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1. Summary. The following theorem is proved. If a univariate distribution has
moments of first and second order and admits a homogeneous and symmetric quad-
ratic statistic Q which s independently distributed of the mean of a sample of n
drawn from this distribution, then it is either the normal distribution (@ is then
proportional to the variance) or the degenerate distribution (in this case no re-
striction is imposed on Q) or a step function with two symmetrically located steps
(in this case @ is the sum of the squared observations). The converse of this state-
ment is also true.

2. Introduction. It is known that the distributions of the mean and of the
variance in samples from a continuous population are stochastically independent
if and only if the parent distribution is normal. This theorem was proven inde-
pendently by several authors [1], [2], [3].

The question arises whether there are any distributions having the property
that the sampling distributions of the mean and of a symmetric and homogeneous
quadratic statistic are stochastically independent. This is the problem to be dis-
cussed in the present paper; all distributions with this property will be deter-
mined and also the corresponding quadratic statistics. In this discussion we
consider a constant as stochastically independent of any random variable.

In an earlier paper [3], dealing with the independence of the mean and the
variance, the existence of a frequency function was assumed. To obtain all pos-
sible distribution functions it is necessary to refrain from this assumption and
to express the formulae in terms of the cumulative distribution functions. Other-
wise the derivation of the differential equation of the characteristic function
(Section 3) resembles the reasoning of the preceding paper. In Section 4 and
Section 5 this differential equation is discussed and the various possible solutions
are determined.

3. The differential equation for the characteristic function. We consider a
univ, arlate population with a cumulative distribution function F(z). Let
Z1,%,+ , %, be n independent observations of the variate . The cumula-
tive distrlbutlon function of the sample is then given by ®(x;, xz, -+, Ta) =
F(z;) F(zy) -+ F(z,). Let usset L = > 7 z;and S = )7,z . Any symmet-
ric and homogeneous quadratic statistic  can then be expressed in terms of L
and S:

(1) Q = aLl’ + b8S.
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The problem under investigation is the determination of all cumulative distribu-
tion functions F(z) and statistics @ for which the sampling distributions of Q
and of the mean & = Y pz;/n (or equivalently of L = n&) are stochastically
independent.

The characteristic function of the distribution F(x) is given by

+

(2) Y(u) = [ ™ dF (z).
The characteristic function of the statistic L is

+o0 +o n +o
G @@ =[ [ are e =11 [ ar@) = wOP.

J=1

Similarily the characteristic function of the statistic Q is'given by

400 4+ .
(32) b2 (1)) = [ c /_'” eth dq)(xlr "'yxn)y

-]

and the characteristic function of the joint distribution of L and @ by
+o0 +o
(3'3) ¢(t; U) = [ tte f eatL+in dq)(xl) ) xn)-

The statistics @ and L are independently distributed if and only if

4) ¢, v) = 1(t)¢(v).
Differentiating (4) with respect to v and then putting » = 0 one has
W ® v | @) W | oo’

or from (3.1), (3.2) and (3.3)

[:w...[:eritLdQ ={‘/_‘:°°.“f_:wem‘ dfb}{‘/;:m“. _:”qu)}

(3) 40

- wor [ :” Q do.

Any distribution function F(x) and any statistic @ which satisfies (4) also
satisfies condition (5). It is worthwhile to remark that (5) implies certain re-
strictions on the statistic Q. ‘

In the following we determine the distributions F(x) and statistics @ which
satisfy (5). This is done by first transforming (5) into a differential equation for
the characteristic function () and by finding also a statistic @ using (5). Finally
we shall investigate which of these distributions and statistics will also satisfy
condition (4) and constitute hereby a solution to our problem.
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We denote the left-hand side of (5) by I(f). Substituting for @ from (1) we
obtain after a simple computation

10 = by [(‘f + 00 5 4o - (%) ]

This permits one to reduce (5) to a differential equation for the characteristic
function '

© @+ 0| s ]+ atw - 0 [ ¥ = 4,
where

(6.1) A= —[(a+ baz + (n — aail,
with the initial conditions

(6.2) ¥0) =1, ¢ (0) = ta.

Here

a, = [:w " dF (x).

From (6) and (6.2) we obtain easily first an equation for the cumulant gener-
ating function g(f) = In ¥(¢f) and then the following differential equation for

h@=%:

dh 3 _
(M (a + b) 7 (na + B)[AM)] = A4,
with
(7.1) h(0) = 7ay.

4. Discussion of the differential equation (7) if A # 0. We have to distinguish
three possibilities:

(8.1) A # 0, na + b =0, a-+ b #0;
8.2) A # 0, na + b #£ 0, a—+0b#=0;
(8.3) ‘ A # 0, na + b # 0, a+b=0.

