with cumulative distribution functions F (o),
F(osx), - -+ , F(oaux) respectively, where o; > 0 and F(z) is some known con-
tinuous cdf with F(0) = 0. It is of some practical importance to devise a test
for the hypothesis H that ¢1 = g2 = --- = ¢, . For instance, in the analysis of
variance it is desirable to know if a set of n independent sample variances are
“homogeneous,” or if to the contrary they come from normal populations with
different variances.

Let t, = 21 + 22 + -+ + x, and m,; = max(x,, 22, - -+ , &), and put
U, = M,/t, . A possible test consists of rejecting H when u, exceeds a certain
value. In 1929 R. A. Fisher [1] used this test in determining whether the largest
amplitude in a harmonic analysis was “significantly” large, H being the hy-
pothesis that each z; was independently distributed as o’x” with 2 degrees of
freedom. In 1941 Cochran [2] considered an extension to k degrees of freedom.
Other writers have taken the ratio of an extreme variance to an independent
estimate of the variance as a test for homogeneity and outlying observations
(cf. Nair [3] and Finney [4]). This test is also used implicitly in quality control
work to test the equality of scale parameters; here z;, z2, --- , z, are each
independently distributed as the range of a sample of size k.

A test of the nature described above is supposed to have good power against
alternatives which consist of the occurrence of just one anomalously large
value of ¢, whereas for other alternatives (in the case of testing variances) the
well known test of Bartlett (which is essentially the likelihood ratio test) is
perhaps superior. This test might also be employed to determine the equality of
location parameters in a set of cdf’s, and generally to test the significance of
extreme values. Since, under H, the distribution of u, is independent of the
common population variances (or is ‘“Studentized” in the terminology of
Hartley [5]), it is superior, for many purposes, to tests based on other order
statistics (cf. Pearson and Chandrasekhar [6]).

The distribution of u, when H is true is not, in general, known. In this note
we consider the distribution of z, = 1/u, = t./m,. Of course, the test of H
using 2z, is identical to the test using u., and if the critical rejection region
using u, is %, > a, then the critical region using z, is z, < 1/a. We give the
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characteristic function of 2z, and show how, in some cases, it can be used to
determine the rejection region.

2. The distribution of Z,. Let 2y, %2, -+ , @n, tx and m, be the variables
described in the preceding section, and let z, = f./m,. Suppose the variables
z; have the common density ¢(x), x > 0. Then for the characteristic function
of z, we have the following formula, proven in [7]:

@) 80O = B = [ <B [ ¢“oas) da)"_l o(8) ds.

In certain cases it is possible to invert this Fourier transform, and so obtain
the distribution of z,, and in any case we can find all moments of 2, in terms
of quadratures. For example, the mean is

b= Be) =160 = 14 a0 -1 [ FE)
{[ o6 au — s} o) a3,

B8
where F(B) is the cdf, that is, F(8) = fo ¢(x) dz.

We consider a few examples.

(a) Suppose the variables z; are uniformly distributed over (0, 1)—or for
that matter uniformly distributed over any finite interval (0, a), since the
distribution of z, is independent of a. Then (2.1) becomes

it eit . 1 n—1
60) = ¢ ( - )

and we have the rather surprising result the distribution of z, is the same as
the distribution of 1 + y1 + y2 + - -+ =+ Y1, Where y1, Y2, * - - Ya are inde-
pendent and uniformly distributed over (0, 1). This fact may also be readily
deduced from certain properties of order statistics of uniformly distributed
variables which have been studied recently by Malmquist (8].

(b) Let the variables have the density

—z 3k—1

1
(2.2) #(x) = e ",
r<k

2

which is the density of 2x” with & degrees of freedom. For variables which have
the density o’x’ the characteristic function of z, is given by (2.1) with ¢(z) as
in (2.2). If k is an even integer we can find the distribution function of z, ex-
plicitly. Let k = 2r + 2 where r is an integer =0. Then (2.2) becomes
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and if we work with the Laplace transform £,(s) rather than £,(f), (2.1) becomes
. -tz — ° n=— 1 T
23) £ali) = B@™) = n™ [ ¢"0) 1 8 ds,
] r!
where .

B ! r —(B+da
v6) = & [ @y O+ da,
B r+1
= <ﬁTt) a- e—(ﬂ+t) Pr(ﬁ + t));

in which P,(z) is the polynomial P,(z) = 27— 27/j!. Now £.(if)/t is the Laplace
transform of the cumulative distribution function of z,, and (2.3) can be re-
written

. 0 (n—1)(r+1)
fn(’l«t) = 71[ <1 _ i) . (u _ l)r (1 _ e"“‘P,(ut))"_lt'e-“' du.

t rl1

Letting

1\=D )
(1 - —) o (w=1), u> 1,
fw) = u

0, us1,
and f¥(u) = 0 forall k = 0 and u < 1 we have

0= 50 [ Q) e

and putting (P,(z))* = D17, al¥2’,

01 5) o LIS o (e}

and this expression can be now directly inverted termwise to give

B 1 & /n oy r(j—1) (-1 dv+v <§> (§>v}
Pr{z, £ z} = r_!;;(j)( 1) {,‘V::K a, dx'+”f 3)\G) [
or finally

Pr{z, < z} =

so =1 2 (N0 w

r! 1<j<z y=0

4 (n—1)(r+1) v
-£;<1—‘1> <—-—1><>, 1=z =n.
dart? z J J

If we put r = 0, and calculate the distribution of u, = 1/2,, (2.4) becomes

Pr{u, >z} = 2, <7f>(—1)""1(1 — )™, 1 Sz =1,
1=i< /=) \J n

(24)
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which is the result of Fisher [1]. Cochran [2] showed how to express the terms
of u,, corresponding to (2.4), for an even number of degrees of freedom as
multiple integrals of Beta functions, and on the basis of certain approximations
gave a table of approximate percentage points for w, . This table, as well as a
subsequent table by Eisenhart, Hastay and Wallis [9], appears to be subject
to certain indeterminate errors (cf. [9] ch. 15).

