ON THE EXISTENCE OF LEAST FAVORABLE DISTRIBUTIONS!

By E. L. LEHMANN
Stanford University and University of California, Berkeley

1. Summary. Sufficient conditions for the existence of a least favorable dis-
tribution were given by Wald in his work on general decision theory. It is shown
here that for problems of hypothesis testing and more generally for multiple
decision problems involving a finite number of decisions, the result holds under
a much weaker restriction than Wald’s assumption of a compact parameter
space.

2. Introduction. In his general theory of decision functions Wald has given
conditions under which there exists a least favorable distribution for Nature.
One of these, which is rather restrictive and not required for many parts of the
theory, is condition (3.7) of [1], a ‘compactness assumption on the parameter
space. This condition can, of course, in general not be dispensed with; there are
many examples of simple statistical decision problems for which a least favorable
distribution does not exist. However, as we shall show below, for certain special
classes of problems the compactness assurnption is not required.

The following is a typical example. Suppose that 6 is a location parameter
and that we are interested in testing H:0 < 6, against K:0 = 6,. If a least
favorable distribution does not exist this means essentially that positive proba-
bility is assigned to at least one of the points § = = . But it is intuitively
clear that by doing this, Nature would be playing into the hands of the statisti-
cian, since for sufficiently large | 6 | it is very easy to determine whether or
not H is true. In fact one would expect Nature to do better if the above strategy
S were replaced by the (conditional) distribution for 8 obtained from S, given
that no probability is placed on § = 4.

In the next section we shall make this argument precise and use it to estab-

lish the existence of a least favorable distribution for certain hypothesis testing.

and multiple decision problems. In particular our condition is satisfied for many
problems of testing a composite hypothesis against a simple alternative. This
shows that a method given in [2] for determining the most powerful test against
a simple alternative is applicable in most problems of the kind usually con-
sidered.

3. Least favorable distributions for problems of hypothesis testing. In the
present section we shall consider the hypothesis H that the probability density
of a random variable X is f(x) with f ¢ &, where ¥ is some given class of densities,
and the class of alternatives K that the density of X is ge(x) with 8 £ Q. We
shall assume that the sample space & is Euclidean and that § = (6,, ---, 6),
where Q is a Borel set in R, . Since throughout we shall be concerned with dis-
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LEAST FAVORABLE DISTRIBUTIONS 409

tributions over @ we may, by defining these distributions to be zero outside of
Q, assume without loss of generality that Q@ is the full Euclidean space B, . We
assume further that for almost all z, go(x) is continuous in @ and measurable
in @ X .

For the present we consider the uisual asymmetric formulation of the problem
in which a level of significance « is assigned and it is desired to maximize the
minimum power of the test over K. In this situation, as is pointed out on page
133 of [1], assumptions (3.1) — (3.6) of [1] hold, and we have, as a simple con-
sequence of Theorem 3.12 of [1],

LemMma 3.1. There exists a level-a test ¢ of H that maximizes the minimum power
against K, and a sequence of distributions \; over Q such that

3.1 ‘1112 Ey¢(X) d\i(0) = lolg Eyp(X)
and
(3.2) }ng B: = inf Ey¢(X),

where B; 1s the power of the most powerful level-a test for testing H against the simple
alternative

[ 0@ an.

Now by Helly’s compactness theorem there exists a subsequence of the se-
quence {\;}, which without loss of generality we shall take to be the ongmal
sequence, such that

(3.3) Ai = yu

for all continuity intervals of u, where u is again a distribution and 0 < v = 1.
If here we could assume that v = 1 it would follow that ux is least favorable
(see the proof of Theorem 3.14 of [1]). We shall now show that u is least favor-
able by proving that either ¥ = 1 or lim 8; = 1 under the following

AssuMPTION A. Given any ¢ > 0 and any closed bounded set w C Q there exists
a Borel set S in the sample space such that

3.0 P(8|f) S Jordife§,
P(S|g) < ¢ for all 6 € w,

and

(3.5) P(S | gs) — 0 uniformly as 0+ - + 6> .

Clearly Assumption A is satisfied if both & and Q@ are compact, but as we shall
show later the assumption also holds in many cases in which (3.7) of [1] is not
satisfied.