We first discuss case (8.1); equation (7) reduces to (a + b)dh/di = A; from
(6.1) and na + b = 0 it follows that

dh 2

¥ = —¢ = —(ay — af).

Integrating this equation and considering that h(f) = dg/dt we obtain using the
initial condition (7.1), g(t) = —3¢°¢ + dout. This is the cumulant generating
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function of the normal distribution. Since b = —na we find Q = —an’s’. Here
s =D tazi/n — (O laz;)’/n’. In case (8.1) the parent distribution is normal
and the statistic @ is—except for a constant factor—the sample variance. Con-
versely it is known that for the normal distribution variance and mean are
stochastically independent.

We start the discussion of case (8.2) with the almost trivial case when h(%)
reduces to a constant, and delay dealing with the general case. If A(?) is a constant
and if (8.2) holds then equation (7) is satisfied if A*(f) = A/(na 4+ b) = const.
Then h(t) = h(0) = fay, and since dg/dt = h(t), g(0) = 0 we obtain g(f) =
tont and Y(f) = €****. The function ¥(f) = e**** is the characteristic function of
the degenerate distribution

_Nn if 2 a,
8(”"“‘)_{0 if z< a.

It is easy to show that for this distribution any symmetric and homogeneous
quadratic statistic is independent of the mean.
We proceed with the discussion of case (8.2) by assuming that

9) R0 # + T

Equation (7) may then be written as
(a+b)37_A|:1 T h(t)].

We integrate this equation and then compute the function y(¢) from the relation
h(t) = dg/dt = d/dt In ¢(t), with ¢(0) =
Thus we obtain

(10) v(O) = [pet” + ¢ P,
with
_oa+b __C -1
A= e E Y p"0+1’ 1=cFv
2 A
(10.1) =3 et VQ—nm—mh
)\ﬁ + 2
¢= )\ﬁ - 220{1

In these formulae @ and b and therefore also 4, 8, C as well as \, p and ¢ may
be functions of n.

In the following we have to distinguish two cases. We first assume that
(8:2.1) A > (A — Daj .

_Then @ is purely imaginary so that C, p and ¢ are real numbers. Since p + ¢ =
1, at least one of the two numbers p and ¢ must be positive. If both p and ¢
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are positive then it can be shown by computing the inverse Fourier transform
of (10) that (10) can be a characteristic function only if X is a positive integer.
The corresponding distribution is in this case a binomial distribution. If one of
the numbers p and ¢ is positive while the other is negative then we see easily
that A < 0. In this case (10) is the characteristic function of a negative binomial
distribution.

The binomial as well as the negative binomial distribution have the property
that the random variable assumes an extreme value with a positive probability.
Let Ly be the extreme value which the statistic L may assume; we have then
P(L = Ly) > 0. If L = L, then the value of @ is completely determined. Let
us denote it by @, . Therefore the conditional probability P(Q = Qo | L = L) =
1; on account of the assumed stochastic independence of @ and L this means
that P(Q = Q) = 1 so that @ has necessarily a degenerate distribution. We
see then from (1) that z* has also a degenerate distribution. We conclude that
under the conditions (8.2) and (8.2.1) the case p > 0,¢ < 0 (orp < 0,q > 0)
can not occur. The distribution of x has therefore necessarily the form

(10.2) F(z) = pex — £) + qe(@ + ),
where
(10.3) p>0, ¢">0, p+g=1

If we take a = 0, then @ = bS. From (10.2) it is seen that S = nay, = n¢* with
probability one and hence @ = bS is independent of L. Furthermore, if n > 1,
aL’ + b8 is not independent of L unless p = 0 or p = 1, and hence a must be
zero and Q = bY_r, 7. On the other hand it is easily seen that for the dis-
tribution (10.2) the statistics Q = Y ri2; and L = D7 x; are stochastically
independent. This completes the discussion of the case where (8.2) and (8.2.1)
hold.
We still have to consider the possibility that (8.2) is valid while

(8.2.2) Ay £ (A — 1aj.

In this case g8 is real. Clearly, we must have A < 0 since otherwise ¥(f) would
not be bounded. We put A = —u(u > 0) and write

(1) () = [pe® + g™

Here p and ¢ must be both positive since otherwise ¥(¢) would have a real pole.
It is also seen easily that ¥(¢) has a maximum for a value # given by ¢*° = ¢/p.
Furthermore, if p 5 q we see that ¢(t) = [24/pg]™ > 1, while ¥(t) = 1 if
p = q = 3. If Y(¢) is a characteristic function we must therefore have p = ¢ = }
so that (11) reduces to

1 i w 1 u
(1L1) v = 3t:| = [II gt ] :
o [COSh E j=1 1 + -(—2—.7—__——1_)5;"_2
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The representation of ¢(f) as an infinite product shows that (11.1) is a charac-
teristic function. We show finally that for the distributions determined by (11.1)
no homogeneous and symmetric quadratic statistic @ exists which is independent
of the statistic L. This is proven by demonstrating that E(Q’L?) — E(Q")E(L?)
can not be zero for any distribution with the characteristic function (11.1). The
symbol E denotes here as usual the expected value.