3. A limiting distribution. In example (b) above it is possible to find a limiting
distribution for z, when n — o« which may be of use when n is large. (The
limiting distribution for , = 1/z, given by Cochran [2] appears to be erroneous
owing to an oversight concerning the dependence of a set of random variables.)
We remove the restriction that r be a nonnegative integer and merely require
r > —1. Then
1

— —Bor
¢(B)_I‘(r_+1)e B

and £,(f) is given by (2.1). Now define f(8) = 1 — F(8) = /ﬁ ) ¢(z) dr and

l .
W8 = 1= 5@ + B[ " = Dp(ef) da
=1-—f (ﬁ) + g(ﬁ)’
so that £,(t) = —ne” _£ "1 (8) df(B). It is necessary to study the behavior of

g(B) for large B3, and it is simple to show that
1
90 = B[ " ~ 1)g(ef) da

=zt(r+l)+(ztz (r+1)(r+2)+ (B) B o
B B
for bounded | ¢ |.
We next need to get an asymptotic solution to the equation nf(8) = v for 8
when n — o« ; that is, we need to solve

v = I‘(r+1)] oz dx

for 8 when n — . An asymptotic development similar to that above shows

that we have
o2 (14 1o
-m”(”za“(ﬁ))

as an equation to solve for 3. After some calculation we find

v

_ 2loglogn < 1 >
B =1logn 4+ rloglogn + r “Togn log wT'(r + 1)) + O Togn)’
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and hence

1_ 1 ,loglogn | log @r(r + 1)) < 1 )
B logn ' login + log? n +o log2n/’

80 that .
¥ = 1—f6) +9B) =12+l + 1)
{ 1 rloglogn , log (vI‘(r+1))+o<_ 1 )}

log n log? n log? n log? n

Now define numbers ¢, and d, as follows:

cn=(r+l)log n

d, = log n — rlog logn + log T'(r 4+ 1),

and it is simple to verify that

—itdn _ itlen [y _ ¥  ttlogw 1 )""l
En(t/c»)e =€ /; (1 " + n + 0<n> dv,

and that when n — o« the limit may be taken under the integration sign to
give

Ea(t/ca)e" —->‘£ gritls gy — @t + 1).

But the expression on the right is simply the characteristic function for the
random variable log w, where w has the exponential density ¢ *, and hence

lim Pr{z./cs — dn < 2} = Pr{logw <z} =1 — ¢ *, —w0 <z < ®,
by the continuity theorem for characteristic functions. It does not follow, of
course, that the constants ¢, and d, are the “best” in the sense that they give
the “closest”’ approximation to the limiting distribution function when = is
finite.

Finally, then

lim Pr{zng(r+1) - —rlr +1)"_19§1°_ng_” (r + 1) log T'(r + 1)

n—»0

logn+(+1) }=1—e , —o <z < ®.
4. A general limiting expression. Following the analysis of Section 3, it is
possible to get a general limiting distribution for z, for quite a broad class of
distributions ¢(x). There are two essentially distinct cases.
(a) If z;is bounded (i.e., if ¢ (x) = 0 for x > ) thenm, = max @y, 22, " ,Zn)
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tends with probability 1 to some sure number M and hence 2z, has the same
asymptotic distribution as 1/M (x; + xz2 + --+ + z.)—that is, the Gaussian
distribution.

(b) If u = E(x;) exists and z; is unbounded from above we define, as before

v(B) = 1 — f(B) + g(B), where
1
9 =8 fo (" — 1)¢(aB) da,

s0 that (2.1) becomes £(t) = —ne” /; m(tl/(ﬁ))"—1 df(B), f(8) being 1 — F(B) =

fB ¢(x) dzx as in Section 3. An asymptotic development for g(8) is

.

i, 1
96) = 5 + o(ﬁ), B— o,
and as before we must solve nf(8) = v for 1/8, asymptotically for n — o.

Let us suppose that there are constants a, and b, such that if nf(8) = v, v
bounded,

(1) % = an + h(v)bn + fa (1)), n—> o,

(2) nb”—> ©, ;?—5——-)0’ n— o,

(3) fa(v)/ba — 0 uniformly for » in any closed interval 0 < e S v < M < .

Then h(v) is a monotone increasing function, and we consider the normalized
variable (2, — wna,)/unb, . For its characteristic function we have

n 3 n—1 @
/b ™ = [ (1 L 1O o<-1->> do— [ .
0 n n n o
As a consequence the normalized variable has the limiting distribution of
h(w), where w is distributed with an exponential density ¢ . Hence

Zn Qs — 1 — @
Pr{m 5 < x} — Prih(w) <z} =1—ce ,
or

Pr {z, < pnan+ pnbyx} — 1 — PO}
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