* The proof of our result is based on the following two lemmas
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LemmMa 3.2. Let w be any closed bounded set in @ and let € > 0. Then there exists a
Borel set S in X and an integer o such that

36) [P® 0@ z1—v—c forizi,
and even '
B0 [ BlbXe®la® 21—y -2 iz,

where ¢ 1s the test referred to in Lemma 3.1 and where cs(x) s the characteristic set
function of S.

Here and in what follows the notation P(S|6) and Ej indicates that the
probability or expectation is computed with respect to the probability density

gs(x). .
LemMa 3.3. For any € > 0 there exists a continuity interval w of u such that for

any lest ¢

(38) [ B0 @ 2 v [ Boo(X) dul0) —
for sufficiently large 1.
Before proving these lemmas we shall show that they implyy = 1 orlim g; = 1

and hence the existence of a least favorable distribution. Let ¢ be the test re-
ferred to in Lemma 3.1 and let

(3.9) lim [ Bos(X) dni(6) = 6.
Given any e¢ > 0 let w be a bounded subset of @ for which (3.8) holds. Then
[ Buo0 i) = [ Bop ) v @ + [ BopX) ari(0),
where for sufficiently large 7 the first term is = v / Ewp(X) du(f) — € by (3.8)
Q

and the second term is = 1 — v — 2¢ by (3.7), so that

610 82—+ [Es(0 d® 2 [ Bes(X) dul)

Here the last inequality is strict and therefore contradicts (3.1), unless either
v = Lor [ Bog(X) du(6) = 1.
' Q

But in the latter case 8 = 1 by (3.10), so that

/9 Eog(X) du(6) = inf Eyp(X)

and p would be least favorable.
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Proor or LEmMMA 3.2. Let S be a set guaranteed by Assumption A for which

(3.11) PS|6) = ¢/2 for all 0 ¢ w,
(3.12) IZ(S [f) < e forall f ¢ &,
and such that

(38.13) P(8 | 6) — 0 uniformly as 6] + -+ + 62 — .

From (3.3) and (3.13) it follows that
(3.14) fP(S 10) @) 21— v — ¢/2 for i = iy,
a

and (3.6) is an immediate consequence of (3.14) and (3.11).
Suppose now that (3.7) did not hold. Then there would exist a subsequence of
{\;}, which we may again take to be the full sequence such that

(3.15) lim / Esl¢(X)es (X)] dni(0) = 6 < 1 — ».

1=>00

We define a new test ¢* by
1 ifxel,
*(y) = —
(3.16) $*(@) =qa — ¢ - ) ifzeS.
Then for any f ¢ ¥ we have, because of (3.12)
d— e

a
24

+PE|f) £«

(3.17) E(¢*(X) |f) =

so that ¢* is again a level-a test. Also, for all z,

(3.18) $*@) 2 2= (@) + s @1 ~ ¢(2)],
and hence

[0 o) 2 &= [ Bis(x) 0o
(3.19)

+ [ Bates(O1 ~ 60N} 0 0).

The first term on the right-hand side of (3.19) tends to 8(a — €¢)/a as 1 — .
On the other hand the second term is greater than or equal to

ﬁm@ﬁm—émmmwmﬁm,

which for sufficiently large 7 exceeds (1 — v — ¢) — (8 + ¢) by (3.15) and (3.6).
‘This shows that for sufficiently large 7
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¥y — 90
2

and thus contradicts (3.2), smce it implies that for sufficiently large ¢ ¢* is

[Besr ) > 8+

more powerful than the most powerful test for testing H against f go(x) d)\ (0).
Proor oF Lemma 3.3. Let w be a continuity interval of u, and so large that

(3.20) uw(@) < ¢/2.

Then by the Helly-Bray theorem, as ¢ —

[0@ a@ -y [ 0@ wo,

and hence by Fatou’s lemma

tim int [ [90) [ 00 o <o>] oz [ [¢<x) [o@ d;»(o)] pa

Interchanging the order of integration we then have for 7 sufficiently large

Q

[ B0 @ 2 v [ Bos X du0) — /2 2 v | Boo(X) duo) - ¢

by (3.20).

We can sum up the work of this section in

TrEOREM 3.1. If go(x) 7s continuous in 0 and if Assumptwn A holds, then for
the problem of testing H against K there exists a least favorable distribution for 6.