By a somewhat tedious but elementary computation one obtains from (11.1)

and (1)

B(QLY) — Q) E(LY) = 4nu (g)o az{(p + Diln + 2)p + 4] (g)z

+ [ + 5n)u’ + (6n + 8)u + 8 (2) + (np + 1)Bnp + 4)}.

From p = —X\ and (10.1) we see that b/a = —(nu + 1)/(u + 1). If we sub-
stitute this into the previous equation and simplify we obtain finally

nu'a’(ng + (n — 1)g°
8(u+ 1) )

Since u > 0, this can be zero only if n = 1. Then either Q = 0 or a + b = 0.
By (10.1) n = 1 and @ + b 0 imply A = 1, which contradicts g = —\ > 0.
The distribution functions (11.1), derived under the assumptions (8.2) and
(8.2.2), do not therefore yield a solution of our problem.

We next consider the case (8.3) by assuming 4 # 0,¢ + b = 0,na 4+ b = 0.
Equation (7) then reduces to [A(t)* = —ai which leads to ¢(t) = S and Q =
20077 D i1 %ia . We see therefore that case (8.3) leads to no new distribu-
tion as the degenerate distribution appears already in the preceding discussion.

(11.2) EQL) — E@)EWL) =

b. Discussion of the differential equation if 4 = 0. In this paragraph we
assume

(12.1) A= (a+ ba + (n — 1)aai = 0,

and rewrite equation (7) as
(12.2) (@ + b) g-‘ + (na + b) K’(t) = O.

We start the discussion of equations (12.1) and (12.2) with four cases which
lead either to an already known solution for the characteristic function or to a
trivial solution for the statistic Q. We assume first

(12.1.1) a = 0.

. From (12.1.1) and (12.1) we see baz = 0. If b = 0 we obtain the improper statistic
Q = 0, which is independent of any other statistic whatever be the parent
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distribution. If @, = 0, we obtain the characteristic function ¢(f) = 1. The same
solutions (either ¥(¢f) = 1 or @ = 0) are also derived from (12.1), (12.2) and

(12.1.2) a+b=0,
or from (12.1), (12.2) and .
(12.1.3) a = 0.

If we assume
(12.1.4) na +b =0,

we obtain in a similar manner either the statistic @ = 0 or the characteristic
function y(f) = ..

We see therefore that if (12.1) holds the casesa = 0,a + b = 0, &, = 0,
na 4+ b = 0 lead again either to a degenerate distribution which was fully treated
in the preceding section or to the improper statistic @ = 0, which is a trivial
solution of our problem.

In the following we therefore discuss equation (12.2) only under the assump-
tion that the four inequalities

(12.3) a # 0, na + b # 0, a+b=0, ar # 0
d 1 2

hold. In this case (12.2) may be written as -, >< = — o’._z, where o8 =
dt h(t) ay

@z — o is the variance of the parent distribution. If we integrate this with due

regard to the initial conditions we obtain

(13) wo =[1-7%] -4
ax a? :

This is the characteristic function of a gamma-distribution with parameters
o = a;/d’, A = ai/c’. Its frequency function is given by

2
a A1 —az
—— L e for = > 0,
(13.1) f(@, o)) = {TO) if o >0

0 for z =0,

and in case oy < 0 by
0 for z =0,

(13.2) 9@, 0 N) = (=) NP
| —‘i_‘—(xj— —x) e for =z < 0.

Equation (12.1), which led to the characteristic function (13) of the gamma-
distribution, determines also the statistic Q. It is easily seen from (12.1) that
o’/ai = —(na + b)/(a + b) = 1/\, therefore

b w41

(14) T TAFL
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We show finally that the gamma distribution determined by (13) as a solution
of the differential equation (12.2) does not lead to a solution of our problem
since no statistic @ exists which for any sample size is independently distributed
of L. Suppose n.> 1. Then | Q |, = | a(L* — (nA + 1)/(A + 1)S)| < |a| (L* +
(A + 1)/ + 1)8). But S < L* with probability one since all z’s are of one
sign with probability one. Hence | Q | < | a|[((n + 1\ + 2)/(\ + 1)IL* with
probability one. The range of the values of @ is unbounded, hence @ can not
be independent of L.
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