As an illustration, let X;, -+, X. be a sample from a distribution with
density f(x — 6) and consider testing H:0 < 6 against ¢ = 6, . Here we could
clearly take for S a set of the form X; < ¢, so that Assumption A is satisfied.

4. Testing against a simple alternative. As an application of Theorem 3.1 we
now consider the problem of testing a composite hypothesis against a simple
alternative. Let the hypothesis state that the density of X is fs(z), 0 ¢ @, and
let the alternative be g(x), where we assume as before that the sample space is
Euclidean and that 6 = (6, -- -, 6,) with Q@ being the full Euclidean space E, .

AssuMPTION B. For every closed bounded set S in the sample space, P(S | fo) — 0
uniformly as 0+ - + 62> .

TrEOREM '4.1. If fo(x) is a continuous function of 6 for almost all x, then under
Assumption B there exists a least favorable distribution over Q.

Proor. Theorem 3.1 clearly applies if we interchange H, « with K, 8. We
therefore only need to show that Assumption B implies Assumption A with
f and ¢ interchanged. That is, we need to prove that Assumption B implies the
existence of a set S such that

(4.1) P8lg) s
(4.2) PR |fy) < e for all 0 € w,
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and
(4.3) P(S|fy) »0as 6l + - + 62— .

It was pointed out by Scheffé [3] that when gs(x) is continuous in 6, the con-
vergence 6; — 6 implies

(4.4) f 9o, () dz — f g (x) dx uniformly for all Borel sets S.
8 8

Therefore if w is bounded and closed, the associated set of distributions is com-
pact with respect to the convergence definition (4.4). Let ¢ > 0. Then we can
find a finite number of points in w, say 6;, ---, 6., such that every 6 ¢ w is
within %e of one of these 8; in the sense that | P(S | 6) — P(S | 6:) | < %efor all
Borel sets S. It follows that there exists a closed bounded set S for which (4.1)
and (4.2) hold and (4.3) then follows from Assumption B.

AssumpTiON C. There exist s statistics Y; = hi(X),7 = 1, -+ -, s, such that the
h: are continuous, the marginal distribution of Y, depends only on 0;, and Y;
tends to + o or — o as §; — + o or — o,

LemMma 4.1. A sufficient condition for Assumption B to hold is Assumption C.

Proor. Let S be a closed bounded set, and let a; = ming h;(x), b; = maxg hi(x).
Then Py(X ¢ 8) < Py,(a; S Y, < b)fori=1,---,s.Nowif 61 + .-+ + 6% > C

we must have 63 > C/s for at least one value of 7. Given ¢ > 0, let C be so large
that

Py(a; Y= b) <e if 0% > g for all 2.

Then Py(X ¢ S) = e provided 6+ - + 62> C.

As an example let X, , - -+, X, be a sample from a distribution with unknown
location and scale parameter ¢ and . Let 6, = £ 6. = log 9, and take ¥, =
X,/| Xo — X1|, Y2 =log| X2 — X; | . Then Assumption C is seen to be satisfied,
so that for testing a hypothesis of this type against a simple alternative, a least
favorable distribution exists.

Theorem 4.1 answers a problem raised by [2], where in Theorem 1 a method
is given for proving that a test is most powerful for testing a composite hypothesis
against a simple alternative. Combining Theorem 4.1 with Theorem 3.10 of [1],
we see that this method is always applicable when Assumption B is satisfied.

While it is quite likely that Assumption B can be weakened somewhat, it is
perhaps of interest to point out that some condition of this type is required,
which restricts the behavior of the distributions as 63 + -+ + 62 — «. As
an example consider the following situation in which @ is denumerable and the

densities are given by

1 —3(z—1 —~3(z—(1/1¢ .

H:f;(x) = oSo %[e Homd? 4 gmie=Qlin?) i=mm-+1, .-,
1

K:g(z) = e,

V2
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We shall show that if m is sufficiently large the most powerful level-«a test rejects
when £ < b, where b is determined by

(4.5) lim [b filx) dx = % f_b g(x) dz = a.

b
First one checks easily that for large 7 a(?) = f fi(x) dx is an increasing

function of 7. Let m be such that «(%) is increasing for ¢ = m. Then the proposed
test is of size & and power 2« by (4.5). But if 3 is the power of the most powerful
test ¢ we clearly have

gs2lmsup [(i@)¢0) do < 2,

1—>00

which proves that the region of rejection z < b is most powerful. If a least

favorable distribution A over @ existed, the test z = b would be a Bayes solution
for A (Theorem 3.9 of [1]), that is, would be most powerful for testing f fi(x) d\ (D)

against g(z). But an application of the Neyman-Pearson fundamental lemma
shows immediately that no Bayes solution is of this form.

It may be worth pointing out that the conditions of the present paper are
really of a quite different nature from those given by Wald in his general theory.
Thus they do not even imply that the parameter space is weakly compact in
the sense of (3.1) of [1]. As an example, consider a random variable X the dis-
tribution of which depends on an unknown location parameter 6. Let H denote
the hypothesis § < 6, and suppose that the simple alternative is 6, > 6, . Let
{\:} be any sequence of distributions over H, and let #(z) be any test. Then
weak compactness of H would imply the existence of a subsequence {\;;} and a
distribution Ay over H such that

(4.6) tim sup [ Bo ¢ @) dni, @ = [ Bog @) dro 0.
J—0

But let ¢(x) be the characteristic set function of the set * < C and let N\i(6)

assign probability 1 to the point § = —1. Then the left-hand side of (4.6) is 1,

while for any distribution A\, the right-hand side is <1, so that H is not weakly

compact. On the other hand, Assumption B is satisfied.

5. Some extensions. We shall now indicate briefly how the results of Section
3 may be extended to somewhat more general decision problems. As a first
generalization consider the problem of hypothesis testing, formulated as in
Section 3 except that the loss function need no longer be simple. Suppose that
acceptance of the hypothesis when the true distribution is given by ge(z), 6 € Q
results in a loss W(6), and that V(f) is the loss resulting from rejection of H
when f is the true density. We shall assume that V and W are bounded and
that we are interested in minimizing sups W(0)Es[l1 — ¢(x)] among all tests ¢
for which V(f)E[¢(x) | f] < aforall fe&. ’
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Let Assumption A’ be obtained from Assumption A by replacing P(S | ¢s)
and P(S | gs) in (3.4) and (3.5) by W(6)P(8 | gs) and W(6)P(S | gs) respectively,
and P(S | f) in (3.4) by V(f)P(S | f). Then Assumption A’ implies the existence
of a least favorable distribution over ©. Only the obvious changes are required
in the proof of Theorem 3.1.

As an immediate further generalization one next obtains an analogous result
for the following two-decision problem. The parameter space is partitioned into
two set w; U wp. The loss is zero if 6 ¢ w; and decision d; is taken; it is W(9) if

n
A

AN\ N
NA—

decision d; is taken incorrectly. Let us denote the risk function of a decision
procedure § as usual by Rs(6) and suppose that if & is the minimax solution

sup Rs; () = v.

Then the overall minimax problem is equivalent (see [4]) to the problem II;
of minimizing supe.., Rs(6) subject to RB;(8) < v for all 6 ¢ w,, and also to the
problem II; obtained from II; by interchanging 1 and 2. If a least favorable
distribution over w; exists for II; (¢ = 1, 2), then one exists for the overall
problem. But each of the partial problems is of the type discussed at the begin-
' ning of this section.

The whole argument extends without much difficulty to multiple decision
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problems involving a finite number of decisions and having a bounded loss funec-
tion. We shall not give the details but simply state the result. Let w1, - -+ , wx
be the regions in the parameter space in which the decisions d;, ---, dg are
appropriate so that the loss W (4, dj) = 0 if 6 £ w;. Then we consider the two-
decision problems II; (¢ = 1, ---, K), where the decision lies only between
0 &w;and 0 ¢ 2 — w;. A least favorable distribution exists over @ provided each
of the problems II; satisfies Assumption A’.

As an example consider the case that Xy, -+ , X ; Yy, -+, Y,arem + n
independent random variables, and that the density of the X’s is f(x — £) while
that of the Y’s is g(y — #). Suppose that the partition of @ is as shown in the
diagram and that the loss is 0 or 1 as the correct or an incorrect decision is
taken. Then a least favorable distribution exists. To show that II; satisfies
Assumption A’ suppose that the bounding rays l; and I, of w; are given by
n = myt and n = mst. Then for S we may take a set in the sample space of the

form
B+ zR mtoasy S mnt o,
where R, ¢; and ¢, must be chosen sufficiently large.
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